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Th e Non-Misleading Value of Inferred 
Correlation: An Introduction to the 
Cointelation Model

Abstract
This paper1 comes together with growing evidence for power law-type scaling2 of 
correlation with time, a concept rooted in the original study by Benoit Mandelbrot 
on concentration of risk.3 We complete the cointelation model recently introduced4 
via a statistical test, which uses measured correlation in different time gaps. We also 
provide an approximation of the expectation in the change in measured correlation 
via these various time steps and use our findings in order to introduce the concept 
of inferred correlation and the term structure of correlation. We finally illustrate our 
findings through the example of the relation between oil and BP, and present a few 
potential applications in the financial industry.

Keywords
cointelation, inferred correlation, measured correlation, cointegration, correlation 
term structure

1 Introduction
1.1 Scope
Within the context of, arguably, a mathematician-led financial crisis, Gosset [1] 
showed that the industry needed to take a step back and reflect on some of its core 
assumptions. With this in mind Damghani et al. [2] explained how, within the 
framework of the financial industry, when representing relationships between assets, 
correlation is typically used in lieu of perhaps sometimes a more realistic model 
that they named cointelation. Cointelation is a portmanteau neologism in finance, 
designed to signify a hybrid method between the cointegration5 and correlation 
models. While this cointelation model was not the main point the authors wanted 
to introduce, it however provided an original model for which a methodology for 
the estimation of the parameters was addressed; but no test was suggested in order 
to determine whether two stochastic processes were “cointelated” to begin with. The 
objectives of the paper are first, to give the specifications for this cointelation test and 
second, to try to reconcile this new idea with a market observable phenomenon – 
which is that the correlation on different time gaps increases as the time between 
returns increases for certain pairs. Last, we introduce the concept of inferred correla-
tion which will be defined as its closest immediately translatable industry cousin for 
the cointelated pairs.

1.2 Structure of the paper
In Section 2 we give a reminder of the cointelation model as well as the models it was 
inherited from. In Section 3 we lay out the intuition and specifications for the cointe-
lation test. In Section 4 we introduce the concept of inferred correlation. In Section 5 
we give the specification of the cointelation test. In Section 6 we explain the parameter 
estimation methodology. We apply the test to the example of oil and BP in Section 7. 
Finally, in Section 8, we give a few examples of applications in the financial industry.

2 Correlation, cointegration, and cointelation 
2.1 Model set-up and review
The naming of the parameters and the model set-up are those taken from “The mis-
leading value of measured correlation” [2]. That is, we set up the probability space 
(Ω, (f)(t≥0) , ℙ), with ( f)(t ≥ 0) generated by the (T + 1)-dimensional Brownian motion 
and ℙ the historical probability measure under which the discounted price of the 
underlier, rS, is not necessarily a martingale. The main objective of this paper not 
being pricing, we will revert from working in the risk-neutral probability space.

2.2 Leading stochastic process
We first define our leading stochastic process, St(t ≥ 0), in eqn (1). We have defined 
this stochastic process to be the “leading” stochastic process because the movements 
of the other three models we introduce in eqns (2), (4), and (5) are all conditional on 
the movements of this leading stochastic process. Alternatively, one may want to think 
of this process as the combined products of macro events which are unpredictable.

 

dSt
St

= rdt+ 𝜎dWt  (1)

with dWt ∼ ℕ(0, dt). Here, the distribution of the errors has been chosen arbitrarily. It 
obviously does not need to be lognormal. One may want to choose a fat-tailed distribu-
tion, especially if one considers the leading indicator to be representing macro events. 

2.3 Model: Correlation
The second stochastic process, Sr,t (t ≥ 0), that we have labeled “the correlation 
model,” is defined by eqn (2). In this equation, dWt is the same as in eqn (1) and 
dWt

⊥ is an independent Brownian motion. In this example the volatility has been 
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equation in order to enforce the non-negativity constraint on the price of Sl. The 
cointelation model is summarized by eqn (5). Note that, like in the cointegration 
model described by eqn (4), q ∈]0,1].

 

dSt
St

= rdt + 𝜎dWt

dSl,t = 𝜃(St − Sl,t)dt + 𝜎Sl,t(𝜌dWt +
√
1 − 𝜌2dW⊥

t ) (5)

Here we will call r the correlation of the cointelation.

3 Intuition behind the cointelation test 
3.1 Studying the rolling correlation 
In order to introduce the concept of cointelated pairs, Damghani et al. [2] pointed 
out that in cointegrated pairs the rolling 10-day correlation could have very signifi-
cant swings. This observation would obviously be true in cointelated pairs. However, 
performing a test with this idea as a basis would become difficult in situations where 
the recall force [in eqn (5)] is quite strong.

3.2 Studying the number of times cointelated pairs cross 
paths 
Another potential suggestion could be to study how many times the normalized time 
series cross paths. For example, if l represents the length of our study, we are in a situ-
ation of cointelated pairs, and q = 1, then the number of times the time series would 
cross would be l

2
. This is because, in eqn (5), dSl,t is calculated in such a way that Sl,t 

“catches up” with St every time a gap between Sl,t and St has been created, which hap-
pens one time out of two alternately.

3.3 Studying measured correlation on different time 
 intervals 
Although the “rolling correlation,” as described in Section 3.1, appeared promising, it 
does have its limitations – especially at the boundaries of definition of the cointelation 
model. The methodology we are proposing aims to be self-sufficient no matter wheth-
er the model is close to its limits or not. We will now introduce the intuition. Pairs that 
are cointelated will have, in the expectation sense, measured correlation that will be 

chosen to be the same as in eqn (1) so as to avoid the types of situation Paul Wilmott 
described [3]. More specifically, situations in which correlation was only relevant at 
the infinitesimal level and the resulting measured correlation could be misleading 
with respect to the relative departure of the two relevant underliers. 

 

dSt
St

= rdt+ 𝜎dWt

dSr,t
Sr,t

= 𝜎(𝜌dWt +
√
1 − 𝜌2dW⊥

t )
 (2)

with dW⊥
t ∼ ℕ(0, dt) and r representing the correlation coefficient between the two 

stochastic processes at the most infinitesimal level. In this technical paper, measured 
correlation will refer to Pearson’s correlation coefficient [represented by eqn (3)]:

 
𝜌xy =

𝜎2
xy

𝜎x𝜎y
 (3)

2.4 Model: Cointegration
We know that two or more time series are cointegrated if they have the same stochas-
tic drift. There are different ways to represent such a relationship. We have chosen 
here to use one inspired by the Ornstein–Uhlenbeck (OU) model [4],6 where the sto-
chastic differential equation is described by eqn (4). In this model, q  represents the 
recall force or the speed at which the “lagging” stochastic process [here generated by 
eqn (4)] mean reverts around the leading stochastic process [here generated by eqn 
(1)]. Note that q ∈] 0,1]. Indeed, if q  = 0 we are back to the first model and if q > 1 the 
stochastic process would “explode.” The Sg,t in eqn (4) is there to prevent the stochas-
tic process ever going negative. 

 

dSt
St

= rdt + 𝜎dWt

dSg ,t = 𝜃(St − Sg ,t)dt + 𝜎Sg ,tdW⊥
t  (4)

One may argue that this model is restrictive in the sense that it assumes mean 
reversion. This perception has been described and explained as the correlation bias 
[2]. This model remains as relevant as the correlation model and needs to be taken 
into account also when it comes to representing the relationship between two assets.

2.5 Model: Cointelation
The cointelation model, as explained in the Introduction, is a hybrid model between 
the correlation and cointegration models specified in eqns (2) and (4). The idea of 
the model is that we would like to represent two stochastic processes with the same 
long-term drift (as is the case for the cointegration model) but also have a model that 
would appear to be behaving like the correlation model most of the time or at least 
in the short term. This dual objective is achieved by combining the main properties 
of the two models. In that sense, the cointelation model could be seen as a generali-
zation (Figure 1) of both the correlation and the cointegration model, and as such 
it cannot be “restrictive.” The long-term drift argument is achieved by using the 
deterministic part of the differential equation, the same way it is used in the cointe-
gration model: via a recall force fueled by the q  parameter. The second objective, 
that is a relationship in the short term, is reached when the lagging stochastic process 
(Sl) is close to its leading indicator (S). Indeed in this case, the deterministic part of 
the stochastic differential equation would become negligible with respect to its sto-
chastic part and the model would behave like in the model from eqn (2). Like in the 
cointegration model, we will add Sl,t in front of the stochastic part of the  differential 

Figure 1: The cointelation model can be seen as the generalization of both 
the correlation and the cointegration models.
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bigger as the time scale for the measurement of returns increases. Also, pairs that are 
cointelated will have a higher acceleration toward a measured correlation of 1 when 
the recall force q  increases. These claims should be immediately intuitive when one 
examines eqn (5). However, what might not be necessarily intuitive is that the bigger 
the time scale of measurement, t, the bigger the probability that our returns fall “out 
of phase.”7 For example, if we examine Figure 7 – two cointelated pairs (which we will 
prove in Section 7) – we can see that if we happen to choose our first day of estimation 
for instance where spreads are bigger than their historical mean (e.g., June 2008) then, 
because of the recall force, we start our measured correlation process “out of phase” 
and we get a small correlation because the first few measurements go in the direc-
tion opposite to what the true long-term relationship would suggest. As we explain in 
Section 5, we would like to test whether the stochastic processes are cointelated. We 
cannot conveniently choose where to pick the first day of our measurement, so we 
will have to choose random first days of measurement, increase t  iteratively, and look 
whether on average this yields an increase in the measured rt.

4 Inferred correlation and term structure 
of correlation
For this section we have simulated a few cointelated pairs following eqn (5). We ana-
lyze our observation, and show that the concept of cointelation can be mapped onto 
the concept of inferred correlation at different time gaps.

4.1 Observations
We can see in Figure 2 that, depending on the chosen time scale for measurement, 
with a correlation of cointelation r = –1, we can actually achieve the whole span of 
possible measured correlations ]–1,1[. We can also see that at the smallest time scale 
t, the measured correlation happens to be equal to the correlation of cointelation 
(𝜌 = 𝔼[𝜌1 ]) as described by eqn (5). Furthermore, the variance of the measured cor-
relation converges in the same figure.

4.2 Term structure of correlation
Intuitively, and through examination of the various figures (for example, Figure 2), 
we can see that the function which models the variation of measured correlation 
with respect to the time gaps between measurements should be an increasing func-
tion starting at t = 1, should converge toward 1 when t  goes toward ∞, and should go 
toward 1 faster when the recall force q  is bigger. One such function is described by 
eqn (6). In eqn (6) we can see that when t  goes toward 1, e−𝜃(𝜏−1) goes toward l and 
therefore 𝔼[𝜌t] goes toward r. On the contrary, when t  goes toward ∞, e−𝜃(𝜏−1) goes 
toward 0 and 𝔼[𝜌t] goes toward r + (1 – r) × 1 = 1. 

 𝔼[𝜌
𝜏
] ≈ 𝜌 + (1 − 𝜌)[1 − e−𝜃(𝜏−1)], 𝜏 ∈ ℤ∗ , 𝜃 ∈ [0, 1] (6)

5 Cointelation test 
In this section we define what makes two stochastic processes cointelated in three 
steps. First, we introduce Lemma 5.1 in order to formalize the intuition of “increas-
ing measured correlation” described in Section 3.3, and then we formalize via 
Lemma 5.1 the intuition of the “number of crosses” idea given in Section 3.2.

5.1 Test formalization
Lemma 5.1 The non-linear best fit of  𝔼[ sup

0<t≤𝜏
𝜌t ] can be coherently modeled by eqn (7). 

 
𝔼[ sup

0<t≤𝜏
𝜌t] ≈ 𝜌+ (1 − 𝜌)[1 − e−𝜆𝜃(𝜏−1)], 𝜏 ∈ ℤ∗ , 𝜃 ∈ [0, 1], 𝜆 > 0  (7)

Proof. We set f(yt,t) = yteq t 

where: 
{
dxt = xt𝜎dWt

dyt = 𝜃(xt − yt)dt + 𝜎yt(𝜌dWt +
√
1 − 𝜌2dW⊥

t )
Differentiating, we get df = qeq tdt + eq tdyt. Substituting for dyt, we get df = 𝜃e𝜃txtdt +
e𝜃t 𝜎yt(𝜌dWt +

√
1 − 𝜌2dW⊥

t ) . Now integrating, we get yte
𝜃t = ∫

t

0
𝜃e𝜃sxsds+

∫
t

0
e𝜃s𝜎ys(𝜌dWs +

√
1 − 𝜌2dW⊥

s ) − y0 . We then get yt = xt + (y0 − x0)e−𝜃t + e−𝜃t

∫
t

0
e𝜃s𝜎ysds(𝜌dWs +

√
1 − 𝜌2dW⊥

s ). Calculate cov(yt,yt), cov(xt,yt), and cov(xt,xt) 

in order to plug into rxy =   
sxy  _____  sx  sy

  . Substituting in, taking advantage of the fact that 

< dWt ,dW⊥

t >= 0  and Ito’s lemma, we get after integrating eqn (7).8 
Lemma 5.2 If l happens to be the length of the data, the expectation for the number of 
times the best chosen normalized returns of our cointelated pairs x and y cross paths, 
𝔼[Γx,y(𝜃, l)], should be equal to the expectation of the number of times correlated pairs 
cross paths,9 g l, if q = 0 and should be equal to   1 __ 2   when q  converges to 1. The equation 
that best fits this claim empirically is eqn (8). 

 𝔼[Γx,y(𝜃, l)] ≈ l[𝛾(1 − 𝜃) + 1
2

√
𝜃]  (8)

Proof. We have the function𝔼[𝜋x,y (l)] = 𝔼[Γx,y(0, l)] = 𝛾l ,𝔼[Γx,y(1, l)] =
l
2

. For 
small g, 𝔼[Γx,y(𝜀, l)] ≈ 𝛾

l
2

√
𝜃 . The speed at which 𝔼[Γx,y(𝜃, l)]  increases should be 

proportional to the speed at which the variance increases for an ℕ(0, t) -distributed 
random variable. As such, f (x) =

√
x  represents a good candidate. 

Definition Two stochastic processes aimed at representing financial data will be 
cointelated if: 

•  Lemma 5.1 is verified.
•  Lemma 5.2 is verified.
•  The underlying assets have a reasonable physical connection that would sug-

gest their spread should mean revert.
•  In instances where the first two bullet points are not verified exactly, the cor-

relation model cannot possibly be a substitute as correlation is a special case of 
cointelation (where q = 0). 

Note that the third bullet point seems to be a rather vague statement relative to what 
one may expect in a usual mathematical definition. This rather unexpected approach 
aims to raise awareness of the fact that this remains a model for which the application 
should be properly understood, rather than being blindly used – which is so often the 
case in the financial industry.

5.2 Test verification
Figure 3 represents a comparative study of cointelated and correlated pairs through 
simulation of a realistic financial q. As one can see, 𝔼[sup 𝜌𝜏]  fits well max 𝜌̂𝜏 . In the 
case where our recall force q  is very weak, the 𝔼[sup 𝜌𝜏]  discussed in Lemma 5.1 will 
represent a lower bound rather than an expectation. Figure 4 illustrates this particu-
lar property. In the case q  is strong, 𝔼[sup 𝜌𝜏]  discussed in Lemma 5.1 will represent 
a slight upper bound. In these cases the pairs are so obviously cointelated that the test 
is not really needed. Figure 5 illustrates this idea.

6 Note on parameter estimation 
6.1 Estimating p  by rearranging the SDE
Note that 𝜌̂1 = 𝔼[𝜌1 ] . By rearranging eqn (5), we get 

𝜃̂ = 𝔼[
dSl,t

(St − Sl,t)dt + 𝜎Sl,t(𝜌1dWt +
√

1 − 𝜌̂21dW
⊥
t )

] , and therefore 
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Figure 2: Example of cointelated pairs spanning all the measured correlation spectrum conditional on the assigned time scale.
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St

Sg,t

𝜎̂ = 𝔼[
dSl,t − 𝜃̂(St − Sl,t)dt

(𝜌1dWt +
√

1 − 𝜌21dW
⊥
t )

]. Similarly to the variance reduction meth-

odology described in [2], we will define B+ = |max(St − Sl,t , t ∈ [0, T ])
2

| and 

B− = | inf(St − Sl,t , t ∈ [0,T ])
2

|. We note that the estimation of q  is noised when 

Z𝜎 = B+ > |St − Sl,t | > B− where s, in contrast, has quality samples. The reverse is 

true when Z𝜃 = |St − Sl,t | > B+
⋃|St − Sl,t | < B− . We will therefore sample q  in 

Zq and s in Zs . Figure 6 gives a representation of these sampling zones.

6.2 Estimating p  via the inferred correlation formula
Damghani and co-workers [2, 5] showed a way to reduce the variance for the q 
parameter in the cointelation model (or more generally in the OU process infamous 
for being slow to converge10 in the industry). From eqn (6), it is tempting to rearrange 



10/04/2013 11:50 AM50-60_wilm_Damgani_TP_Sept_2013_Final.indd 54

54  WILMOTT magazine

the equation so that an additional estimator for q  is isolated. The solution from the 
rearrangement is given by

 𝜃 ≈ 1
n

n∑
i=1

[− 1
𝜆n

ln(
max(𝜌̂n) − 1

𝜌 − 1
)] (9)

where n happens to be the biggest time gap for which r̂n happens to have enough 
samples to make it statistically significant (around 30). 
Proof. Rearranging eqn (6), we get 𝜌̂𝜏 − 𝜌 = (1 − 𝜌)(1 − e−𝜆𝜃𝜏 ) . Taking the log on 

each side, we get ln(
𝜌̂
𝜏
− 𝜌

𝜌 − 1
+ 1) = −𝜆𝜃𝜏 . Rearranging further and taking the expec-

tation, we get eqn (9). 

Although tempting, this methodology usually yields a poor estimator for q. This is 
because, although eqn (9) pretty accurately predicts the general shape of max 𝜌̂𝜏 , it 
however remains an estimation whose error in [0,1] is enhanced by the log function 
in eqn (9).

6.3 Estimating p  via the number of crosses formula
As we can rearrange eqn (6) to isolate and get an estimation of q  in eqn (9), we can do 
the same with eqn (8). Indeed, another estimation of q  can be given by

 𝜃 ≈ 𝜆(
Γ̂x,y(𝜃, l)

l
− 𝛾)2  (10)

Figure 3: Comparative study of cointelated and correlated pairs through simulation of a realistic financial.
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Figure 4: Comparative study of cointelated and correlated pairs through simulation of a very weak.
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Proof. By rearranging Γ̂x,y(𝜃, l) = l(𝛾 + 1
2

√
𝜃)  we get eqn (10). 

6.4 Variance reduction technique for p
Combining the variance reduction methodology described in [2, 5], we can find an 
estimator for q ( 𝜃̂d ). Combining the results from eqns (9) and (10), we can find a 
better estimator for q as given by

 
𝜃 ≈ w1𝜃̂d + w2(

1
n

n∑
i=1

[− 1
𝜆n

ln(
𝜌̂n − 1
𝜌 − 1

)])+ (1 −w1 −w2)𝜆(
Γ̂x,y(𝜃, l)

l
− 𝛾)2  (11)

where w1, w2, and (1– w1 – w2) are in [0,1] and represent the optimal weights, whose 
value will be addressed in a future paper.

7 Application to the example of oil and BP 
7.1 Physical reason
Because BP is a company focusing on the production of oil, it is normal that its long-
term performance is strongly linked to that of oil. This means that the relationship 
between oil and BP is a good candidate for the cointelation model.

7.2 Correlation on different time scales 
If one examines the correlation between oil and BP (Figure 7), one realizes that 
the measured correlation between oil and BP is a function of the gaps in the meas-
urement of the returns. For example, if we measure the correlation of the returns 
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Figure 5: Comparative study of cointelated and correlated pairs through simulation of a very strong.
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Figure 6: Visual representation of the sampling zones for p  and r.

Spread B+ B− Zσ Zθ

between oil and BP every 12 days, we get around 0.37 whereas if we do it every 70 
days, we get a correlation of 0.56. How do we explain this discrepancy? The differ-
ence is due to the fact that in the long run, oil and BP have the same drift but in the 
short run, we get a weaker perceived relationship due to the numerous noises that 
can only impact one of these assets and not the other (for example, the very tem-
porary impact of the Gulf of Mexico accident on the spread between oil and BP in 
Figure 7). For the physical reasons just described, the relationship between oil and 
BP is a good candidate for the cointelation model. In fact, with the current financial 
mathematics literature this duality between differences in the short-term relation-
ship and the long-term relationship can only be explained by the cointelation model. 
Using the variance reduction technique [2, 5], one can estimate q  (in the last 5 years, 
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Figure 7: Time series of oil and BP in the last 5 years and statistics about their measured and inferred correlation estimates.
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for daily returns 𝜃̂  ≈ 1%) and then plug q  into eqn (7) and we get a pretty accurate 
representation for 𝔼[max 𝜌𝜏 ] (Figure 7). Figure 8 shows that a similar study can be 
done with Target and Walmart.

7.3 Number of crosses
If one wishes to argue that the difference between 0.56 and 0.37 is not that signifi-
cant, then one can also examine the number of crosses Γ̂x,y(𝜃, l), which corroborates 
the result described in Section 7.2. Indeed, plugging 𝜃̂ = 1%  in eqn (8), we get 

Γ̂x,y(𝜃, l) ≈
3.2l
100

 (where 𝔼[Γx,y(𝜃, l)] ≈
5.5l
100

 and𝔼[Γx,y(0, l)] = 𝔼[Πx,y (l)] ≈
l

100
).

7.4 Prediction and biological explanation
Because there is not enough data to measure the longer-term correlation, one can 
use eqn (9) and find the yearly correlation estimate which gives 99% = 0.47
+ (1 − 0.47)(1 − e−1.75(1%)(254−1) ) , a very strong long-term relationship. Note that 
this value seems very high. The reason for this perception is twofold. First, this 
gives an estimate of  𝔼[max 𝜌𝜏] which should be equivalent to 𝔼[𝜌𝜏 ] provided the 
right phase is chosen. The probability that the right phase is chosen decreases as t 
increases. However, the longer the time scale, the smaller the penalty for being “out 
of phase.” The second reason is more qualitative and inspired by the UTOPE con-
cept introduced by Gosset [4]. Indeed, because the benefit of seeing a true pattern 
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Figure 8: Time series of Target and Walmart in the last 22 years and statistics about their measured and inferred correlation estimates.
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far  outweighs the cost of being mistaken with respect to false patterns, our minds 
are automatically set to see patterns sometimes when there are none. The same 
way it was difficult for our ancestors to grasp that evolution occurs since we cannot 
physically “see” (with the naked eye) evolution occurring, we might not “see” why 
correlation should increase that much. This is because the time scale over which we 
have evolved is the product of environmental pressures that did not select for these 
“long-term” qualities which would make us grasp the differences of time scale. We 
just do not live long enough. You cannot “see” evolution with the naked eye, you 
acknowledge it through evidence. Similarly, seeing the pattern that the correlation is 
low on a time scale we are comfortable with makes extrapolation difficult. Careers in 
finance rarely last more than 30 years. Had careers lasted 300 years, these phenom-
ena would be much more intuitive. It might not be very intuitive at first to see why 

the  long-term correlation we have never really “seen” is high,11 but the mathematical 
evidence suggests the opposite.

8 Application to the financial industry 
There are plenty of places where inferred correlation or cointelation could be used. 
We will now examine a few of them.

8.1 Extrapolating daily correlation from monthly marked 
correlation
Traders understand that measured correlation does not accurately represent the 
relationship between assets in the long term as it fails to capture the long-term drift 
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of the underliers. As such, traders understand that in situations where the perceived 
equilibrium between assets is away from its historical mean, the expectation of future 
realized correlation should be smaller than its historical mean correlation. A way to 
represent this concept mathematically is via the equation of a semicircle. Indeed, if 
we call Ω the set of points (x, y) available for marketed correlation, then the semicir-
cle that will best fit these market correlation can be retrieved using

 
x̂c, ŷc, r̂ = arg min

xc,yc ,r

N∑
i=1

[(x + xc)
2 + (y + yc)

2 − r2], (x, y) ∈ Ω (12)

Note that Figure 9 and its zoomed version, Figure 10, support the idea that trad-
ers believe underliers have the same drift in the long run. Indeed, these figures sug-
gest that when the ratio of the underlier x over the underlier y is away from some sort 
of natural mean, then in anticipation that the underliers should mean revert the trad-
ers mark an implied correlation smaller than if the ratio was at its mean.

8.2 Measuring risk in the long and in the short term, 
and extrapolating correlation in time scales otherwise 
 unmeasurable
We have shown that the cointelation model was able to model both the short- and 
long-term risk associated with two underliers. This has obvious direct consequences 
in measuring VaR at different time lapses with the same model. If a risk manager 
would like to assess the long-term relationship between two assets but does not have 
enough data to do so, he/she can use the concept of inferred correlation. For exam-
ple, if the risk manager would like to assess the yearly correlation between a com-
modity and its equity mirror but this specific equity does not have enough data, the 

risk manager can use daily returns in order to estimate q  from the cointelation model 
and then extrapolate the long-term correlation thanks to eqn (6) and work with a 
parameter that is far easier to handle and more popular than the cointelation model, 
which would represent a more complete and accurate relationship between the two 
underliers. Also, any options involving a correlation should try to link the “marked” 
correlation with respect to an inferred correlation rather than widening the bid–ask 
spread of the priced option for which the underliers appear to have the properties of 
cointelated pairs.

8.3 Stressed VaR and capital requirement
The capital requirement as described by Basel III [6] mentions: “Going forward, 
banks must determine their capital requirement for counterparty credit risk using 
stressed inputs. This will address concerns about capital charges becoming too low 
during periods of compressed market volatility and help address procyclicality.” 
Procyclicality is a fancy term that essentially means correlations tend to 1 with the 
economy, especially in periods of large movement. Although the concern of the Basel 
committee happens to be a fair observation of the markets going forward, the trans-
lation of this concern into policy needs to be adjusted. Indeed, the capital require-
ment formula [eqn (13)] as currently understood is that
 CR = k × (VaR + SVaR) (13)

where CR represents the capital requirement of the financial institution, k is a 
number reflecting the perceived solidity of the bank, VaR is the value at risk, and 
SVaR is the stressed value at risk. However, a simple observation and reflection 
shows that the capital requirement as defined by this formula could yield potentially 
an output superior to the value of the total assets being stress tested to begin with. 

Figure 9: Relationship between marked correlation and the ratio of the 
 relevant underliers.
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Figure 10: Relationship between marked correlation and the ratio of the 
 relevant underliers zoomed in.
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This capital requirement is therefore overly punitive as it prevents many desks from 
pursuing their businesses while at the same time not necessarily addressing the pro-
cyclicality of the market, as it aims to achieve. At first glance it would appear more 
logical to set the capital requirements as per

 CR = ESFT−𝜏 (14)

where ESFT–t would represent the expected shortfall under the inferred correlation hypo-
thesis in the time lapse going from today (T) until the beginning of the last crisis (t).

8.4 Portfolio construction
Correlation is a central parameter of Markowitz’s modern portfolio theory [7] and 
the basis for the business model of many hedge funds and asset managers. However, 
it is not really clear whether the limitations of the correlation model are properly 
understood on the theoretical side, and certainly in the application of this theoretical 
side. Also, if one wishes to pair trade two underliers for which the historical mean 
has been modified by either technology or physical reasons, one may wish to study 
the evolution of measured correlation based on different time lapses in order to 
determine what the micro business cycle associated with this pair is. Obtaining this 
information may lead to better-thought-out mean-reverting or dispersing trading 
strategies.

8.5 Marketing material and proper market conduct
We have seen that, in the example of oil and BP, the measured correlation was very 
dependent on the time lapse of measurements t. It could therefore be tempting for a 
sales person to try to capitalize on the lowest value of this measured correlation. For 
example, a commodities sale could advertise the lowest measured correlation avail-
able to try to attract long-term investors who usually invest in the equities market 
and who seek diversification in the long term. These investors do not necessarily 
understand that the measured correlation is an increasing function of t  in cointe-
lated pairs. These investors, who then adjust their portfolio based on the theory laid 
down by Markowitz [7], would get an overall risk in their portfolio which would not 
go toward their diversification strategy. These practices are in violation of the Client 
Best Interest Rule and the rule on Misleading Statement and Actions laid out by 
the FCA. For example, in the bottom graph of Figure 7, which represents the meas-
ured correlation between BP and oil at different timescales, a negligent, naïve sales-
person may want to return the measured correlation using daily returns (here around 
0.46) in order to justify to the long-term investor that the relationship between oil 
and BP is weak. Could a salesperson decide to do worse than that? He could in fact 
write a for loop in which he will calculate the correlation at different timescales and 
decide to return the correlation which measure is the smallest possible. In Figure 7, 
that falls on a correlation of around 0.36 using 12 days return, which does not fall 
onto a natural symbolic timescale, i.e., daily, weekly, monthly, or yearly return. For 
correlations that are potentially cointelated, or if there is dispute on which measure 
correlation to choose, a salesperson should always take the conservative approach for 
marketing material. In this example, if he defines a long-term investor as an investor 
who rebalances his portfolio every 70  days, he should use the formula given by the 
inferred correlation formula (here the red line points to something around 0.55).

9 Conclusion
We have summarized the three models introduced by Damghani et al. [2] and given 
the intuition behind the cointelation test, which uses the increasing value of meas-
ured correlation at different time scales as well as the concept of number of crosses. 

ENDNOTES
1. The choice of the title refers to “The misleading value of measured correlation,” 
which this paper is a sequel to.
2. D. Sornette. Power laws and scaling in finance: Practical applications for risk 
control and management. Available online: http://www.er.ethz.ch/presentations/
PowerScaling_risk.pdf
3. B. Mandelbrot. Fractals and scaling in finance: Discontinuity, concentration, risk. 
1997.
4. B.M. Damghani, D. Welch, C. O’Malley, and S. Knights. The misleading value of meas-
ured correlation. 2012.
5. Please note here that the term cointegration is perhaps slightly differently formulat-
ed from the usual cointegration models presented in the econometrics literature. The 
term cointegration here represents a technical jargon introduced in “The misleading 
value of measured correlation,” whose aim is to specify the concept of mean reversion.
6. Presented in a slightly different manner in “The misleading value of measured cor-
relation.”
7. Also, the bigger the time scale the less data we will have and the more biased our 
data will be, which does not help the estimation of correlation.
8. l ≈ 1.75 for “regular” financial data. In reality, l is itself a function of the other param-
eters. This concept will be developed more rigorously in a subsequent paper.
9. With reasonable financial data, g  ≈ 0.01. Like l, g  is itself a function of the other 
parameters. This concept will be developed more rigorously in a subsequent paper.
10. Please note that this is different from suggesting that the relationship is weak.
11. Or rather, we see it during the crisis in which the correlation of everything goes to 
1, but prefer to interpret it differently.
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We have also explained the connection between the cointelation stochastic process 
and the concept of inferred correlation, whose objective is to map the properties 
of the cointelated pairs onto an inferred correlation estimate that people are more 
familiar with. Finally, we have illustrated our findings through the example of oil 
vs. BP and Walmart vs. Target, as well as stated a few applications of this work in the 
financial industry.
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