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Abstract

The aftermath of the financial crisis of 2009 as well as the multiple Flash Crashes

of the early 2010s resulted in social uproars in the general population and ethical

malaises in the scientific community [15, 9, 11, 10] which triggered noticeable changes

in Quantitative Finance (QF).

More specifically, QF was instructed to change [16, 17, 18] and become more

realistic as opposed to more convenient. The concurrent rise of Big Data (BD) [19]

and Data Science (DS) [20] contributed to facilitating these changes. More specifically,

in terms of defining new models, we saw a significant increase in the use of Machine

Learning (ML) overtaking traditional Mathematical Finance (MF) models. In this

thesis we consider the impact of such data-driven modelling transition in finance. In

order to illustrate these changes the thesis is divided into two parts, each consisting

of three and four chapters.

The first part of the thesis consists of examples in which BD has been exposing

the limitations of traditional Financial Mathematics assumptions. Specifically, we

develop in that context the Cointelation [11, 10, 5], the IVP [12, 13, 6], the modi-

fied Heston [8] and the Responsible VaR [7] models, all data driven modifications of

distinguished Financial Mathematics models. We also illustrate how the sum of tra-

ditional Financial Mathematics and ML methods can be larger than their individual

parts. For instance, we expose how Deep Learning by constraints and Stochastic Cal-

culus can, with the help of feature engineering, allow us to formalize useful dynamical

strategies [5].

In the second part, we take a bottom-up approach to algorithmic trading and

introduce the High Frequency Financial Trading Ecosystem (HFTE) [4] and illustrate

some intriguing connections to the world of evolutionary dynamics. We introduce

the concept of path of interaction [4, 3] as a way to test concepts such as strategy

invasion. We then explore the challenges associated with properly regulating the

algorithmic trading markets, in the era of flash crashes, by formalizing a particle

filter methodology [3].
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Chapter 1

Opening

1.1 Context

1.1.1 The Rise of Big Data

1.1.1.1 Definition

The multiple industrial applications arising from the concurrent rise in information

retrieval and computer storage capabilities has opened up Big Data (BD) in a spec-

tacular fashion [19, 34, 35, 20, 36]. BD’s arrival is unique since the scope is both

deep and far reaching. But what really is Big Data? Though used sometimes loosely

partly because of a lack of formal definition, the interpretation that seems to best

describe Big Data is the one associated with large body of information that we could

not comprehend when used only in smaller amounts1 [19]. This characterization

seems to indicate that the realm of the definition goes fundamentally beyond simply

reducing the confidence interval of a parameter whose estimation would benefit from

an increase of the sample size. This latter intuition is the natural statistician point of

view. In fact the term “datafication” has recently been introduced in order to replace

the misleading term that is Big Data in order to make sure readers research the term

instead of guessing its meaning [19]. A good way to illustrate this point would be

for instance to examine Figure 1.1. This new 2 data, at the high-frequency domain,

allows us to reexamine the market, an old problem, with a new angle. This new angle

is what we call the Bottom-Up approach3 rather than assume the Top-Down4. Big

1This is a direct quote [19] which we expand on next.
2To be understood here in the context HFT data not being available (therefore new) in the past

(for example during the time Bachelier wrote his influential work [37] which pushed scientist to
abandon the bottom-up approach for the benefits of the top down instead).

3E.g., strategies interacting explain the (perceived random) dynamics of the market
4E.g., the market, assumed random, explains the designed dynamics of the strategies (This as-

sumption makes rational a business model constructed around the idea of dynamical strategies such
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Figure 1.1: Natural Gas flash crash of 06/08/2011 [21]

Data suggests real innovation as opposed to merely improvement of the status quo.

Though the part of the definition that infers increase in size is partly indicative of the

definition, it only tells half of the story. In that sense “Innovative5 Data” would have

been a more intuitive term, though perhaps arguably less marketing friendly. Taking

its literal sense though, we can legitimately ask how big is Big Data?

1.1.1.2 How Big is Big Data?

There exist many anecdotal claims illustrating the size of Big Data. For instance

its been suggested that if we were to take as reference the time when information

was not stored digitally (for instance during the third century BC), where it was

believed that the Library of Alexandria housed the sum of all human knowledge,

then today, there are arguably 320 times the number of inhabitants worth of data

available. More specifically if all this data was placed on CDs and these latter CDs

were stacked up, the CDs would form five separate piles that would all reach to

the moon [19]. Another interesting fact reported is that as much as 90% of current

data was created in the last couple of years [20]. Though these figures are often the

most cited by researchers, there are legitimate questions around the quality and the

usefulness of the data being stored. For instance Facebook likes, which may have been

as hedging for instance).
5The idea that there is increase in the available data (the “Big” in Big Data) is implied in the

latter formulation but on top of that the intuition that it also brings change is encompassed with
this proposed terminology as well.
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bought or censured, constitute a source of data equal in value to perhaps Geophysics

data. There are also small disagreements with respect to how fast, the size of Data

is growing, but it is estimated to roughly double every three years [19, 35].

1.1.1.3 Scope

The Internet and Cloud Computing fast growth have led to the exponential growth

of data in most (if not all) industries. This hot topic attracted the attention of all

segments of the population going from government, academia, and the industry with

far reaching opportunities but also grand challenges such as computational and system

complexity6. No matter how one looks at these figures the rise of Big Data is real,

its size and scope are changing our lives and our civilization at a very rapid speed.

The industry has many applications of BD. The one we have chosen to explore is the

financial industry as it is at the heart of our economy, comes under much scrutiny

and can create systemic risk [38] with far reaching impacts.

1.1.2 A Market Changing Financial Crisis

We can go as far back as few centuries for the construction of the financial system

with perhaps its first serious mathematization attempt occurring about a century ago

[37]. However, the event that is most relevant to this thesis happened about 10 years

ago with additional posterior signs which served to remind us that the impact of this

event was not over7 [1].

1.1.2.1 The Subprime Crisis as a Triggering Effect

The financial crisis of 2009 and the resulting social uproar in the general population,

induced an ethical malaise in the scientific community [15, 9, 11, 10], which changed

the market in many ways. More specifically, after the subprime crisis governments

strongly pushed the regulators to develop more efficient risk monitoring systems8 and

to review the current modelling pillars so as to avoid similar crises in the future.

1.1.2.2 A Call for a Modelling Revolution

The new candidate sector under inspection quickly became the one of algorithmic

systematic trading. For instance, the flash crash of May 6, 2010, in which the Dow

6with already proposed solutions [34].
7for example the multiple flash crashes.
8In this context risk is viewed as a mixture or Market and Reputation.
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Jones Industrial Average lost almost 10% of its value in matter of minutes, exacer-

bated the scrutiny. However, the current state of the art risk models, are the ones

inspired by the last subprime crisis and are essentially models of networks in which

each node can be impacted by the connected nodes through contagion [38] and is bet-

ter suited to lower frequency models. Indeed, on 06/08/2011 a seemingly relatively

unnoticed event occurred on the natural gas commodities market. We say “relatively

unnoticed” simply because the monetary impact was limited and finance is unfortu-

nately an industry in which warning signs are usually dismissed until it is too late.

We can see from Figure 1.1 that clearly something unusual is occurring. This feeling

is exacerbated by the strong intuition that only interacting agents falling into some

sort of quagmire could yield such series of patterned oscillations followed by a crash

in value. Indeed, commodities has historically been seen as a physical market. This

means that the price dynamics is supposed to be driven by supply and demand of

commodities which can be transformed, consumed, stored and/or produced. This

particular point is a unique feature compared to the other markets (Equities, FX, or

Rate). Also Figure 1.1 suggests that the common, though perhaps a bit lazy view,

that crashes occur through, totally unpredictable [39] events may not be true for

algorithmic trading. In fact, the science of market impact has gathered noticeable

steam in the recent past [40]. These few examples amongst others have led the scien-

tific community to encourage revolutionary changes to occur, possibly in the form of

agent-based modelling [16, 17, 18] in lieu of traditional financial mathematics mod-

els. It is in this fundamental opposition of views that part of the title of this thesis

must be understood. Indeed, traditional financial mathematics programs focused on

derivatives9 were chastised and rethought [41]. This decline popularized Machine

Learning (ML) and more specifically Gaussian processes (GP) within them because

they provided a flexible non-parametric framework to which, one could incorporate

growing data. The latter academic scheme is already making good progress [42] at

modelling the options market for example but it seems there are outstanding issues

especially when coherence as defined by arbitrage constraints is taken into consider-

ation. On the Risk side, VaR must now take into account the procyclicality of the

market. More specifically, data suggests that a big market move is likely to follow an-

other big market move [43, 38], risk models must adapt quickly, incorporate Bayesian

statistics, adjust to the sudden increase of volatility of the market and therefore be

9In which highest likelihood and mathematical convenience prevailed over data supported by the
market.
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responsive. Paradoxically, in order to eliminate the risk associated to liquidity short-

age and the resulting systemic risk, VaR should, on top of being Responsive, remain

(paradoxically) as stable as possible [44]10.

1.1.2.3 Exactitude vs Complexity

Convoluted financial products with high volatility or/and low liquidity or/and with-

out any societal need, other than as speculative tool, such as exotic products were

chastised [45]. Many desks were closed as a result. Indeed, the last crisis led to a

modelling revolution. Fueled by the lessons learnt from trading these products, based

on wrong but mathematically convenient assumptions11, we saw a concurrent:

• tactical step back12 in the complexity of the products in order to gain a more

focused momentum for the future Quantitative models,

• compulsory step forward in liquidity modelling since the subprime crisis was

arguably a liquidity activated crisis.

The product class that took the niche of exotics became simpler vanilla products,

which hedging property has still utilitarian value13, more liquid, less volatile and

therefore more in-line with the role of derivatives at their inception. Generally speak-

ing liquidity modelling became of central focus like never before especially through

government led initiatives [44] such as for example the Fundamental Review of the

Trading Book (FRTB). As the risk models increased in sophistication, questions

around coherence of scenarios also became of central importance [12]. The Capi-

tal Requirement of each financial institution is now linked to its VaR14 and the latter

must be calculated with historical data. Finally, Profit and Loss15 (P&L) associated

to trading should be mapped to appropriate risk factors.

10We reconcile these discordant instructions later in the document.
11The correlation model assumption was misleading[11] when it came to pricing complex subprime

products.
12Coming back to the basis of the derivatives markets which is to provide insurance against big

market moves as opposed to create these big market moves.
13For example a farmer would use a put options in order to hedge himself against the prices of its

crop going down few months before maturity.
14Later corrected to Expected Shortfall, but this change is irrelevant in the context of this paper

as going from one to the other when one has the simulated scenarios is relatively easy.
15This is the most basic way to look at a strategy performance: it is usually calculated as the

cumulative sum of the returns.
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1.1.2.4 From Financial Mathematics to Machine Learning

Going all the way back to the early stages of the 20th century and Louis Bachelier pil-

lar contribution [37] to Mathematical Finance, the world of Quantitative Finance has

been gradually enhanced by the other STEM fields. Probability Theory, Computer

Science, Physics, and Statistical Mechanics, among other fields, have steadily but

surely brought Quantitative Finance amongst the most challenging STEM fields as

its interdisciplinary nature (Mathematics, Computer Science, Physics, Economics &

Finance) makes it increasingly difficult to master in full. This has given rise to further

granular specialization16. Added to these challenging historical enhancements, today

the other STEM fields17 are accelerating these changes by contributing themselves to

the complexity. More specifically Bayesian Statistics, Signal Processing Statistics [3],

Game Theory [4] and above all Machine Learning [19] are increasingly contributing

to the interdisciplinary complexity. With the rise of Big Data [19] and Data Science

[20], the Bottom-Up approach of agent based modelling, is in total opposition to the

Top-Down approach used by traditional Financial Mathematics (in which Brownian

Motion is used everywhere there is uncertainty). Added to this algorithmic trad-

ing antagonistic change in the markets’ point of view, we have been witnessing an

interesting re-balancing shift between models and data. More specifically, we are

moving from an approach in which models assumed data towards one in which data

is reassuming the models [11, 10, 12, 13] and slowly making distinguished Financial

Mathematics models obsolete. To some extent the subprime crisis can be seen as

the triggering effect which has seen the rise of Machine Learning and the coinciding

decline of traditional Financial Mathematics models within the world of Quantitative

Finance. However, as we will see more in details the opposition between these two

fields can sometimes be turned into an apposition18.

Remark Mathematics is without a doubt the best tool we have to analyse and derive

meaning from a specific hypothesis. In the course of this thesis we do not criticize

the wonderful tool that is mathematics but rather the convenient assumptions behind

some of the financial mathematics models. Also it is only fair to note that Financial

Mathematics is itself an evolving field and many of the novel Data Driven techniques

16We now have “Pricing Quants”, “Algorithmic Trading Quants”, “Risk Methodology Quants”,
“Structurers”, “Model Validation Quants”, “Quant Developpers”, “Quantitative Traders”, Data
Scientists etc.

17As we will see in part III.
18This wording needs to be understood the following way: the whole of the two fields can be more

than their individual sums.
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were, are or will be part of Financial Mathematics in different geographical locations

and labs. The Financial Mathematics that we are referring to in this thesis is the one

which accepted the convenient mathematical assumptions that drove the spectacular

growth of Financial Derivatives starting in the 90s and perhaps culminating with the

Subprime Crisis.

1.2 Problem Formulation

We formalize here few problems in Quantitative Finance which we hope will illustrate

the modelling revolution suggested by some of the highest authorities in the field

[16, 17]. More specifically, we take a bottom-up approach to algorithmic trading and

show how remarkable the results of this antithetical approach to the status quo can

reveal about the real complexity of the markets. We also expose through this mean

the shift in the field from models assuming data to one in which data re-assumes the

models.

1.2.1 Bottom-Up & Top-Down Approach for Trading

1.2.1.1 Agent-Based Intelligent System & Deep Learning

We learn about the bottom-up vs the top-down approach in introductory systems en-

gineering classes at the undergraduate level. However, by the time one gets into the

most advanced postgraduate financial mathematics classes, the models have become

dogma. Indeed at these more advance stages, it becomes much more important to

be able to derive or infer meaning via these believes rather than understand the lim-

itations of these core modelling assumptions and improve the models from inception.

In fact, these beliefs are so much anchored in our common academic psyches that

wrong19 models get Nobel Prizes20 and few lead to market crashes21.

Remark The latter award is sometimes abusively called the “Nobel Prize in Eco-

nomics”, the same way the Fields Medal is sometimes called the “Nobel Prize in

Mathematics”. The Nobel Prize in Economics does not, in fact, exist. The same way

Alfred Nobel left Mathematics out of his will, he also left Economics out of his will.

This latter fact is less known as the wording of the Economics Prize is much closer to

the wording of the other Nobel Prizes. The exact wording of the Economics Prize is

19A good opportunity to remind us that all models are wrong but some are useful.
20See: Black-Scholes model and Long-Term Capital Management history [46].
21The subprime crisis is arguably due to an implementation around the wrong assumptions (cor-

relation vs domino effect [38]).
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the “Nobel Memorial Prize in Economic Sciences” which was awarded for the BSM

in 1973. The Prize was in fact launched by the Sveriges Riksbank (Sweden’s Central

Bank) in memory of Alfred Nobel.

In fact the embarrassment of the repeated market crashes has led the highest Quan-

titative Finance experts22 to call for a modelling revolution [16] in the shape and

form of an agent-based intelligent system point of view. Also, note that Quantita-

tive Finance is often criticized as being more a social science because many23 of its

assumptions are wrong24. This peculiarity is not exclusive to Quantitative Finance.

Indeed, other STEM fields share some of this embarrassing fact. For example, in

Physics questions around the gravitational force are still outstanding and Newton

theory only works within the confine of our planet and not beyond [47]. In biology

the individual centered view of evolution, though would explain a great deal of our

surrounding was ultimately gently put aside when the gene centered view of evolu-

tion appeared [48]. These two theories had at inception the highest ever recorded

academic impact of their respective fields but were ultimately “incomplete”25. In any

case, how is this relevant to the mentioned strategy of information processing? The

current modelling approach in Quantitative Finance is the top-down26 approach and

the one we are suggesting is the bottom-up approach27. Indeed the current modelling

format takes as view that financial underliers follow a random walk like process and

that the latter converges towards the Wiener process28. Formally, in the top-down

approach we assume that in the “limits” a change to some price process St follows a

log-normal diffusion process. Recall that the log-normal assumption arises from the

Wiener process itself resulting in the assumption of the random walk:

Definition (Wiener Process): Wt has four main properties: W0 = 0 a.s. ∀t > 0,

Wt+s−Wt is independent of Ws where s < t, Wt+s −Wt ∼ N (0, s) and Wt is contin-

uous in t.
22Jean-Philippe Bouchaud was awarded the very prestigious “Quant of the Year” award the year

this thesis was written.
23I am being a little politically correct here as I would rather replace “many” by “all”.
24Though Mathematics still remains the mother of all sciences especially when it comes to deriving

meaning from these assumptions.
25I personally feel less inclined to label these two contributions as “wrong”, a terminology I find

easier to use in the context of the historical Financial Mathematics models. I prefer the terminology
“incomplete” instead. Indeed, the degree of in-exactitude seems to be on different scales.

26One in which we surrender in front of the complexity of the market and assume it is random or
close to random.

27Which has been assumed to be impossible ever since Bachelier’s doctoral dissertation [37] more
than a century ago.

28Small caveat here: not all models in Financial Mathematics assume a pure Brownian motion
obviously but the majority incorporate stochasticity which the bottom-up approach does not assume.
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Definition (Random Walk to Wiener Process): Let ξ1, ξ2, . . . be i.i.d. random

variables with mean 0 and variance 1. For each n, we define Wn(t) =
1√
n

∑

1≤k≤bntc
ξk

where t ∈ [0, 1]. By the central limit theorem (and more rigorously Donsker theorem)

limn→∞Wn(t)−Wn(s) ∼ N(0, t− s).

However, this top-down approach with, for instance, the assumption of the increments

being i.i.d.29 has been criticized both in the low frequency domain [11] as well as in

the higher frequency domain (see analysis associated to Figure 1.1) so much so that

“overlay”30 models [51] have been incorporated to the BS model to account for the

mis-pricing induced by the log-normal assumption31.

Remark Note that the random walk assumption is still a central useful pillar of the

buy side. This is because the business model is constructed taking the risk neutral

approach (more specifically the price of an option is the price of its replication).

These later models where in turn challenged with the arrival of Big Data32 which

exposed new limitations [12] of these overlay models but these latter models where in

turn also shown to be incomplete when the question of liquidity came into play [13].

You may take two approaches in analyzing the consistent failure of these models:

• either you accept that all these models are too33 incomplete because the core

assumptions which we use to derive them, are too far from reality. Therefore, the

approach consisting of waiting for the next crash (to incorporate the solution of

the newly perceived limitation with yet another overlay model) is unacceptable,

• or you could choose to simply assume that this is the natural course of the

scientific method and for a lack of a better alternative we can accept to work

with this limiting assumptions,

The repetitive market crashes, the subsequent punitive sanctions taken by the reg-

ulators (where instructions to work with new models that directly contradict these

root mathematical assumptions34) suggests that the timing is now right to take a step

29To make the analysis more convenient as opposed to more exact.
30E.g., Dupire’s local volatility model [49, 50].
31This is the whole rationale behind the implied volatility surface.
32There is no consensus on whether this claim is true.
33We stress this word as all models are incomplete by definition but some are useful and some

others were useful in the past. The world of Quantitative model may gradually evolve or can change
drastically as a result of new information.

34The regulators have recently advised the banks that their model should take into account the
procyclicality of the markets [44], directly contradicting the mathematical assumption around the
returns being i.i.d..
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back and reexamine the bottom-up approach for a more robust scientific method in

the future. Though this may seem a little difficult to imagine, taking the bottom-up

approach in the scientific method is more likely to allow us to conquer the complexity

of Financial modelling the same way Physics and the other STEM fields conquered

their topics.

Remark An interesting analogy can be made with respect to how the gene centered

view of evolution35 completely re-shuffled our understanding of natural selection and

gave the opportunity to explain altruism better. By analogy, we are trying to com-

municate the idea that the change of perspective from the market centered view

(Top-Down) of the financial systems is the wrong way to understand the fluctuation

of the market and that the strategy centered view (Bottom-Up) of the financial sys-

tem provides an opportunity to explain the fluctuations of the market more truthfully

despite being more challenging.

However, this bottom-up approach at the intelligent agent level presents a great deal of

challenges. The first one to take into account is to recall that small simple increments

in information processing are the basis of any viable complex biological system. For

instance what created the complexity of the eye in evolution was a slow process which

went from the simple photoreceptor to the folded area (cavity) and finally a complex

eye36.

1.2.1.2 Adversary Model as a Key for Enhancement

The creation of the eye was for survival purposes. It was developed in both predators

and preys. Indeed, the interaction between them favored the enhancement on the

complexity of the eye. The key word here to note in the scientific process is the

one of interaction. This critical element of the scientific process was perhaps best

exposed by Conway’s work on the Game of Life [52, 53]. The scientific process in

the approach is to use simple rules at the microscopic level in order to explain the

complexity at the macroscopic level. DeepMind’s AlphaGo was produced with a

similar idea: Adversary Models37 competing in order to create data, later used for

training. A question naturally arises here. How can we apply this methodology

to Quantitative Finance and more specifically market microstructure? What would

be a simple mathematical structure (in the form of a DNA) that would both allow

35To be understood as in opposition to the individual centered view of evolution
36We took a bit of jump here as there are many more steps including but not limited to the

evolution of the cornea.
37Or better known as Generative (GAN) [54] in the Neural Network literature.
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simple recognizable strategies to arise from a random swarm of strategies with the

environmental pressure being the profit that they make and how these mathematical

structures, through interaction with competing strategies, can create fluctuations in

the market as well as create a pressure for these strategies to adapt and improve

their models? How can we make sure we do not incorporate the idea of foresight

in our design? Can we make a parallel with other known biological systems such

as ecosystems? These tasks are perhaps overly ambitious. However, can we come

up with models and ideas that would inspire research in a new direction? In this

thesis, these questions will fall under the part in which Data Driven Models forge

a clear opposition to classic Financial Mathematics. However, as we will illustrate

with few examples these two fields can also enhance each other and their relationship

can therefore be classified, in some circumstances, as a symbiotic enhancement (the

contrast of opposition and apposition was however more easily conveyed in the title

through assonance).

1.2.1.3 Stability of the Market and Multi-Target Tracking

The electronic trading market is increasingly regarded as the source of the next big

market crash [4, 16]. More specifically the fact that this type of trading is character-

ized by interacting algorithms, at the high-frequency domain, make these potential

crashes especially dangerous because they come very quickly (on top of unexpect-

edly). It becomes of central importance to be able to decipher market movement as a

result of these interacting algorithms. However the specifications of these algorithms

are always hidden for proprietary reasons which makes the task of the regulators

seemingly impossible. However, we can legitimately ask oneself this question. Can

we come up with a solution to this regulatory quagmire? More specifically, the con-

struction of scenario based particle filter may offer us a hope in at least laying down

the foundations of finding a new potential path towards handling these problems.

What are these first steps towards finding a solution?

1.2.1.4 Socially Responsible & Consumer Finance

The social uproar that led the last financial crisis not only exposed the limitations

of the current mathematical models but also exposed limitations in the systems that

allowed us to determine early enough potential future problems. Can we come up with

what these issues might be at the individual level? What about at the population

level? Are they induced by the Financial Mathematics culture? Can the Machine
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Learning culture help us understand our own limitations? Can we come up with

recommendations that may improve the status quo?

1.2.2 Big Data Triggering Change

BD has changed the options market a significant way. More specifically, given that

the last subprime crisis was a derivatives led market crash, the regulators have put en-

hanced scrutiny on these derivatives. Can we have examples of how BD has changed

the way we model these derivatives? Remember that BD suggest a change of mod-

elling paradigm and not merely an improvement of estimation. First though, how

can we gather BD from the observed prices? How can we proxy38 this data and

reconcile it with what is observable? Can we give examples of these methodologies

in the different banking functions, going from trading to risk? How can we handle

dimensionality in this new enhanced data context?

1.2.2.1 Exposing the Limitations of the Wings

Though the limitations of the Black-Scholes model had already been partially exposed

in the past, especially with respect to the Implied Volatility Surface construction [49,

50], the arrival of BD exposed new limitations in the pricing models. More specifically

the way the wings should behave is not currently making consensus especially when

it comes to data [13, 55, 56, 12, 51, 57]. In what way were wings mis-priced in some

circumstances? How does that change the current pricing models? Can we expand

on these old obsolete models to incorporate these BD induced changes? Can we

incorporate regulator driven changes especially around incorporating liquidity in the

models themselves [44]?

1.2.2.2 Dimensionality Handling and Proxying

How can we handle dimensionality when we deal with the implied volatility (IV)

surface? More specifically since the IV is a surface and therefore of infinite dimension,

how can we decompose the risk factors of the latter in a useful manner? How can we

handle the dimensionality of this structure in general? Can we use the decomposition

of the IV into risk factor allow us to come up with proxying methodologies which aim

would be to reconstruct closely related IV which data is sparse?

38The method consisting of replacing unavailable data with the closest alternative is called in-
terpolation or extrapolation in a situation in which we have data of the same underlier (though at
different time, strikes or expiry) available but in situation in which none of this is available we use
different types of data (for example of a closely related underlier or other similar methods) usually
referred to as a proxy.
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1.2.2.3 The Problem of Normalizing Rolling Contracts

Most listed derivatives markets typically offer new contracts once a month with a two

year expiry on a fixed date. This means that once two years have elapsed from the

first issuance of the listed contracts, we have every months the contracts which were

issues 2 years back that expires. The days in which a contract is issued, we have a

new set of data points conveying information in the relevant implied volatility surface

with an Over Night (ON) to a two year expiry window at different strikes. More

specifically, we have a new information about short dated options (which expired the

day of issuance) and information about the surface every month in between these two

time-lapses. It is usually agreed that there exists 9 important standardized pillars in

which linear interpolation in variance space gives reasonable results39. These pillars

are ON, 1 Week (1W), 2W, 1M, 2M, 3M, 6M, 1 Year (1Y) and 2Y. Figure 1.2

gives an illustration of these pillars the instant in which a simultaneous issuance of

the longest expiry options with the expiry of the shortest expiry contracts occurs.

Figure 1.3 illustrates the case in which the last expiry was more than a day away

associated with the challenges in estimating these invisible points. Note that in these

two figures F represents the forward price and K the strike. The x axis represents

therefore the moneyness40 of the option. Another problem is the one associated to

the question of marked implied volatility surface (IVS) update in cases of non listed

volatilities. How can we diffuse this newly arrived data onto the other points of the

IVS? These few changes and their mix will have to be adequately addressed in our

proposed methodologies at the distribution level (to reflect the various scenarios of

IVS changes). Also this specific point ties in with the one of arbitrage with a trading

perspective: anomaly detection for IVS has increasingly become of central importance

post subprime crisis. There are however, interesting questions. What makes an IVS

coherent? How can one detect and turn an IV into a coherent scenario which takes

into consideration the essence of what changed its shape (for example in the context

of scenario creation). Are the anomalies associated to the IVS the same for every

asset class or are there idiosyncratic differences?

39For example on the FX markets.
40Note here that different markets have different expressions of moneyness with for instance,

equities being expressed in log-moneyness, rates in moneyness and FX in delta space. We will
expand on this point in Section 3.1.
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Appendix: Issue of contracts expressed in dates vs expiry
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x Standardised pillar “x” 

... 

Figure: When a contract roll occurs we have a simple solution

Bobby Damghani (SwapClear) NLX Options: Past, Present & Future February 12, 2017 67 / 68

Figure 1.2: Simple Implied Volatility & Standard Pillar Relation on a Rolling Day
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Appendix: Issue of contracts expressed in dates vs expiry
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ln(F/K) or F-K 

date (d1) 

date (dn) 

d1 + d2M 
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2Y 

... 

Figure: When there is no roll, how do we populate the red zones without jumps?

Bobby Damghani (SwapClear) NLX Options: Past, Present & Future February 12, 2017 68 / 68

Figure 1.3: Complex Implied Volatility & Standard Pillar Relation on a Rolling Day
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1.2.2.4 Relationship between Stochastic & Local Volatility

Gatheral [51] introduced the stochastic volatility inspired (SVI) parametrization at

Merrill Lynch in 1999. The parametrization was claimed to have two key proper-

ties that have led to its subsequent popularity with practitioners. First, for a fixed

time to expiry T , the implied Black-Scholes variance σ2
BS(k, T ) is linear in the log-

strike k as |k| → ∞ consistent with Roger Lee’s moment formula [58]. Second the

parametrization had connections to the Heston model [59], arguably the most popular

stochastic volatility model. However, at the same time, we may observe [8] instances

in which the wings are sub-linear (e.g. Figure 4.7). This latter point led to the SVI

being decommissioned at Merrill Lynch (now Bank of America Merrill Lynch) and

discussions, seemingly independent41, of the Heston model have exposed the limita-

tion of the latter in modelling the smile. Both the Heston [60] and the SVI [51] are

popular models within the Quantitative Finance community so much so that their

link was recently proposed [59] but their industry implementation does not work well

with observed data42. More specifically, we can ask ourselves the following related

questions. If the Heston model is incomplete, how can we enhance it rather than

replace it? Similarly if the SVI is limiting, what model can we replace it with in such

a way that the skeleton of the model is not violated and the fixes are, something

that would resemble an add-on. How can modify these two models such that their

connection is still maintained [59]? Mahdavi-Damghani [11, 10] recently introduced

the inferred correlation43 concept which is meant to represent the closest correlation

related concept which also captures some of the limitations of the assumed classic

models. We will see if it can bring about this add-on to the Heston model to help us

capture the smile effect better within a stochastic volatility setting. We will see how

BD has triggered here interesting enhancements to the world of QF in general.

1.2.2.5 Portfolio Optimization for Cointelation

The cointelation model [11, 10] recently introduced was first applied to regulatory

and risk purposes. Its more direct application of pairs trading was not implemented.

How can we calibrate the cointelation model in order to extract useful trading signals?

More specifically, can we decompose the model in such a way so as to capitalize on

41We will show how the SVI being decommissioned because of its inability to model the wings is
related to the Heston model being unable to accurately model the smile.

42We develop this point later in the thesis.
43Though we will see that we are discussing here the concept of “Assumed Correlation” and not

Inferred Correlation.
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known models and perhaps formulate the problem in a simpler form? Can we use

Deep Learning if we get stuck with traditional Financial Mathematics?

1.2.2.6 Clustering for Distribution Forecasting

The current risk models available to practitioners are at best Responsive and therefore

lagging with respect to regime changes. This means that at least one risk breaches

is needed for the mathematical model to be able to adjust to the changing market

conditions. How can we come up with mathematical specifications for risk systems

that would be leading as opposed to lagging? It seems quite intuitive that a VaR

model cannot be Stable and Responsive at the same time. Can we reconcile these

conflicting risk concepts44?

1.3 Agenda

We have organized the thesis in two parts each containing three to four chapters,

trying to stress the fundamental “Opposition” in the way the scientific approach is

organized between these two closely related fields but also show that, the detailed

resolutions of the problem suggests, from time to time, an “Apposition”.

1.3.1 Models Assuming Data to Data Reassuming Models

More specifically, in the first part, labeled as II in the table of contents, consists

of exposing how the triggering effect of the multiple crises has brought us into an

interesting era in which we are going from models assuming data to one in which the

data is re-assuming the models. More specifically we introduce the Cointelation model

in order to expose how by taking a more descriptive approach [11] of the Black Scholes

Log-Normal diffusion model [37, 46], we may measure a correlation of −1 where in

fact the real long term correlation is +1. We introduce in that effect the concept of

Inferred correlation [10] which can be understood as the more realistic estimation of

the real risk associated in holding two Cointelated pairs. We also show how Deep

Learning and Clustering can help us in the context of Cointelated pairs [5]. More

specifically we see how a pure Financial Mathematics approach or a pure Machine

Learning approach have their own limitations. But as we will the elegant combined

use of these two closely related fields can yield superior results. In the spirit of

exposing additional examples of models re-assuming the data, we introduce the gSVI

44which are, interestingly, equally desirable model features for risk managers, traders and financial
mathematics practitioners despite their apparent discordant properties
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model [12] which is a data driven change in the traditional Financial Mathematics

model known as the SVI [51]. We enhance the latter model by introducing the IVP

model [13, 6] which is a modification of the latter to include a liquidity overlay. Since

the SVI converges towards the Heston model [59], we also show how these two data

driven changes create consequences in the assumptions in the Heston model [61] itself

by introducing the modified Heston model [8]. We also introduce other secondary

concepts such as the one of Responsible VaR [7], a way to reconcile discordant risk

measures.

1.3.2 A Bottom-Up Approach to Algorithmic Trading

The second part of the thesis, labelled as III in the table of contents, we take a bottom-

up approach to algorithmic trading instead of the top down approach and introduce

in this effect the HFTE [4] and illustrate some of the interesting connections to the

world of evolutionary dynamics. In that effect we also introduce the concept of path

of interaction [4, 3] as a way to test the burden of proof pertaining to concepts such

as strategy invasion. We then explore the challenges associated to properly regulating

the algorithmic trading markets in the era of flash crashes by formalizing a particle

filter methodology [3].

Remark Note that the below table refers to few of the recorded introductory pre-

sentations I had about some, but not all of the topics discussed in this thesis. The

tables in page 248 have been added to help the reader with potentially unfamiliar

acronyms.

Links

Research
HFTE IVP UTOPE Cointelation

Video 1 v v v v

Video 2 v v N/A v

Papers [4, 3, 1, 2] [13, 12, 6, 8] [9] [10, 11, 5, 7]

Table 1.1: Few Video Presentation Links & References (NICtV)
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https://www.youtube.com/watch?v=qyKpUr4iPAI
https://www.youtube.com/watch?v=9RXXko8WQe4&t=3s
https://www.youtube.com/watch?v=YBHBuGir8YE
https://www.youtube.com/watch?v=F_tsSKMI818&t=3s
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Part II

From Models Assuming Data to
Data Reassuming the Models
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Chapter 2

Cointelation, Inferred Correlation
& Portfolio Optimization

In this chapter, in the context of the aftermath of the last crisis, we re-examine

couple of the simplest (conveniently chosen) assumptions in Quantitative Finance

and examine their real economical consequences. More specifically, in Section 2.1,

we examine the consequences of assuming constant volatility and returns being i.i.d.

[46, 39] in the context of modelling relationship between assets. We do this in order to

expose the dangers of these assumptions. In this context we introduce the Cointelation

model [11, 10] in Section 2.2, which we propose to be a more realistic enhancement to

the Black-Scholes log-normal assumption. We expose how critical it is to have a more

descriptive approach to the financial markets by stressing applications associated to

the challenging regulatory environment. More specifically, we discuss an application

in socially responsible and consumer finance in Section 2.3. We also develop concepts

related to the Cointelation mode such as the Inferred Correlation and the Number

of Crosses formulas. Finally, we revisit classic portfolio optimization techniques and

propose a new methodology at the crossroad between classic financial mathematics

and a pure machine learning solution involving the modelling of a PDE with a Deep

Neural Network in Section 2.4.

2.1 Measured Correlation is Misleading

2.1.1 Traditional Financial Mathematics Assumption

Definition (Correlated Log-normal Pairs): Let (Ω, (Ft)(t≥0),P), be our proba-

bility space with (Ft)(t≥0) where P is the historical probability measure under which

the discounted price of the underlier, S, is not necessarily a martingale. We define in
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this set-up the set of two SDE’s given by equation (2.1) which we arbitrarily name

the Correlation model
dSt
St

= µdt+ σdWt,

dSr,t
Sr,t

= µdt+ σdW r
t ,

d〈Wt,W
r
t 〉 = ρdt,

(2.1a)

(2.1b)

(2.1c)

where ρ is the correlation coefficient between the returns of assets S and Sr. In order

to abide by the format of the Cointelation model we introduce later in this chapter,

the process (S)t≥0 is arbitrarily called the leading process, (S)r,t≥0 the lagging process,

µ the drift and σ the volatility.

Remark In the context of this chapter we use Pearson’s correlation coefficient [62, 63]

of equation (2.2) in the context of measured correlation.

ρxy =
σ2
xy

σxσy
. (2.2)

It is worth noting that in order to use the estimation from equation (2.2) in a mean-

ingful way, certain assumptions must be met. More specifically the two key elements

central to our argument are that the variance must remain constant (homoscedastic-

ity) and the returns i.i.d.1 If these two assumptions are not met, we can obtain a very

misleading measured correlations, as illustrated in Figure 2.1. The latter is split in
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Figure 2.1: Examples of drift departures with different measured correlations [11, 22].

three columns of sub-figures. The y axis corresponds to a hypothetical unit of return

(for example normal) and the x axis represents a hypothetical unit of time. What

is interesting about these three figures is that despite having the same drift, which

can be seen as the long term drift, their immediate infinitesimal correlation hits the

1The stocks to return process must remain independent.
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three symbolic edges of the correlation spectrum. Indeed, the one on the left reveals

a measured correlation of −1 (arguably intuitive), the one in the middle reveals a

measured correlation of 0 (halfway through the stochastic process, the way the two

lines fluctuate changes phase), and finally the one on the right reveals a measured

correlation of +1 because the volatility is not constant.

2.1.2 Data Suggests Dependence and Heteroscedasticity

Though the problem of heteroscedasticity had been raised decades before the sub-

prime crisis, its occurrence has revivified interest in the topic. Assets do not seem

to follow the mentioned set of system of differential Equations (2.1) and this can be

seen both directly or indirectly.

2.1.2.1 Direct Observation

For instance, if we take a direct approach, the examples of Walmart and Target2

(Figure 2.2) or Oil and BP (Figure 2.9), we can see that although the measured

correlation on a daily basis is significantly lower than 1, it changes at different time

horizons and during big market moves (e.g. during a crisis), the underliers crash at

the same time. For these observations, the traditional correlation model seem to be a

poorer fit than the Cointegration assumption. Table 2.1 gives the statistical results of

the Cointegration test performed on Walmart and Target [11]. More specifically we

can see that the test statistics rejects the null hypothesis that there is no Cointegration

with a p-value of 1% with and without a constant. The data therefore suggests that

the correlation model is not the right choice when it comes to model such pairs.

Cointegration test Test statistic Critical values
10% 5% 1%

with constant 15.98 13.75 15.67 20.2
without constant 20.92 16.85 18.96 23.7

Table 2.1: Johansson maximum eigenvalue test for Walmart and Target [11]

Remark For instance, within the commodities market, it costs a certain amount

of money to turn Crude Oil to Brent and therefore if one of these assets becomes

2Two competing competing companies in the same sector and geographical location.
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Figure 2.2: Target & Walmart with measured correlation at different timescales[11].

relatively expensive, it becomes economic to buy the other and pay for its transfor-

mation. Similarly, within one sector (e.g., Target and Walmart from Figure 2.23 with

3We will explore more this in detail when we discuss the regulatory consequences in Subsection
2.3.3.
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its classic mean reversion test results listed in Table 2.1) competition within rival

assets may create similar mean reversion forces. Generally speaking, if one product

becomes expensive, it makes other products, sometimes, seemingly orthogonal, more

attractive. The short-term risk associated with the departure from this model is in-

sured by both random events and high frequency index traders who hedge themselves

on the market while structurers sell the relevant products.

2.1.2.2 Indirect Observation

In the indirect approach, traders understand that measured correlation does not accu-

rately represent the relationship between assets in the long term as it fails to capture

the long term drift of the underliers. As such, traders understand that in situations

where the perceived equilibrium between assets is away from it historical mean then

the expectation of future realized correlation should be smaller than its historical

mean correlation. A way to represent this concept mathematically is via the equation

of a semi circle. Indeed let Ψ be the set of points (x, y) available for marketed corre-

lation then the semi-circle that will best fit these market correlation can be retrieved

using

{x̂c, ŷc, r̂} = arg min
xc,yc,r

N∑

i=1

[(x+ xc)
2 + (y + yc)

2 − r2], (x, y) ∈ Ψ. (2.3)

Note that in Figure 2.3, the red dotted line represent the best fit as per the sum

of squares measure of the semi-circle of equation (2.3). The blue circles represent

“marked” correlation. The Figure supports the idea that traders believe that under-

liers have the same drift in the long run. Indeed this figure suggests that there is a

long term relative mean (e.g. SP500
Eurostoxx

≈ µ) between the SP500 and the Eurostoxx.

This implies that if this relative ratio is away from its economical equilibrium, then

this is reflected in the price of exotic options. More specifically, traders on the sell

side store what they believe implied correlation ought to be in order to have P&L for

basket options4. What this figure suggests is that, the further away this ratio is from

around 2.1, the lower the implied correlation (because traders anticipate that the two

underliers should mean revert). The fitted curve from Figure 2.3 is significant as it

does suggest that practitioners have accepted that mean reversion and therefore the

assumptions around the returns of assets being i.i.d is not true.

4E.g., “worst off”.

43



0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87
1.6

1.8

2

2.2

2.4

2.6

2.8

3

correlation

ra
tio

 b
et

w
ee

n 
S

P
50

0 
an

d 
E

ur
os

to
xx

Extrapolation of the marked correlation function of the ratio of the indexes SP500 and EUROstoxx

 

 
marked correlation
fitted circle

Figure 2.3: Implied Correlation and Ratio [10, 11] for SP500 & Eurostoxx.

2.1.3 Consequences

It becomes quite clear that choosing the model of equation (2.1) instead of one which

really captures the mean reverting effect can have extremely misleading effects [11].

We try next to take a simplistic alternative to our Correlation model by replacing it

with a known model to reflect these market observations.

Definition (Cointegration Model): Let (Ω, (Ft)(t≥0),P), be our probability space

with (Ft)(t≥0) where P is the historical probability measure under which the discounted

price of the underlier, S, is not necessarily a martingale. Our bespoke Cointegration
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model is defined by the set of two SDE’s given by:

dSt
St

= rdt+ σdWt,

dSg,t = θ(St − Sg,t)dt+ σlSg,tdW
⊥
t ,

(2.4a)

(2.4b)

where the process (S)t≥0 is called the leading process, (S)g,t≥0 the lagging process, r

the drift, the σ the volatility and θ the speed of mean reversion and W⊥
t such that

d〈Wt,W
l
t 〉 = 0.

Remark As a caveat the term “cointegration” is a slight abuse of terminology as

the traditional terminology refers to the econometrics literature usually associated

to Engle and Granger [64, 65, 66]. However, the term cointegration in this chapter

means “mean reverting”. For the interest of using an easy to remember term that was

meant to be close enough to correlation we picked cointegration like in our original

paper [11, 10].
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Figure 2.4: Simulations of equations (2.1) & (2.4) with ρ = 0.9

Figure 2.4 contain three stochastic processes St, Sg,t and Sr,t introduced earlier in this

chapter. The one in blue, St, represents the leading process in equations (2.1a) and

(2.4a), the one in red, Sr,t represents equation (2.1b) and the one in green, Sg,t, the

one of equation (2.4b). The y axis corresponds to a hypothetical unit of return (for

example normal) and the x axis represents a hypothetical unit of time. The measured

correlation between the returns of the blue and green processes is around 0.2 and the

measured correlation between the blue with the red is 0.9. The point we would like
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to make here is that these value are very much un-intuitive when you observe the

long term drifts as the green and blue line seem to be more “similar”, yet have a

low correlation. The implication of model selection5 because quite critical when it

comes to constructing an optimal portfolio and measuring its risk. For instance, we

have performed the following experiment. We have selected the parameters of our

models in such a way so as to equate their risk level but then have isolated the

measured correlation under each model and plotted them on Figure 2.5. Here again

we can see that error in model selection can mean that people interpret very related

assets as totally unrelated. In reality models of equations (2.1) and (2.4), though
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conditioned with these returns. In order to understand the “meaning of 
relationship,” we will look at the cumulated differences between these three 
processes, and define the parameters of our model such that by expectation, 
the cumulated difference is the same between these two pairs of processes. 
We will then look at the measured correlation in such situations and reach 
a conclusion with regard to the behavior of measured correlation. Since 
we are in a stochastic environment, we devise a Monte Carlo method and 
make our conclusions with respect to the density of measured correlation. 
Figure 1 represents the estimated correlation density of the two simulated 

 stochastic processes under Model A and an arbitrary r = 0.92. Figure 2 rep-
resents the correlation density estimated within the dynamics of Model B, 
keeping  x  

t
  w  equal to that in Figure 1 and with q = 0.1 chosen in order to map, 

by expectation, the cumulated returns of Model B onto those of Model A. 
Figure 3 represents the induced value difference with respect to choosing 
Model A instead of Model B. We can see that Figure 3 represents a symmetric 
distribution around a mean of 0, which suggests that with the same final 
difference, Model A has a much higher correlation than Model B (Figure 
1 vs. Figure 2). Figure 4 illustrates three processes, where the blue and red 

Figure 1: Histogram of a measured correlation stochastic process with q = 0.92.
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Figure 2: Histogram of a measured correlation stochastic process with the 
same VaR as Figure 1 but generated by Model B.
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Figure 3: Symmetric distribution around a mean of 0, suggesting that with 
the same VaR, Model A has a much higher correlation than Model B.
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Figure 4: Three processes, with the blue and red processes being correlated, 
and the blue and green processes being cointegrated. 
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Figure 2.5: Correlation distributions with same risk under Equations (2.1) & (2.4)

individually incomplete, when merged into a more general form, create a powerful

tool: the Cointelation model.

2.2 Cointelation & Inferred Correlation

2.2.1 Rational

The relationship of any two asset can be roughly decomposed of a short term and

long term risk. The rational for the long term risk is that during the time of rare

market crashes all assets tank. However, during the more “normal” periods a shorter

term risk/relationship drives the co-movement of assets. These co-movements are

accompanied with small but still existent mean reversion forces from one asset to the

other for which a substitution from one to the other exists [10, 11].

5Equation (2.1) instead of the model of equation (2.4).
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2.2.2 Mathematical Specification

Cointelation [10] is a portmanteau neologism in finance, designed to signify a hybrid

method between between the cointegration and the correlation models.

Definition (Cointelation Model): Let (Ω, (Ft)(t≥0),P), be our probability space

with (Ft)(t≥0) where P is the historical probability measure under which the discounted

price of the underlier, S, is not necessarily a martingale. The Cointelation model is

defined by the set of two SDE’s given by:

dSt
St

= µdt+ σdWt,

dSl,t = θ(St − Sl,t)dt+ σlSl,tdW
l
t ,

d〈Wt,W
l
t 〉 = ρdt,

(2.5a)

(2.5b)

(2.5c)

where ρ is the correlation between the two Brownian Motions. The process (S)t≥0

is called the leading process, (S)l,t≥0 the lagging process, µ the drift of S, σ is the

volatility of S and θ the speed of mean reversion of of Sl.

Remark It should be noted that Multiscale Autoregressive Models (MAR) [67] may

to some extent model some aspects of the Cointelation model. More specifically

by properly adjusting the parameters of the model, one can capture both the long

term and short term characteristic of the process [67] which is something the MAR

models share with the Cointelation model. However the MAR model applications

is more natural to wavelets [68] and although the method associated to expressing

the correlation of a stationary process on the dyadic tree [69] is certainly intellectu-

ally inspiring, it feels like an overkill when applied to financial applications. Also,

the context of the AR process and its spectral factorization, an exponential growing

number of coefficients are involved with an exponentially growing number of polyno-

mial constraints. This, prompted the authors to abandon this naive representation

[69]. On the other hand the Cointelation model allows for a minimal adjustment to

a mainstream practitioners friendly model with only one additional parameter (θ)

which feels more appropriate in this context than the MAR models.

2.2.3 Interesting Properties

2.2.3.1 Inferred Correlation

One important element of our proposed model is that, although it models mean

reversion in the long run (therefore a long term positive correlation), it can also
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model negative correlation in the short run so much so that it can model the whole

correlation spectrum [−1, 1]. Figure 2.6 illustrates the idea that if one chooses ρ = −1

in equation (2.5c), the whole correlation spectrum of [−1, 1] can be reached as a

function of the timescale. Therefore all the possible traditional range associated to

factoring risk is encompassed in a simple 2 factor model. The reason why we observe
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Figure 2: Example of cointelated pairs spanning all the measured correlation spectrum conditional on the assigned time scale.
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St

Sg,t

𝜎̂ = 𝔼[
dSl,t − 𝜃̂(St − Sl,t)dt

(𝜌1dWt +
√

1 − 𝜌21dW
⊥
t )

]. Similarly to the variance reduction meth-

odology described in [2], we will define B+ = |max(St − Sl,t , t ∈ [0, T ])
2

| and 

B− = | inf(St − Sl,t , t ∈ [0,T ])
2

|. We note that the estimation of q  is noised when 

Z𝜎 = B+ > |St − Sl,t | > B− where s, in contrast, has quality samples. The reverse is 

true when Z𝜃 = |St − Sl,t | > B+
⋃|St − Sl,t | < B− . We will therefore sample q  in 

Zq and s in Zs . Figure 6 gives a representation of these sampling zones.

6.2 Estimating p  via the inferred correlation formula
Damghani and co-workers [2, 5] showed a way to reduce the variance for the q 
parameter in the cointelation model (or more generally in the OU process infamous 
for being slow to converge10 in the industry). From eqn (6), it is tempting to rearrange 

Figure 2.6: Cointelation example touching the whole correlation spectrum [10]: on
the top figure we have two Cointelated pairs S and Sg simulated with ρ = −1 as well
as their measured correlation (on the bottom figure) at different timescale

this interesting phenomenon is because Sl,t tries to “catch up” with St and the latter

phenomenon is dominated in the short run by the stochastic part of the SDE in which

the instantaneous correlation is −1. When the spread between the two SDEs becomes

significant, we observe a mean reversion. This contributes towards measuring a higher
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correlation between the two SDEs as the timescale increases.

Remark The Inferred Correlation concept was introduced in the context of the Coin-

telation test but also as a mean to translate the relationship between cointelated pairs

into a concept practitioners are more familiar with: Pearson’s correlation coefficient

[62, 63] of equation (2.2). The idea of this empirical formula is that at the small-

est timescales the estimation for the measured correlation should be equal to ρ from

equation (2.5c), should asymptotically converge towards 1 as the timescale increase

and the speed at which it converges towards 1 is controlled by θ (the closer θ gets to

1, the faster the measured correlation converges to 1).

Inferred Correlation Empirical Formula: We consider a stock price process (St)t≥0

with natural filtration (Ft)t≥0, and we define the forward price process (Ft)t≥0 by

Ft := E(St|F0) then considering the dynamics of equation (2.5) we have:

ρ∗τ ≈ ρ+ (1− ρ) [1− exp (−θλ(τ − 1))] (2.6)

where ρ∗τ = E[ sup
0<t≤τ

ρt], τ ∈ Z∗, θ ∈ [0, 1].

Remark We initially set λ ≈ 1.75 for “regular financial data” [10]. In reality λ is

itself a function of the other parameters, though far less sensitive. Improving this

approximation is currently an open problem with the Cointelation test. More recent

additional simulations have shown that λ is in fact closer to 1/2 than 1.75.

Note that this last proposition formalizes mathematically the idea that during market

crashes, even what appears to be the most anti-correlated assets can share the same

risk factor in the longer timescales. Figure 2.2 provides an actual time series that is

proposed to be Cointelated [11].

Remark In equation (2.6) if we replace the converging constant 1 to x (your relaxed

variable of convergence), equation (2.6) becomes ρ∗τ ≈ ρ+(x−ρ) [1− exp (−θλ(τ − 1))].

This can be a simple way to modify the Inferred Correlation formula as to leave flex-

ibility on ρ∗τ when τ →∞.

Inferred Correlation is a (some may argue risk averse) formula for the correlation

term structure for assets in which the correlation term structure would otherwise be

impossible to calculate with available data.
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2.2.3.2 Number of Crosses

The second step of the Cointelation test [10] introduces the concept of Number of

Crosses for which we have an approximate empirical formula. Its intuitive rationale is

that, compared to the number of time purely correlated SDEs (e.g., without the mean

reversion component6) the number of times the discrete version of the cointelated

SDEs cross is more than if they were random and the bigger is the value of θ the

more often the discretized SDEs cross paths per unit of time7. At θ = 1, the spread

is reabsorb completely and the departure becomes a martingale (e.g., equal chances

of going up or down) which makes the expected number of crosses to be exactly

half of the data’s length. Now that we have the boundaries, we need to find a good

interpolation technique. As we can see from figure 2.7 the data suggest that the

formula should not be linear. After researching several paths we found that the beta

distribution allowed a good fit with the data parameter used (any ρ, σ = 1% and a

data’s length equal to 1000000).

Number of Crosses Empirical formula: If we discretize equation (2.5), then we

can approximate the number of time the two stochastic process, x = Si∈[1,2,...L] and

y = Sl,i∈[1,2,...L], cross paths, by equation (2.7)

E[Γx,y(θ, ρ, σ, σl, L)] ≈ L× 1

2

∫ θ

0

B(x, a, b)dx (2.7)

with L, the length of the data, θ ∈ [0, 1],
∫ θ

0
B(x, a, b)dx the cumulative density

function of B(θ, a, b) introduced earlier in equation (7.8) with a = 0.57 and 1.

Remark We make three remarks. First, the number of cross formula can easily be

approximated using simple packages such as Excel’s BETA.DIST’s built in function

(=L*(BETA.DIST(θ,0.57,1,TRUE))*0.5). Also note that this approximation is an

improvement of our first attempt8 at modelling this idea [10]. More specifically some

of the boundaries of this formula where criticized during the viva [70]. The reworked

formula incorporates the remarks made. Also note that the formula is invariant with

respect to either ρ, σ or σl. Finally it may be argued that the concept of Number

of Crosses is somewhat related to the concept of Number of Turning Points [71] in

Gaussian kernels. Like in the Number of Crosses, the number of turning points is

controlled by the lengthscale9 but remains random [71].
6θ = 0.
7the mirror concept in continuous time can be thought of a version of local time.
8Where E[Γx,y(θ, L)] ≈ L

[
γ(1− θ) + 1

2

√
θ
]
.

9Corresponding to L in equation (2.7).
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Figure 2.7: Number of cross formula of equation (2.7) compared to simulated data

2.2.4 Parameter estimation

Using the methodology of the original paper [10], we can use sequential estimation in

order to estimate the key parameters, ρ, θ and σ as per Equations (2.8a), (2.8b) and

(2.8c) respectively.

ρ̂1 = E [ρ1] ,

θ̂ = E


 dSl,t

(St − Sl,t)dt+ σSl,t

(
ρ̂1dWt +

√
1− ρ̂2

1dW
⊥
t

)


 ,

σ̂ = E

[
dSl,t − θ̂(St − Sl,t)dt
ρ̂1dWt +

√
1− ρ̂2

1dW
⊥
t

]
.

(2.8a)

(2.8b)

(2.8c)

Similar to the variance reduction methodology described by [10], we define B+ =

|max(St−Sl,t,t∈[0,T ])

2
| and B− = | inf(St−Sl,t,t∈[0,T ])

2
|. We note that the estimation of θ has

a higher variance when Zσ = B+ > |St − Sl,t| > B− where σ, on the other hand has

quality samples. The reverse is true when Zθ = |St − Sl,t| > B+

⋃ |St − Sl,t| < B−.

We can therefore sample θ in Zθ and σ in Zσ. Figure 2.8 gives a representation of

these sampling zones.

Remark Note that estimating θ can be done via other different ways such as inversing

the number of crosses formula (2.7) like it is shown by equation (2.9) or with a
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between oil and BP every 12 days, we get around 0.37 whereas if we do it every 70 
days, we get a correlation of 0.56. How do we explain this discrepancy? The differ-
ence is due to the fact that in the long run, oil and BP have the same drift but in the 
short run, we get a weaker perceived relationship due to the numerous noises that 
can only impact one of these assets and not the other (for example, the very tem-
porary impact of the Gulf of Mexico accident on the spread between oil and BP in 
Figure 7). For the physical reasons just described, the relationship between oil and 
BP is a good candidate for the cointelation model. In fact, with the current financial 
mathematics literature this duality between differences in the short-term relation-
ship and the long-term relationship can only be explained by the cointelation model. 
Using the variance reduction technique [2, 5], one can estimate q  (in the last 5 years, 

Figure 2.8: Visual representation for the sampling zones for θ [10].

combination of methods [10].

θ ≈ λ

(
Γ̂x,y(θ, l)

l
− γ
)2

. (2.9)

2.2.5 Proposed Test

Definition (Cointelation Test): Two stochastic processes representing financial

data are Cointelated if the following four conditions are verified. The “Inferred Cor-

relation” hypothesis and the “Number of Crosses” hypothesis must be verified. Also

the underlying assets must have reasonable physical connection that would suggest

that their spread should mean revert. Note that in the instances where the first two

points are not verified exactly, the correlation model cannot possibly be a substitute

as correlation is a special case of cointelation (where θ = 0) model.

Remark To some extent few of the concepts that we are developing here could be

approximated by a copula-adjusted correlation model or preferably a mean-adjusted

model. More specifically, using [72]’s notation we can define a general Gaussian based

multivariate density f in equation (2.10):

f(p)(x) =
1

(2π)
p
2

∏p
i=1 σi|R|

1
2

exp

(
−1

2
uTR−1u

)
, (2.10)

where u = (u1, . . . , up)
T , ui = xi−µi

σi
, R the correlation matrix and p the number of

marginal distributions. In the case of the cointelation model’s translation into a mean-

adjusted model bivariate copula, we set p = 2 and u2 =
Sl,t−St
σl

in equation (2.10).

As for the copula-adjusted correlation’s translation into the cointelation model, in-

teresting work has been developed in that context on the premise that correlation
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between financial objects becomes stronger as the market is going down, especially

during market crashes [73]. The work is centered around the formalization of the

local correlation concept which is itself an enhancement of a conditional correlation

model developed as a response to the last subprime crisis [73, 74, 75, 76, 77]. The

main limitations of these models are mostly due to the somewhat arbitrary regions for

the conditional correlation as well as the inclusion of indicative functions. From the

admission of the authors themselves the local correlation concept has computation

and estimation that are far more difficult than the corresponding computation and

estimation of the conditional correlation (which we have seen have other issues as

well) [73].

2.3 Socially Responsible & Consumer Finance

2.3.1 Approved Persons

The legal duties of an approved person are given in Section 2 of the Financial Services

and Markets Act (FSMA 2000) [78]. This also spells out the purpose of regulation by

specifying the Financial Services Authority’s (FSA) four statutory objectives. The

first one of these statutory duty is to maintain confidence in the financial system, the

second is to promote public understanding, the third is to protect consumers, and

finally, the last one consists of reducing financial crimes. Approved persons follow the

following principles10: 1) integrity; 2) skill, care, and diligence; 3) proper standard of

market conduct; 4) dealing with the regulator in an open way; 5) proper organization

of business; 6) skill, care, and diligence in management; and 7) finally compliance

with regulatory requirements [78].

2.3.2 Application to the example of Oil and BP

2.3.2.1 Physical Reason

Because BP is a company focusing on the production of Oil it is normal that its

long term performance is strongly linked to the price of Oil. Thus, the relationship

between Oil and BP is a good candidate for the cointelation model.

2.3.2.2 Correlation & timescales

If one examines the correlation between Oil and BP (Figure 2.9) we realize that the

measured correlation between Oil and BP is a function of the gaps in the measurement

10Similar objectives are set out by the SEC.
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of the returns. For example the correlation coefficient of the returns between Oil

and BP every 12 days is 0.37, whereas if we compute it every 70 days we obtain a

correlation coefficient of 0.56 (see Figure 2.9). How do we explain this discrepancy?

The difference is due to the fact that in the long run Oil and BP have the similar trend

but in the short run we obtain a weaker perceived relationship due to the numerous

noises that can only impact one of these assets and not the other (example the very

temporary impact of the Golf of Mexico accident on the spread between Oil and BP

in Figure 2.9). Because of the physical reasons we have just described the relationship

between Oil and BP is a good candidate for the cointelation model. In fact with the

current financial mathematics literature this duality between differences in the short

term relationship and the long term relationship can only be explained in a simple

way by the Cointelation model. Using the variance reduction technique used in [10]

and [12], one can estimate θ (in the last 5 years, for daily returns θ̂ ≈ 1%) and then

plug in θ into equation (2.6) and we can obtain a pretty accurate representation for

E[max ρ̂τ ] (Figure 2.9). Figure 2.2, we looked at earlier in this chapter shows that a

similar study can be done with Target and Walmart.

Remark Another point could be made on whether 0.37 is very different from 0.56.

The point here is not really whether these numbers are statistically significant but

rather how significant is the way they were fetched and how an unsophisticated in-

vestor interprets these numbers: 0.37 is the correlation out of 70 possible timescales

in this example and this is obviously significant on its own. However, the fact that

it comes from an unnatural timescale11 (12 days) adds to the significance of the mis-

leading practices used in order to fetched this number.

2.3.2.3 Prediction & Biological Explanation

Because there is not enough data to measure the longer term correlation one can

use equation (2.6) to forecast the yearly correlation estimate which gives 99% =

0.47 + (1 − 0.47)(1 − e−1.75(1%)(254−1)) a very strong long term relationship. Note

that this value may appear high. The reason for this perception is twofold. First

this gives an estimate of E[max ρ̂τ ] which should be equivalent to E[ρ̂τ ] provided the

right phase is chosen. The probability that the right phase is chosen decreases as τ

increases. However, the longer the timescale, the smaller the penalization of being

“out of phase”. The second reason is more qualitative and inspired by the UTOPE

concept [9] which is essentially a terminology used in order to express the idea of a

11Neither Daily, Weekly or Monthly returns.
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human brain “over fitting” a relationship12. Indeed because the benefit of seeing a

true pattern far outweighs the cost of being mistaken with respect to false patterns

12Seeing patterns where there are none such as apophenia.
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our minds are automatically set up to see patterns sometimes when there are none.

The same way it was difficult for our ancestors to grasp that evolution occurs since

we cannot physically “see” (with the naked eye) evolution occurring we might not

“see” why correlation should increase that much. This is because the time scale in

which we have evolved is the product of environmental pressures that did not select

for these “long term” qualities that would make us grasp these differences of time

scale. We do not live long enough. You cannot “see” evolution with the naked eyes,

you notice it through evidence long after it ocured. Similarly seeing the pattern that

the correlation is low on a time scale we are comfortable with makes it difficult to

extrapolation in longer timescales. The careers in Finance rarely last more than 40

years. Had the careers lasted 400 years, these phenomenons would be much more

intuitive. It might not be very intuitive at first to see why the long term correlation

which we have never really seen is really that high13 but the mathematical evidence

suggest the opposite [11].

Remark Long time scales do imply fake correlations with a pure Brownian motion.

The induced inter point correlations reduces the number of effective degrees of freedom

so much that even correlation close to unity becomes statistically insignificant. In

Figure 2.10, we have in green the speed at which the “max” correlation (for pure

orthogonal Brownian motions) increases as a function of time and we can see in red

how much faster the inferred correlation increases through time. Both do increase

with time which is expected, but the latter does it faster.

2.3.3 Marketing Material & Proper Market Conduct

We have seen that in the example of Oil and BP the correlation was very dependent

of the sampling frequency τ . It could therefore be tempting for a sales person to

try to capitalize on the lowest value of this measured correlation. For example a

commodities sales could advertise the lowest measured correlation available to try to

attract long term investors who usually invest in the equities market and who seek

diversification in the long term. These investors do not necessarily understand that

the correlation estimates are an increasing function of τ in cointelated pairs. These

investors who then adjust their portfolio based on the theory of Markowitz [79] would

get an overall risk in their portfolio which would not go towards their diversification

strategy. These practices are in violation of the Client Best Interest Rule and the

rule on Misleading Statement and Actions laid out by the FCA.

13Or rather we see it during the crisis in which the correlation of everything goes to 1 but prefer
to interpret it differently.
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Remark Note that some of the rest of the chapter is a joint work [5] (for which I

am the first author).
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2.4 Portfolio Optimization

2.4.1 Mathematical Definition

We propose in this section an optimal portfolio strategy, leveraging on available

methodologies [80, 79].

2.4.2 Markowitz Portfolio Theory Review

2.4.2.1 Foundations

The foundation of modern protfolio theory (MPT) was established by Harry Markowitz

in 1952 with his seminal paper [79] in which he proposed expected return and variance

to be the criterion for the portfolio selection. More specifically, the problem of an

agent who wishes to build a portfolio with the maximum possible level of expected

return, given a limit of variance is, considered with a focal point being the portfolio

efficientness. Concepts such as “efficient frontier”, or set of efficient mean-variance

combinations, were introduced subsequently. Besides introducing the concept, the

paper also describes the methodology in detail. Markowitz paved the way for study-

ing theoretically the optimal portfolio choice of risk-averse agents. Based on the ideas

developed by Markowitz, Tobin published his famous research work on agents’ liq-

uidity preferences and the separation theorem [81]. Later, the Capital Asset Pricing

Model (CAPM) was introduced independently by Sharpe [82] and Lintner [83].

2.4.2.2 Optimization methodology for a pair of assets

Consider a probability space (Ω, (Ft)(t≥0),P), with P our historical probability mea-

sure, and a filtration, (Ft)(t≥0), generated by two dimensional Brownian motion:(
W a,W b

)
. Let raSa, rbSb be our discounted prices. Given a set of parameters

(ra, rb, σa, σb, ρ), we can define the set of Stochastic Differential Equations’ (SDE):

dSat
Sat

= radt+ σadW
a
t ,

dSbt
Sbt

= rbdt+ σbdW
b
t ,

d〈W a
t ,W

b
t 〉 = ρdt.

(2.11a)

(2.11b)

(2.11c)

We assume the dynamic of risk-free asset M(t) with continuously compounded risk

free rate r satisfies equation

dM(t) = rM(t)dt. (2.12)
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We then define an optimal strategy using Markowitz methodology. More specifically

we consider the classic mean-variance optimization problem where we initially define

the two important measures for our portfolio return and variance given by:

rp = hra + (1− h)rb,

σ2
p = [hσa + (1− h)σb]

2 = h2σ2
a + 2h(1− h)σaσbρ+ (1− h)2σ2

b .

(2.13a)

(2.13b)

where h is the weight of asset a, (1−h) the weight of asset b, σa the volatility of asset

a, σb the one of asset b, ra the returns of a, σp the volatility of the portfolio, rb the

returns of b and rp the returns of the portfolio.

Definition (Sharpe Ratio): The Sharpe Ratio (SR) is given by

SR =
E[rp]− E[r]

σp

where r is the risk free return. SR can be divided in two components. First, we have

the expected returns E[rp] =
∑

i hiE(Ri) where rp is the return on the portfolio, ri is

the return on asset i and hi is the weighting the proportion of i-asset in the portfolio.

Second we have σ2
p =

∑
i h

2
iσ

2
i +
∑

i

∑
j 6=i hihjσiσjρij, is our portfolio return variance.

Our problem is to maximize the Sharpe Ratio (SR). We achieve this by finding the

optimal weight h∗∗, more formally given by equation (2.14b) using the methodology

of equation (2.14a).

h∗∗ = arg max
h

E[rp − r]
σp

, h ∈ (0, 1),

h∗∗ =
σ2
b − σaσbρ

σ2
a − 2ρσaσb + σ2

b

.

(2.14a)

(2.14b)

2.4.3 Ornstein-Uhlenbeck Theory Review

2.4.3.1 Foundations

A stochastic control approach to the problem of pairs trading was proposed by Mud-

chanatongsuk, Primbs and Wong [80].

Remark The notation used by Mudchanatongsuk, Primbs and Wong [80] is slightly

different from the way we have defined the Cointelation model. We strove to respect

their name in the following paragraph in order to abide by practices associated to

literature review. A notable difference is the θ parameter which they use as long term

mean, which we use as speed of mean reversion.
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By modelling the spread of a stock prices as an Ornstein-Uhlenbeck (OU) process

[84] a portfolio optimization based stochastic control problem is formulated. The

optimal position to this control problem in closed form is computed by solving the

corresponding Hamilton-Jacobi-Bellman equation [85]. The dynamics of the risk free

rate r is given by equation (2.12). Denote by A(t) and B(t) the prices of two assets

at time t with B(t) following the geometric Brownian motion,

dB(t) = µB(t)dt+ σB(t)dZ(t) (2.15)

with drift µ, and volatility σ. Here Z(t) is a standard Brownian motion. The spread

between the two relevant assets at time t is denoted by X(t) as

X(t) = ln[A(t)]− ln[B(t)], (2.16)

and assumed to follow the mean-reverting process

dX(t) = κ[θ −X(t)]dt+ ηdW (t), (2.17)

where θ is the long-term equilibrium to which the spread reverts, κ the rate of mean

reversion14 and η is the volatility of the spread. Let ρ denote the instantaneous

correlation coefficient between Z and W , therefore 〈dW (t), dZ(t)〉 = ρdt.

2.4.3.2 Optimization Methodology for a pair of assets

Under the above assumptions and by means of Ito’s lemma, the dynamics of A(t) are,

dA(t)

A(t)
=

(
µ+ κ[θ −X(t)] +

1

2
η2 + ρση

)
dt+ σdZ(t) + ηdW (t). (2.18)

The wealth dynamic of the self-financing portfolio V h(t) is then described by:

dV h(t) = V h(t)

[
h(t)

dA(t)

A(t)
+ h̃(t)

dB(t)

B(t)
+
dM(t)

M(t)

]
, (2.19)

which can be rewritten as

dV h(t)

V h(t)
=

[
h(t)

(
κ[θ −X(t)] +

1

2
η2 + ρση

)
+ r

]
dt+

1

V h(t)
ηdW (t),

where h(t) is the portfolio weight of stock A and h̃(t) = −h(t) is the portfolio weight

of asset B at time t. Assuming that an investors’ preference can be represented by

14with κ > 0.
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the utility function U(x) = 1
γ
xγ, with x ≥ 0 and γ < 1, the stochastic control problem

is of the form

h∗(t, x) = sup
h(t)

E
[

1

γ
(V h(t))γ

]
, (2.20)

subject to V (0) = v0, X(0) = x0, dX(t) = κ[θ − X(t)]dt + ηdW (t) and dV h(t) =

V h(t)
[
h(t)(κ[θ −X(t)] + 1

2
η2 + ρση) + r

]
dt + ηdW (t). The optimal weight h∗(t, x)

is given by

h∗(t, x) =
1

1− γ

[
β(t) + 2xα(t)− κ(x− θ)

η2
+
ρσ

η
+

1

2

]
,

where α(t) = κ(1−√1−γ)
2η2

(
1 + 2

√
1−γ

1−√1−γ−(1+
√

1−γ) exp
(

2κ(T−t)√
1−γ

)
)

and with complicated β(t) =

1

2η2[(1−
√

1−γ)−(1+
√

1−γ) exp
(

2κ(T−t)√
1−γ

)
]
×
(
γ
√

1− γ(η2+2ρση)
[
1− exp

(
2κ(T−t)√

1−γ

)]2

− γ(η2+

2ρση + 2κθ)
[
1− exp

(
2κ(T−t)√

1−γ

)])
.

Proof For the derivation, we refer to Mudchanatongsuk, Primbs & Wong [80].

2.4.4 Stochastic Portfolio Theory Review

2.4.4.1 Introduction

Samo and Vervuurt [86] consider the inverse problem of Stochastic Portfolio Theory

(SPT): learning from data an optimal investment strategy, based on any given set

of of trading characteristics. Initially introduced and developed by Robert Fernholz

[87], SPT is a mathematical theory for analyzing the stock market structure and

portfolio behavior. Samo and Vervuurt [86] labeled the methodology as “descriptive”

as opposed to “normative”, as well as consistent with the observed behavior of actual

markets. Normative methodologies, the basis for earlier theories like modern MPT

[79] and the CAPM [88], are absent from SPT. For instance SPT provides the rule-

based mathematical weaponry to explain under what conditions it becomes possible

to outperform a cap-weighted benchmark index.

2.4.4.2 Problems

SPT has, however, several problems and limitations. First finding relative arbitrages

is difficult since they are inverse problems. Second, the exclusion of possibilities

of bankruptcies seems quite unrealistic for practitioners. Third, the SPT set-up is

developed only for investment strategies that are driven by market capitalizations.
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These limitations were more or less addressed in [86] by adopting a Bayesian non-

parametric approach. The broad range of investment strategies is considered driven

by a function defined on an arbitrary space of trading characteristics, on which a

Gaussian process prior is placed. One of the aims of SPT is to construct portfolios

which outperform an index, or benchmark portfolio, over a given time-horizon with

probability one, whenever this might be possible. One such investment strategy is

the so-called diversity-weighted portfolio. The idea of the latter is to re-calibrate the

weights of the market portfolio, by raising them all to some given power p ∈ (0, 1)

and then re-normalising15.

2.4.4.3 Framework

We recall in this subsection some of the mathematical formalization for SPT. Fernholz

[87] assumes the dynamics of n stock capitalization processes Xi(·) given by (2.21).

dXi(t) = Xi(t)

(
bi(t)dt+

d∑

ν=1

σiν(t)dWν(t)

)
, (2.21)

where i ∈ [1, n], t ≥ 0, W1(·), . . . ,Wd(·) are independent standard Brownian mo-

tions with d ≥ n, and Xi(0) > 0 are the initial capitalizations. All processes are

assumed to be defined on a probability space (Ω,F , P ), and adapted to a filtration

F = {F(t)}(0≤t<∞) that satisfies the usual conditions and contains the filtration gen-

erated by the “driving” Brownian motions. The processes of rates of return bi(·) of

volatilities σ(·) = σiν(·)(1≤i≤n,1≤ν≤d), are F-progressively measurable and assumed to

satisfy the integrability condition:

n∑

i=1

∫ T

o

(
|bi(t)|+

d∑

ν=1

(σiν(t))
2

)
dt <∞, (2.22)

P-a.s., ∀T ∈ (0,∞), as well as the non-degeneracy (ND) condition:

∃ε > 0 such that: ζ ′σ(t)ζ ≥ ε‖ζ‖2,

∀ζ ∈ Rn, t ≥ 0; P-a.s..

(2.23a)

(2.23b)

For the diversity-weighted portfolio with negative parameter p the following no-failure

(NF) condition is imposed:

∃ φ ∈ (0, 1/n) such that: P
(
µ(n)(t) > φ∀t ∈ [0, T ]

)
= 1. (2.24)

15More information on the methodology can be found in [89].
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Remark It is interesting to note that, because of the non realistic NF conditions en-

hancements are constantly developed, notably a negative-parameter variant (p < 0)

[90] of the diversity-weighted portfolio [89]. The strategy is claimed to outperform the

market, with probability one, over sufficiently long time-horizons, under ND assump-

tion on the volatility structure and under the assumption that the market weights

admit a positive lower bound. Several modifications of this portfolio are put forward,

which outperform the market under milder versions of the latter NF condition.

A popular implementation is the diversity-weighted portfolio with parameter p ∈ R∗,
defined as in [89]:

h
(p)
i (t) :=

[µi(t)]
p

∑n
j [µj(t)]p

, i = 1, · · · , n, (2.25)

with

h
(p)
(1)(t) ≥ h

(p)
(2)(t) ≥ . . . ≥ h

(p)
(n)(t), (2.26)

where maxni=1 h
(p)
i (t) = h

(p)
(1)(t), h

(p)
(n)(t) = minni=1 h

(p)
i (t) and

µi(t) :=
Xi(t)∑n
j Xj(t)

, i = 1, · · · , n. (2.27)

The method for how to optimize p16 was not mentioned. However it can be noticed

that, while preserving the rankings of all stocks (more weights on stocks with higher

returns), decreasing p in (2.25) decreases allows the portofolio to get closer to an

equally weighted basket.

Remark Our current observation for the SPT is that it is a popular theory gaining

momentum in academia with nevertheless assumptions that are not accepted by prac-

titioners. Besides few mathematical necessary assumptions which are obviously not

verified in an economical point of view (e.g. no bankruptcies are allowed)17, there are

more theoretical assumptions not necessarily useful in practice. This has given birth

to competing practitioners driven models such as the risk parity theory, for example

used by hedge funds or funds of hedge funds18. More specifically, in practice the

differences in the µi(t)’s of equation (2.27) are more explained by the stochastic part

of equation (2.21) than its deterministic part so the optimization is more explained

by statistics of order than by optimal allocation based on value. Lastly the theory

16though tables have been provided in an empirical study [89].
17but are nevertheless not necessarily show-stoppers in terms of practical implementations.
18Aquila Capital, Northwater, Wellington, Invesco, First Quadrant, Putnam Investments, ATP,

PanAgora Asset Management, BlackRock, 1741 Asset Management, Neuberger Berman, Alliance
Bernstein, AQR Capital Management, Clifton Group, Salient Partners, Schroders, Natixis Asset
Management and Allianz Global Investors.
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is lagging as opposed to leading and makes it sub-optimal in relative value arbitrage

despite quality attempts done in that regard [86, 89].

2.4.5 Mean-Variance Criterion

As we have seen in Section 2.4.2.2, Markowitz’s efficient portfolios can be represented

graphically to form efficient frontiers [79]. In this section we use the Mean-Variance

Criterion to optimize the portfolio of two stocks which follow the Cointelation model

[10] and one risk-free asset.

2.4.5.1 Expected Return and Variance of Portfolio

A portfolio considers a combination of n potential assets, with an initial capital/wealth

of V (0) and weights h1, h2, ..., hn, such that
∑n

i hi = 1. Let hiV (0) be the amount

invested in security i for i = 1, 2, ..., n. Given the weights h1, ..., hn, the number of

shares to invest in security i is

ni =
hiV (0)

Si(0)
. (2.28)

The value of the portfolio at time t is V (t) =
∑N

i=1 niSi(t). Thus the percentage of

the portfolio invested in asset i is

hi(t) =
niSi(t)∑N
i=1 niSi(t)

, (2.29)

with
∑N

i=1 hi(t) = 1. The rate of return of asset i over [t−∆t, t] is given by

Ri(t) =
Si(t)− Si(t−∆t)

Si(t−∆t)
=

Si(t)

Si(t−∆t)
− 1. (2.30)

The rate of return of portfolio, Rp(t), over [t−∆t, t] is defined as

Rp(t) =
V (t)− V (t−∆t)

V (t−∆t)
. (2.31)

The return of the portfolio is a linear combination of the returns of individual assets

as follows

Rp(t) =
V (t)

V (t−∆t)
− 1 =

N∑

i=1

niSi(t)∑N
j=1 niSi(t−∆t)

− 1

=
N∑

i=1

niSi(t−∆t)Si(t)∑N
j=1 niSi(t−∆t)Si(t−∆t)

− 1

=
N∑

i=1

hi(t)(Ri(t) + 1)− 1 =
N∑

i=1

hi(t)Ri(t).
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Remark The literature sometimes uses log returns, defined to be:

ri(t) = ln

(
Si(t)

Si(t−∆t)

)
. (2.32)

This is because for a short period of time the log return is approximately equal to

the rate of return

ri(t) = ln

(
Si(t)

Si(t−∆t)

)
= ln(Ri(t) + 1) ≈ Ri(t). (2.33)

The return of portfolio in this case is rp =
∑N

i=1 hiri. The expected return of

portfolio, E(rp), and the variance of the return of portfolio, σ2(rp), are give by

E(rp) = E
(∑N

i=1 hiri

)
and σ2(rp) = V ar

(∑N
i=1 hiri

)
. Using the properties listed in

[91] we obtain the following:

E(rp) =
N∑

i=1

hiE(ri), (2.34)

σ2(rp) =
N∑

i=1

N∑

j=1

hihjσ(ri, rj) =
N∑

i=1

h2
iσ

2(ri) +
N∑

i=1

∑

j 6=i
hihjσ(ri, rj), (2.35)

where E(ri) and σ2(ri) are the expectation and the variance of returns of asset i

respectively and σ(ri, rj) is the covariance of returns of i and j.

2.4.5.2 Optimal Investment Using the MVC

Let the probability space (Ω,F , P ) with filtration (Ft)t≥0 generated by two-dimensional

Brownian motions. We assume the dynamic of the risk-free asset M(t) with contin-

uously compounded risk free rate r ≥ 0 satisfying

dM(t) = rM(t)dt. (2.36)

Denote by S(t) and Sl(t) the prices of two assets at time t, which dynamics follows

the Cointelation model (2.5). We assume an initial wealth w0 > 0 at time t = 0. The

investment behavior is modelled by an investment strategy h = (h1, h2, h3). Here,

hi ∈ [0, 1], i = 1, 2, 3, denotes the percentage of total wealth invested in i-th asset.

Let h1, h2, h3 denote respectively the portfolio weights for stocks S, Sl and risk-free

asset M at time t. The weight are constant throughout the investment horizon [0, T ].

We restrict our considerations to self-financing strategies. Denote by V h
t the value of

portfolio at time t given by:

V h(t) =
h1V

h(t)

S(t)
S(t) +

h2V
h(t)

Sl(t)
Sl(t) +

h3V
h(t)

M(t)
M(t), t > t0,
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with V (t0) = v0. The dynamic of the wealth process is given by:

dV h(t) = V h(t)

[
h1
dS(t)

S(t)
+ h2

dSl(t)

Sl(t)
+ h3

dM(t)

M(t)

]
. (2.37)

Definition (Admissible strategies) Let A(v0) denote the set of all admissible

strategies corresponding to the initial condition v0 > 0. We say that a trading

strategy h = (h1, h2, h3) is admissible and write h ∈ A(v0) if

(i) Given v0 > 0 the wealth process V v0,h(·) corresponding to v0, h satisfies

V v0,h(t) ≥ 0, 0 ≤ t ≤ T, (2.38)

(ii) hi ≥ 0 for all i = 1, 2, 3,

(iii)
∑3

i=1 hi = 1.

Definition (Optimal Investment Strategy): An investment strategy is called op-

timal if
{
E(rp(h)) ≥ E(rp(h̃)), for all h̃ ∈ A
V ar(r(h)) ≤ V ar(r(h̃)), for all h̃ ∈ A.

Definition (Mean Variance Criterion): An optimal strategy for the Mean Vari-

ance Criterion (MVC) is equivalent to an optimal strategy for maximizing the follow-

ing utility function U(T, h) = 2τE[rp]− σ2[rp], where τ ≥ 0 is risk tolerance.

Thus, the portfolio problem becomes

max
h

U(T, h) (2.39)

with constraints
∑N

i=1 hi = 1 and hi ≥ 0 ∀i. From equation (2.32) we have that the

rate of return of our portfolio over [0, t] is Rp(t) = V h(t)−V h(t−∆t)
V h(t−∆t)

=
∑3

i=1 hi(t)Ri(t)

and the log return of our portfolio, rp is given by

rp(t) = h1r1(t) + h22r2(t) + h3r3(t), (2.40)

where ri(t) ≈ Ri(t), as we showed in equation (2.33).

Lemma 2.4.1 Denote by V v0,h(t) the value of the portfolio corresponding to the ad-

missible strategy h ∈ A0 and initial wealth v0 > 0. Then
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(i) The expectation of portfolio return (2.18) over [0, T ] is

E(rp(T )) = h1ν1(T ) + h2ν2(T ) + h3rT (T ), (2.41)

ν1(T ) =

(
µ− σ2

2

)
T,

ν2(T ) =
[

ln
(
aeµT − (Sl,0 − a)e−θT

)
− ln(Sl,0) +

1

2

−
ce(2µ+σ2)T + de(µ−θ+σσlρ)T + (S2

l,0 − c− d)e(σ2
l −2θ)T

2(aeµt − (Sl,0 − a)e−θT )2

]
,

σ2
1(T ) = σ2T,

σ2
2(T ) =

ce(2µ+σ2)T

(aeµT − (Sl,0 − a)e−θT )2
+

de(µ+σσlρ−θ)T

(aeµT − (Sl,0 − a)e−θT )2
+

(S2
l,0 − c− d)e(σ2

l −2θ)T

(aeµT − (Sl,0 − a)e−θT )2
− 1,

σ12(T ) = ln

(
be(µ+σ2)T + (S0Sl,0 − b)e(σσlρ−θ)T

aS0eµT + (Sl,0S0 − aS0)e−θT

)
.

(ii) The variance of portfolio return (2.13a) over [0, T ] is

σ2(rp(T )) = h2
1σ

2
1(T ) + 2h1h2σ12(T ) + h2

2σ
2
2(T ), (2.42)

where ν1(T ) is the expected return of stock S over investment horizon [0, T ], ν2(T ) is

the expected return of stock Sl over investment horizon [0, T ], σ2
1(T ) is the variance

of returns of stock S over investment horizon [0, T ], σ2
2(T ) is the variance of return

of stock Sl over investment horizon [0, T ], and σ12(T ) is the covariance of returns of

two stocks S and Sl over investment horizon [0, T ].

Proof See Appendix 9.3.

With expectation of equation (2.41) and the variance of equation (2.4.1) of the port-

folio returns, we can obtain optimal strategies of equation (2.39).

Proposition 2.4.2 The optimal solution for the problem of equation (2.39) applied

to the Cointelation model of equation (2.5) is:

h∗ =
1

e′Σ−1e
Σ−1e+ τ

[
Σ−1M − e′Σ−1M

e′Σ−1e
Σ−1e

]
, (2.43)

where e′ = [1, 1, 1], M = [E(rS), E(rSl), E(rB)] and variance-covariance matrix is



V ar(rS) Cov(rS, rSl) 0
Cov(rS, rSl) V ar(rSl) 0

0 0 0


 .
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Note that the expressions for E(rS), E(rSl), E(rB) and V ar(rS), V ar(rSl) are given in

the Appendix 2.4.1.

Proof For the proof we refer to [92].

2.4.6 The Stochastic Control Solution

2.4.6.1 Power Utility Maximization Problem

A stochastic control approach to the problem of pairs trading was proposed in [80]. In

this section we mainly follow [80], though assume slightly different dynamics for stock

prices. More specifically, Mudchanatongsuk, Primbs and Wong [80] assume the price

dynamics of one of the stocks to be a geometric Brownian motion and model the log-

difference of the stock prices as an Ornstein-Uhlenbeck process. We however, assume

the dynamics of stock prices are governed by the Cointelation model of equation (2.5),

where one of the stocks follow the geometric Brownian motion and the second stock

mean reverts around the first one.

2.4.6.2 Definition and Assumptions

Let (Ω,F , P ) be a complete probability space with a Brownian filtration (Ft)t≥0

generated by two-dimensional Brownian motion, (W̃ (t),W (t))t≥0. We consider the

same set-up as in Section 2.4.5.2: a portfolio of two stocks and one risk-free asset. The

stocks dynamics follows the Cointelation model of equation (2.5) and the dynamic

of risk-free asset is given in equation (2.36). We assume an initial wealth v0 > 0 at

time t = 0. The positions of the different assets composing the portfolio are allowed

to be adjusted continuously up to a fixed horizon T . The investment behavior is

modelled by an investment strategy h = (h1, h2, h3) where, hi(t), i = 1, 2, 3, denote

the percentage of total wealth invested in asset i at time t. Let h1(t), h2(t) denote the

portfolio weights for stocks S and Sl, respectively at time t. In addition, we restrict

our considerations to self-financing strategies. We use the definition of admissible

control as in [93] for the definition of admissible control and controlled process.

Definition (Control Processes): Given a subset U of R3, we denote by U0 the set

of all progressively measurable processes h = {ht, t ≥ 0} valued in U . The elements

of U0 are called control processes.

Denote by V h(t) the value of portfolio corresponding to strategy h at time t, which

is given by

V h(t) =
h1(t)V h(t)

St
St +

h2(t)V h(t)

Sl(t)
Sl(t) +

h3(t)V h(t)

M(t)
M(t).
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The dynamic of the portfolio value is given by equation (2.44).

dV h(t) = V h(t)

[
h1(t)

dSt
St

+ h2(t)
dSl,t
Sl,t

+ h3(t)
dM(t)

M(t)

]
. (2.44)

Plugging into (2.44) the dynamics for S(t) and Sl(t) from equation (2.5a) and (2.5b)

respectively we get:

dV h(t) = V h(t)
[
h1(µdt+ σdW (t))− h1

(
θ

(
St
Sl,t
− 1

)
dt+ σldW̃ (t)

)
+ rdt

]

Lemma 2.4.3 Let Z(t) := St/Sl,t. The dynamics of Z(t) are given by

dZ(t) = [µ+ σ2
l − σσlρ− θ(Z(t)− 1)]Z(t)dt+ Z(t)(σdW (t) + σldW̃ (t)) (2.45)

Proof By Ito’s quotient rule:

d

(
St
Sl,t

)
=
dSt
St

St
Sl,t
− dSl,t

Sl,t

St
Sl,t

+
d〈Sl, Sl〉t
S2
l,t

St
Sl,t
− d〈S, Sl〉t

StSl,t

St
Sl,t

(2.46)

Then

dZ(t) = µZ(t)dt+ σZ(t)dWt − θ(Z(t)− 1)Z(t)dt

−σlZ(t)dW̃ (t) +
σ2
l S

2
l (t)

S2
l (t)

Z(t)dt− σσlρZ(t)dt

= [µ+ σ2
l − σσlρ− θ(Z(t)− 1)]Z(t)dt+ (σdW (t)− σldW̃ (t))Z(t).

For each control process h ∈ U0 we rewrite the dynamics of the two-dimensional state

process P = (V, Z) as follows

dP (t) = a(t, P (t), h(t))dt+ b(t, P (t), h(t))dA(t) (2.47)

with initial value of P (t0) = p0 and A(t) = (W (t), W̃ (t)) is the two-dimensional

Brownian motion. The process P h is called the controlled process. Let [t0, T ] with

0 ≤ t0 < T < ∞ be the relevant time interval and define Q := [t0, T ) × R2. The

coefficient functions a : Q×U → R2 and b : ×U → R2×2 are all continuous. Further,

for all h ∈ U let a(·, ·, h) and b(·, ·, h) be in C1(Q). We then define:

Definition (Admissible Control): DenotingA(t0; p0) the set of all admissible con-

trols corresponding to the initial condition (t0; p0) ∈ Q, we say a control {h(t),Ft}t∈[t0,t1]

will be called admissible if the following conditions hold
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(i) for all p0 ∈ R the corresponding controlled SDE (2.47) with initial condition

P (t0) = p0 admits a pathwise unique solution
{
P h(t)

}
t∈[t0,t1]

,

(ii) ∀k ∈ N the integrability condition is satisfied: E
(∫ t1

t0
|h(s)|kds

)
<∞,

(iii) the corresponding state process P h satisfies: Et0,p0
(
supt∈[t0,t1] |P h(t)|k

)
<∞,

(iv) only pairs trading is allowed: short one asset and long the other: h1 = −h2.

Since we consider the self-financing portfolio and due to the last point, the dynamic

of wealth process become

dV h(t) = V h(t)[(h1[µ− θ(Z(t)− 1)] + r)dt+ h1[σdW (t)) + σldW̃ (t)]], V (0) = v0

dZ(t) = [µ+ σ2
l − σσlρ− θ(Z(t)− 1)]Z(t)dt+ Z(t)[σdW (t)− σldW̃ (t)], Z(0) = z0

2.4.6.3 Optimal Investment Strategy

We assume that an investor’s preference can be represented by the power utility

function U(x) = 1
γ
xγ, with x ≥ 0 and γ < 1. It is our objective to maximize

the objective (or utility) functional J over all admissible controls, i.e. determine an

admissible control h(·) such that for each initial value (t0, v0) the utility functional

below is maximized:

J(t0, v0;h) := E
[

1

γ
(V h(t))γ|V h

t0
= v0, Zt0 = z0

]
. (2.48)

The value function of the utility maximization problem is defined by

W(t, v) := sup
h(·)∈A(t,v)

J(t, v, h). (2.49)

Now we can formulate the optimization problem:

sup
h(·)∈A(0,v0)

E
[

1

γ
(V h(t))γ

]
(2.50)

Consider the functionG(t, v, z) such thatG ∈ C1,2(Q). The Hamilton-Jacobi-Bellman

(HJB) equation corresponding to the stochastic control problem (2.50) is

∂G

∂t
(t, v, z) + sup

h∈A
LhG(t, v, z) = 0, (2.51)

subject to terminal condition

G(T, v, z) = vγ. (2.52)
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The infinitesimal generator, LhG(t, v, z) in (2.51), of the two dimensional state process

P = (V, Z), is given by

LhG(t, v, z) =
1

2
[h2

1(σ2 − 2σσlρ+ σ2
l )v

2Gvv + 2h1(σ2 − 2σσlρ+ σ2
l )vzGvz

+(σ2 − 2σσlρ+ σ2
l )z

2Gzz] + [h1[µ− θ(z − 1)] + r]vGv

+[µ+ σ2
l − σσlρ− θ(z − 1)]zGz. (2.53)

Theorem 2.4.4 If there exists an optimal control h∗(·) then G coincides with the

value function:

G(t, v, s) =W(t, v, z) = J(t, v;h∗).

We cannot solve the PDE in equation (2.51) in closed form. We will however see in

section 2.4.7 that we can find an approximation for the solution with Deep Learning.

In the meantime we examine a pure Machine Learning approach.

2.4.7 Deep Learning for solving our PDE

A hybrid methodology between classic Financial Mathematics and what people con-

sider pure Machine Learning is presented in this section. More specifically, we try to

solve our nonlinear partial differential equation of equation (2.53) with a deep learn-

ing algorithm19. To some extent this section illustrates how the whole of two fields

can outperform their individual parts20.

2.4.7.1 General Idea

In the general case, we consider a PDE with d spatial dimensions:

∂u

∂t
(t, x; θ) + Lu(t, x) = 0, (t, x) ∈ [0, T ]× Ω,

u(t, x) = g(t, x), x ∈ ∂Ω,

u(t = 0, x) = u0(x), (2.54)

where x ∈ Ω ⊂ Rd and L is the infinitesimal generator, a function of all the other

partial derivatives. Note that Ω represents the domain of our function and ∂Ω repre-

sents the domain at the boundaries. We implement here the Deep Learning method

recently introduced in [24]. More specifically, the goal is to approximate the function

19Using the DGM [23] presented later but which architecture can be seen by Figures 2 and 3.
20If you are a pure mathematician, please take this Systems Engineering jargon to mean that the

fields enhance each other.
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U(t, x) with the deep neural network f(t, x; θ). Here θ ∈ Rd is the set of neural net-

work parameters. The objective function associated to our problem consists of three

parts:

1. A measure of how well the approximation satisfies the differential operator:

∥∥∥∥
∂f

∂t
(t, x; θ)− Lf(t, x; θ)

∥∥∥∥
2

[0,T ]×Ω,ν1

, (2.55)

2. A measure of how well the approximation satisfies the boundary condition:

∥∥∥∥
∂f

∂t
(t, x; θ)− g(t, x)

∥∥∥∥
2

[0,T ]×∂Ω,ν2

, (2.56)

3. A measure of how well the approximation satisfies the initial condition:

∥∥∥∥
∂f

∂t
(0, x; θ)− u(0, x)

∥∥∥∥
2

Ω,ν3

. (2.57)

Remark Here all three errors are measured in terms of L2-norm, i.e. ‖f(y)‖2
Y,ν =∫

Y |f(y)|2ν(y)dy with ν(y) being a density on region Y .

The sum of all three terms above gives us the objective function associated with

training the neural network:

J(f) =

∥∥∥∥
∂f

∂t
(t, x; θ)− Lf(t, x; θ)

∥∥∥∥
2

[0,T ]×Ω,ν1

+

∥∥∥∥
∂f

∂t
(t, x; θ)− g(t, x)

∥∥∥∥
2

[0,T ]×∂Ω,ν2

+

∥∥∥∥
∂f

∂t
(0, x; θ)− u(0, x)

∥∥∥∥
2

Ω,ν3

. (2.58)

Thus, the goal is to find a set of parameters θ such that the function f(t, x; θ) mini-

mizes the error J(f). When the dimension d is large, estimating θ by directly minimiz-

ing J(f) is infeasible. Therefore, one can minimize the error J(f) using a stochastic

gradient decent on a Deep Neural Network, where we use a sequence of time and

space points drawn randomly. We describe the DGM in algorithm (1).

Remark Note that our learning rate αn must decrease with n [24] and a simple way

to do this is by using an exponential weighted method where αn ← αn−1 ∗ λ with

λ ∈ (0, 1).
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Algorithm 1: Deep Galerkin Method (DGM)

Input: The untrained DGM NN architecture
Output: The trained NN approximating the function f

. Set Arbitrary Stopping Criteria
maxIteration ← 10000, i← 0, e← 10−3, et ← 1
for (i ≤maxIteration) AND (et ≤ e) do

. Generate random points
(tn, xn)← U ∼ [0, 1]2, (τn, zn)← U ∼ [0, 1]2, wn ← U ∼ [0, 1]
sn ← {(tn, xn), (τn, zn), wn}

. Calculate the squared error

L1
n ←

(
∂f
∂t

(tn, xn; θn)− Lf(tn, xn; θn)
)2

L2
n ←

(
∂f
∂t

(τn, zn; θn)− g(τn, zn)
)2

L3
n ←

(
∂f
∂t

(0, xn; θn)− u(0, wn)
)2

G(θn, sn)← L1
n + L2

n + L3
n

. Take a descent step at the random points
− arg maxθn G(θn, sn), αn ← αn−1 ∗ λ,
θn+1 ← θnαn∇θG(θn, sn)

. Calculate Error
i← i+ 1, et ← G(θn, sn)

2.4.7.2 Neural Network Architecture

The neural network (NN) architecture used is like a long short-term memory networks

(LSTMs) though with small differences [24]. We describe the architecture of this NN.

S1 = σ(w1 · x + b1)

Z l = σ(uz,l · x + wz,l · Sl + bz,l),

Gl = σ(ug,l · x + wg,l · Sl + bg,l),

Rl = σ(ur,l · x + wr,l · Sl + br,l),

H l = σ(uh,l · x + wh,l · (Sl �Rl) + bh,l),

Sl+1 = (1−Gl)�H l + Z l � Sl

f(t,x, θ) = w · SL+1 + b.

where l = 1, . . . , L, � denotes Hadamard multiplication, L number of layers and σ

the activation function. The rest of the subscript refer to the specific neurons for our

NN architecture of Figures 2 and 3 in the Appendix21. The method was tested with

several non linear PDEs independently [23] including non linear PDEs such as the

Merton problem that is referred to in [23, 24]. The analytical solution and its NN

21Click link 9.3.
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Figure 2.11: Merton [23] non-linear PDE using DGM & independent peer review [24].

approximation error are plotted in that of 2.11a and 2.11b respectively. We refer to

the formal definition of the Merton PDE and its resolution in [23, 23, 24].

Remark Though close, the solution does not do as well around t = 0 which corrob-

orates with the findings in [23].

We use the DGM described above to solve the reduced22 PDE

σ̃(γ − 1)fft −
1

2

(
σ̃2γz2f 2

z + γ[µ− θ(z − 1)]2f − σ̃(γ − 1)z2ffzz
)

=

−σ̃γ[µ− θ(z − 1)]zffz − σ̃(γ − 1)[µ+ σ2
l − σηρ− θ(z − 1)]ffz − σ̃γ(γ − 1)rf 2,

f(T, z) = 1, (2.60)

with (t, z) ∈ [0, T ]× R and ∀z ∈ R and no boundary or initial conditions.

2.4.8 Dynamic Switching

Now that we have decomposed the Cointelation model into two simpler distinctive

strategies and solved them independently, we need to recompose them into a single

strategy to recover the first problem. We achieve this by using a dynamic switching

methodology. Assuming that an investor’s preference can be represented by the utility

functions U(x) = 1
γ
xγ, with x ≥ 0 and γ < 1 and U(t, h) = 2τE[rp]− σ2[rp] where τ

is the risk aversion coefficient, we formulate the following portfolio optimization:

wt = sup
h(t)∈A(0,v0)

E
[

1

γ
(V h(t))γ

]
1{∣∣∣∣θ(St−Sl,tSl,t

)∣∣∣∣>µ}+max
h(t)

[
2τE(rp)− σ2(rp)

]
1{∣∣∣∣θ(St−Sl,tSl,t

)∣∣∣∣≤µ}.
(2.61)

22Going from a 3-dimenssional PDE to a 2-dimenssional PDE using an anzast described in 9.3.
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The optimization process consists of a triggering function 1{∣∣∣∣θ(St−Sl,tSl,t

)∣∣∣∣>µ} which

switches between the MVC optimal strategy and the power utility optimal strat-

egy. In the case where
∣∣∣θ
(
St−Sl,t
Sl,t

)∣∣∣, we are in a situation in which the spread strategy

is more interesting than the MVC approach and therefore we switch to the former,

otherwise we switch back to MVC.

Proposition 2.4.5 Dynamic switching achieves better results than mean-variance or

power utility optimal strategies implemented separately.

Proof This should be obvious as the dynamic switching allows to do at least as well

as the best of the two strategies taken separately. See Figure 2.15 for illustration.

2.4.8.1 Signal Decomposition

We have the set of decomposed signals summarized as

hSC1 (t) + hSC2 (t) = 0 and h3(t) = 1,

hMVC
1 (t) + hMVC

2 (t) + h3(t) = 1,

where h1(t) = −h2(t) are the optimal weights for assets S and Sl correspondingly,

which were computed in closed form in Section 2.4.5.2 and h1(t), h2(t), h3(t) are

weights for assets S, Sl and risk free asset B obtained as a solution to classic MVC

in Section 2.4.5.2. These signals are recomposed as below

hS(t) = hMV C
1 (t) + hSC1 (t), (2.62)

hSl(t) = hMV C
2 (t) + hSC2 (t). (2.63)

We would like to use some of the results introduced in Section 2.4.6 but this Section

uses a different jargon than the one associated to the cointelation model introduced

in Section 2.4. We therefore need to reconcile these two sections through a proper

transform function.

2.4.8.2 Finding the right phase

One other important aspect to note is that when dealing with cointelated pairs, after

estimating θ, ρ, σ, an understanding of phase is still required. The latter point is

discussed in this subsection. We have seen in equation (2.7) that the expectation of

the number of crosses E[ΓS,Sl ] can be approximated by L×
∫ θ

0
B(x, a, b)dx.
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Definition (Beginning of Time): We call the Beginning of Time τ0, the inception

time of the discrete version of two Cointelated pairs in which, ∆St = St − St−1 and

∆Sl,t = Sl,t − Sl,t−1 with arbitrary, t > τ0, ∆Sτ0 := 0, τ0 := 0.

Definition (Equilibrium & Disequilibrium): A Cointelated pair (St, Sl,t)t>0, is

said to be in Disequilibrium at time τ if |Sτ − Sl,τ | > 0. Likewise, the same pair is

said to be in Equilibrium if Sτ − Sl,τ = 0.

In the case in which our cointelated pair’s τ0 is unknown or two cointelated pairs,

(St, Sl,t)t>0 started in disequilibrium (e.g. |Sτ0 − Sl,τ0| > 0), then it is primordial to

start the strategy in a case where they are in equilibrium.

Definition (Cointelated Pairs’ Phase Corrector): The Phase Corrector of two

cointelated pairs is a constant c ∈ R which maximize the number of times, n∗, the

cointelated pairs cross paths:

n∗ = arg max
c

Γ̂Sτ+c,Sl,τ+c
(θ, L), (2.64)

where Γ̂Sτ+c,Sl,τ+c
(θ, L) is the number of times S and Sl cross paths.

2.4.9 Results

We have performed few simulations including the one in figures 2.12. More specifically

in figure 2.12(a) we have simulated two cointelated paths. We have also plotted the

cumulative P&L from both the Financial Mathematics methodology in 2.12(b) and

the clustering methodology in 2.12(c). We can see that the ML methodology does bet-

ter in that one example (e.g., 1737 vs 1888). However, because one example does not

really establish superiority, we have performed several simulations and have gathered

the results in figure 2.13. The histogram seem to indicate that the ML methodology

does marginally better than the FM method, though the latter methodology, when

doing better does so more significantly (e.g., the left tail of the distribution in figure

2.13 is fatter than the right tail). From histogram of performance in Figures 2.13 and

2.14 we have concluded that we have the following rankings for the approaches for

our Cointelated pairs23

SC < MLLS < FM < ML.

We have also performed additional simulation which objective it to show how the

signal decomposition works. Indeed figures 2.16 and 2.15 illustrate that the addition

23For parameters µ = 0.05, σ = 0.17, σl = 0.16, θ = 0.1, ρ = −0.6 of cointelation model (2.5).
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Figure 2.12: (a) one simulated scenario based on cointelation model (2.5) with param-
eters: µ = 0.05, σ = 0.17, σl = 0.16, θ = 0.1, ρ = −0.6 and scaled spread: θ(St − Sl,t);
(b) portfolio return and optimal weight using Dynamic Switching approach; (c) port-
folio return and optimal weight using Machine Learning approach.
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Figure 2.13: Histogram of excess (P&L) for MLLS vs SC at terminal time T .
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Figure 2.14: Histogram of excess (P&L) for ML vs FM at terminal time T .

of the optimal strategy corresponding to stochastic control problem and the optimal

strategy corresponding to Markowitz problem enhances our portfolio performance.

More specifically, for figure 2.15 we see that the SR = 1.98 for the mean reverting

centered strategy. We see that the SR = 1.90 for the Markowitz centered strategy.

But we see that the overall strategy SR = 2.71. We have studied the cointelation

model in the context of a dual portfolio optimization problem using three approaches

centered around the idea of switching the weights of our portfolio according to a

couple of strategies evolving in parallel. We labelled these strategies the Markowitz

and OU centered strategies with a performance measure ranging from the MVC to

power utility maximization. We first implemented what is considered a classic Fi-

nancial Mathematics methodology using optimal control. The second methodology

implemented was one using what is considered a Machine Learning approach using

clustering. We found that these two methodologies lack efficiency in two very dif-

ferent ways. The First methodology is hampered in its resolution because the PDE

of equation (2.51) does not have a closed form solution24. On the other hand, the

machine learning approach is easier to implement since we can bypass the complex

SDE calibration issues and it also provides flexibility to regime change. However

24It was noted during the viva [94] that there exists numerical methods in low dimension, usually
associated to the domain of Financial Mathematics, that can approximate the PDE in question.
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Figure 2.15: (a) Simulated Cointelated Pairs St and Sl,t (left) and the combined
cumulative P&L (right); (b) ρ-centered strategy signals (left) and strategy specific
cumulative P&L (right); (c) θ-centered strategy signals (left) and strategy specific
cumulative P&L (right).

one small issue with this Clustering methodology is its inability to handle bound-

ary restrictions25. As a result of the limiting aspects of these two methodologies,

a third (hybrid) one was implemented. More specifically we started deploying this

third methodology the same way we started the first one but instead implementing

the DGM method to approximate a solution to our PDE.More specifically through

a series of mathematical transforms (see Appendix page 240) where we go from a

PDE in three dimension to one with only two, and though we may lose the financial

intuition, we can find a solution for our PDE.

25Though a sampling rejection method could theoretically be enforced.

79



Time
0 5000 10000

(a
)

S
to

ck
 P

ric
e

98

100

102

104

X
t

Y
t

Time
0 5000 10000

$

-2

0

2

4

6

Total P&L (SR=3.02)

Time
0 5000 10000

(b
)

S
ig

na
l;

0

0.2

0.4

0.6

0.8

h
X

h
Y

Time
0 5000 10000

$
-1

0

1

2

3

P&L; (SR=1.77)

Time
0 5000 10000

(c
)

S
ig

na
l3

-1

-0.5

0

0.5

1

Signal3

Time
0 5000 10000

$

-2

0

2

4

P&L3 (SR=2.46)

Figure 2.16: (a) Simulated Cointelated Pairs St and Sl,t (left) and the combined
cumulative P&L (right); (b) ρ-centered strategy signals (left) and strategy specific
cumulative P&L (right); (c) θ-centered strategy signals (left) and strategy specific
cumulative P&L (right).

Remark We know that covariance and correlation are related to each other through

the following simple relationship: ρXY = σXY /(σXσY ). In this chapter we introduced

the concept of inferred correlation. In the spirit of adding levels of abstraction incre-

mentally, and more specifically generalizing the study of “perceived correlation”, we

propose to study aspects of implied covariance in the next Chapter.
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Chapter 3

Anomaly Detection & Volatility
Surface de-Arbitraging

This chapter explores issues around the Black-Scholes-Merton model, one of the most

celebrated models in Financial Mathematics. We first explore some of its history in

Section 3.1 as well as closely related models. We also show how the Implied Volatility

Surface (IVS) was constructed as an add on to “fix” the model. We then move

onto how to fetch and normalize the IVS from the normalized contracts in Section

3.2. We also explore some issues around arbitrage conditions in Sections 3.3 and 3.4.

More specifically we study the history of the misunderstanding which led some of the

literature to misinterpret a shortcut associated to arbitrage conditions on the strike

space. We propose a simple solution in Section 3.5 to make the model more robust

in situations where data is asynchronous. This chapter serves as an introduction to

our next chapter.

3.1 Vanilla Options Model

3.1.1 A Notorious History

Vanilla options are the building blocks of the derivative markets. For instance, the cel-

ebrated Black-Scholes-Merton (BSM) [46], designed for the equities market, provides

the mathematical weaponry to price European and American-style options. Proposed

by Fischer Black and Myron Scholes, and then further developed by Robert Merton,

it is one of the few Financial Mathematics model that was awarded the most pres-

tigious award in Economics. The model was in fact already partially developed by

Harold Bierman in the previous decade [95], though it was perhaps incomplete and

less rigorous in its pricing but the (seed) idea was already there in 1967. Ever since

the idea, the model has steadily improved [49, 50, 12] though still referred to as having
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ambiguity today [96]. Nevertheless, starting with the bankruptcy of their own hedge

fund1, the BSM had significant impacts on the economy as it allowed leveraging2.

More specifically a call option, for example, allows, against relatively small fees, to

gain exposure to substantial positive gains. This is arguably one of the reasons why

Long-Term Capital Portfolio collapsed in the late 1990s and also why we had the

latest subprime crisis3. Despite a promising start (21%, 43% and 41% return, respec-

tively in the first three years 1995-1997), in 1998 LTC lost $4.6 billion in less than

four months following the 1997 Asian financial crisis and the 1998 Russian financial

crisis. There are multiple reasons as to why the fund did not work as anticipated.

The one that is most relevant to this chapter is associated with the assumption that

volatility ought to be constant in the BSM formula. This led to the development of

the implied volatility surface model [49, 50, 51]. The BSM can take three main forms

depending on the underlying diffusion. First, the Log-Normal diffusion [46], secondly

the Normal Assumption [97] (which became fashionable in the rates market in 2016

due to interest rates going negative) and finally the Garman-Kohlhagen model for

the FX market [98], which formalizes the log-normal diffusion as a ratio of log-normal

diffusions. We summarize in the next three subsections these variations of the model

and explain in Section 3.1.5 how to fetch4 information on the implied volatility surface

(IVS) from the observed prices process.

3.1.2 Log-Normal Assumption

Axiom 3.1.1 Let (Ω, (Ft)(t≥0),P), be our probability space with (Ft)(t≥0) and Q, our

risk neutral probability measure, under which the stock price process (St)t≥0 is consid-

ered a martingale. We consider this process to be log-normal if:

dSt/St = (r − q)dt+ σdWt, (3.1)

where r is is the interest rate, q the dividend yield, σ the volatility and Wt ∼ N(0, t).

1Except Fischer Black who was battling cancer during the same time, the remaining two authors
own equity in “Long-Term Capital Management”.

2The concept of leveraging was arguably started with the creation of loans but options leveraging
model is at another scale.

3Few believe that the last crisis was a liquidity crisis, or a correlation crisis: liquidity, correlation
and leveraging, despite describing different QF concepts, all however share the fact that they are
based on wrong and dangerous assumptions made on the mathematical models.

4Fetching is usually a jargon in Quantitative finance which means in this context transforming
the price domain of a vanilla option into the implied volatility domain.
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Lemma 3.1.1 Following axiom 3.1.1, the process (St)t≥0 under the risk neutral prob-

ability measure Q is given by:

ST = Ste

(
r−q+σ2

2

)
(T−t)+σWT−t . (3.2)

Proof A straight forward application of Ito’s lemma to ST = Ste

(
r−q+σ2

2

)
(T−t)+σWT−t

we obtain dSt/St = (r − q)dt+ σdWt.

Theorem 3.1.2 Following axiom 3.1.1 and lemma 3.1.1, the price of a European

Call options is given by

C(S, t) = e−r(T−t)[FtN(d1)−KN(d2)],

d1 =
1

σ
√
T − t

[
ln

(
St
K

)
+

(
r − q +

1

2
σ2

)
(T − t)

]
,

d2 = d1 − σ
√
T − t,

(3.3a)

(3.3b)

(3.3c)

where N(·) is the cumulative distribution function of the standard normal distribution,

T − t the time to maturity, St the spot price of the underlying asset, Ft the forward

price, K the strike price, r the risk free rate, q the dividend yield and σ the volatility

of returns of the underlying asset.

Proof A Call is the right but not the obligation to buy an asset S in the future that is

max(St−K, 0) = (St−K)+. Therefore the price of a European Call is given by C(S, t)

= e−r(T−t)EQ[ST −K]+ = e−r(T−t) 1√
2πσ

∫∞
−∞(ST −K)1{ST>K}e

−x2

2σ dx where EQ is the

expectation under the risk neutral probability and 1 the indicator function. We note

that Ft = Ste
−r(T−t). We can also note that ST = Ste

(
r−q+σ2

2

)
(T−t)+σ

√
T−tx

where x ∼
N(0, 1). This implies that ST > K ⇔ x < 1

σ
√
T−t

[
ln
(
St
K

)
+
(
r − q + 1

2
σ2
)

(T − t)
]

=

−d2. We can remove the indicator function and adjust the bounds of the integral

function to obtain C(S, t) = e−r(T−t) 1√
2πσ

∫∞
−d2

(ST −K)e
−x2

2σ dx. We set x̃ = x− σ
√
t,

we get dx̃ = dx, x̃ = −d2 − σ
√
t = −d1, also noticing that 1 − N(−d2) = N(d2) we

obtain equation (3.3).

3.1.3 Normality Assumption

Usually, the least known of the three related models introduced in this section, and

only popularized recently because of the arrival of negative rates on many markets,

the pricing methodology using normal diffusion is given equation (3.6). Formally we

have
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Axiom 3.1.2 Let (Ω, (Ft)(t≥0),P), be our probability space with (Ft)(t≥0) and Q, our

risk neutral probability measure, under which the stock price process (St)t≥0 is consid-

ered a martingale. We consider this process to be log-normal if:

dSt = rdt+ σdWt (3.4)

where σ is the volatility and Wt ∼ N(0, t).

Lemma 3.1.3 Following axiom 3.1.2, the process (St)t≥0 under the risk neutral prob-

ability measure Q is given by:

St = S0 + rt+ σ

∫ t

0

dWu (3.5)

Proof dSt = rdt + σdWt ⇔
∫ t

0
dSu =

∫ t
0
rdu +

∫ t
0
σdWu ⇔ St − S0 = r(t − 0) +

σ
∫ t

0
dWu. This leads to St = S0 + rt+ σ

√
tx where x ∼ N(0, t).

Theorem 3.1.4 Following axiom 3.1.2 and lemma 3.1.3, the price of a Call options

is given by equation (3.3).

C(S, t) = e−r(T−t)[(Ft −K)N(d) + σ
√
T − tN ′(d)],

d =
Ft −K
σ
√
T − t ,

(3.6a)

(3.6b)

where the variables are the same as in proof of Subsection 3.1.2 and where N ′(·) is

the derivative of N(·).

Proof C(S, t) = e−r(T−t)EQ[ST − K]+ = e−r(T−t) 1√
2πσ

∫∞
−∞(ST − K)1{ST>K}e

−x2

2σ dx

where EQ is the expectation under the risk neutral probability and 1 the indicator

function. We can also note that that Ft = S0+rt so St−K > 0⇔ S0+rt−K+σ
√
tx >

0. By the symmetry principle ⇔ Ft−K
σ
√
t
< x we obtain equation (3.6).

3.1.4 Garman-Kohlhagen Model

The Garman-Kohlhagen (GK) model [98] is commonly used for the FX market.

Axiom 3.1.3 Let (Ω, (Ft)(t≥0),P), be our probability space with (Ft)(t≥0) and Q, our

risk neutral probability measure, under which the stock price process (St)t≥0 is consid-

ered a martingale. We consider this process to be log-normal if:

dSt/St = (rd − rf )dt+ σdWt, (3.7)

where rd and rf are the domestic and foreign interest rate, σ the volatility and Wt ∼
N(0, t).

84



Lemma 3.1.5 Following axiom 3.1.3, the process (St)t≥0 under the risk neutral prob-

ability measure Q is given by:

ST = Ste

(
rd−rf+σ2

2

)
(T−t)+σWT−t (3.8)

Proof A straight forward application of Ito’s lemma to ST = Ste

(
rd−rf+σ2

2

)
(T−t)+σWT−t

we obtain dSt/St = (rd − rf )dt+ σdWt.

Theorem 3.1.6 Following axiom 3.1.3 and lemma 3.1.5, the price of a European

Call options is given by

C = S0e−rfTN(d1)−Ke−rdTN(d2),

d1 =
ln(S0/K) + (rd − rf + σ2/2)T

σ
√
T

,

d2 = d1 − σ
√
T ,

(3.9a)

(3.9b)

(3.9c)

where N(·) is the cumulative distribution function of the standard normal distribution,

T − t the time to maturity, St the spot price of the underlying asset, K the strike, rd

and rf the domestic and the foreign free rates, and σ the volatility of returns of the

underlying asset.

Proof See proof for theorem 3.1.2 and replace the parameters accordingly.

3.1.5 Implied Volatility from Options Prices

Because vanilla options models suppose constant5 volatility, an assumption that is

mathematically convenient but ultimately not verified by data, these models need a

correction [49, 50] to complete their limitations. This overlay is what is commonly

known as the Implied Volatility Surface (IVS).

Remark There are many reasons why the BSM is still used but for the sake of

making the reasons brief, we can put forward the argument of the Greeks being

critical across all main banking functions: in Front Office6, Risk Management7 and

Product Control8.

5Note that the issue around volatility not being constant was known decades before [94] the BSM
was invented.

6Hedging is used on daily basis on options’ desks.
7VaR methodologies using sensitivities are quite common.
8Clearing methodologies require live P&L and often sensitivities are used.
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To reconcile the BSM equation with market prices, the only non-observable value is

the volatility input value. We call implied volatility the geometrical 3D structure

(e.g. figure 3.1 is an example9) which takes as input a tenor and a moneyness10

and returns the volatility value which reconciles the BSM equation to the market

observable price. There exists several well known numerical methods for fetching the

implied volatility surface from the options market prices. For instance the Bisection

method, the Newton-Raphson method, the Secant method or the Brent algorithm

(their ensemble algorithm) are few of these methods11.

Closest stressed implied vol that is arbitrages free
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Figure 3.1: Arbitrage Free IVS with 15 standard tenors & 5 standard strikes [12]

9The data was taken from the equities market and the volatility was then stressed using the gSVI
model to make it unique [12].

10or log-moneyness or delta space depending on which form of the BSM and which asset class we
are dealing with.

11We refer the reader to the classic literature [6] in that regard.
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3.2 Normalizing Volatility Contracts

3.2.1 Context

The sub-prime crisis of 2008 had profound impacts on the financial industry overall.

The resulting challenging regulatory environment pushed central counter party (CCP)

clearing houses to come up with more sophisticated risk systems that do capture

risk in a more intelligent fashion while providing capital requirement relief through

cross margining at the same time. The Fundamental Review of the Trading Book

(FRTB) requires the market participants to have trading systems in which liquidity

in incorporated directly into the model. Also, now, the P&L explained must be more

dynamic in order to address the enhanced sophistication and speed requirements of

risk system. We have seen in the introduction the problem of normalizing rolling

contracts and those associated with updating the Implied Volatility Surface (IVS).

3.2.2 Normalizing Listed Options Rolling Contracts

Before we discuss the solution of normalizing rolling contracts, we provide, a few

definitions to make the Data Science easier.

Definition (Standardized Strikes): We call Standardized Strikes the set of indus-

try accepted moneynesses which are used for the sake of storing data or for visualiza-

tion. We denote these strikes by Ck (e.g. −3, −2, −1, 0, 1, which are arbitrary units

in Figure 3.1).

Remark Different asset classes have different measures of moneyness. For example

Ck is expressed in log-moneyness in equities, moneyness in rates and in delta space

in FX. In the FX market, we have Ck = {10, 25, 50, 75, 90} because the relevant

exchanges list the options in this format.

Definition (Standardized Tenors): We call Standardized Tenors the set of indus-

try accepted tenors which are used for the sake of storing data or for visualization.

We denote these tenors by Cτ (e.g. v1, v2, ..., v15 which are arbitrary units in Figure

3.1).

Remark Though industry standards may change, it is accepted currently, especially

in the FX markets that there exist 10 standards tenors: overnight (ON), one week

(1W), two weeks (2W), 1 month (1M), two months (2M), three months (3M), six

months (6M), one year (1Y), one year and a half (18M) and two years (2Y).
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Definition (Rolling Contracts): We call Rolling Contracts the sequence of prede-

fined contracts that come in the market every month on a set day and which can be

traded up to expiry.

Remark Let Cτ be the set of standardized pillars, Ck the set of standardized strikes

and Cd the set of live contract expires. We denote by σt(C
τ
i , C

k
j ) the implied volatility

of the ith observed element of Cτ where 1 < i < |Cτ | and jth element of Ck of Cd

where 1 < j < |Cd|.

Definition (Incomplete Standardized Strikes Data Set): Let us call C̃τ ∈ Cτ

and C̃k ∈ Ck the set of incomplete data taken within the standardized strikes.

Definition (Interpolation vs Observable Data): We denote by σ̂t(ϑ,K) the lin-

ear interpolation in variance space of the implied volatility which is given by

σ̂2
t (ϑ,C

k
j ) =

(Cτ
i+1 − ϑ)σ2

t (C
τ
i+1, C

k
j ) + (ϑ− Cτ

i )σ2
t (C

τ
i , C

k
j )

Cτ
i+1 − Cτ

i

, (3.10)

where ϑ ∈ [Cτ
i , C

τ
i+1] and 1 < i < |Cτ |.

Remark The above definition does not include a definition of the edges of our implied

volatility surface and also assumes that a perfect interpolation and extrapolation

methodology already exist on the strike space.

3.2.3 Implied Volatility Surface Edges Problem

Figure 1.3 exposes the problem associated between the discrepancy that may occur

on days when there is no roll between standardized pillars and the rolling contracts.

More specifically let Υ be the time at which the contract rolls, as defined by equation

(3.11a), then the longest tenor proxy can be better approximated by equation (3.11b)

and the shortest by equation (3.11c).

Υ = inf{t|σ2
t (C

τ
1 , C

k
j ) = σ2

t (C
d
1 , C

k
j )},

σ̂2
t (ϑ,C

k
j ) =

σ2
Υ(Cτ

i+1, C
k
j )

σ2
Υ(Cτ

i , C
k
j )

σ̂2
t (C

τ
i , C

k
j ),

σ̂2
t (ϑ,C

k
j ) =

σ2
Υ(Cτ

i , C
k
j )

σ2
Υ(Cτ

i+1, C
k
j )
σ̂2
t (C

τ
i+1, C

k
j ),

(3.11a)

(3.11b)

(3.11c)

with i = |Cτ | − 1 for equation (3.11b) and i = 1 for equation (3.11c).
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Definition (Normalized tenors) Without loss of generality we refrain from using

the various symbols defined in this subsection and assume, unless otherwise specified,

that throughout the thesis the implied volatility tenors are those obtained from the

normalized tenors as opposed those from specific contracts.

The problem of updating implied volatility for the OTC market would require several

different methodologies. More specifically, these different methodologies are designed

for listed markets or over-the-counter (OTC).

3.3 Arbitrage Condition on the Strike

Axiom 3.3.1 Let (Ω, (Ft)(t≥0),P), be our probability space with (Ft)(t≥0) and Q, our

risk neutral probability measure, under which the stock price process (St)t≥0 is consid-

ered a martingale. We consider this process to be log-normal if:

dSt/St = µdt+ σdWt, (3.12)

where µ is is the interest rate, σ the volatility and Wt ∼ N(0, t).

Lemma 3.3.1 Following axiom 3.3.1, the process (St)t≥0 under the risk neutral prob-

ability measure Q is given by:

ST = Ste

(
µ+σ2

2

)
(T−t)+σWT−t . (3.13)

Proof A straight forward application of Ito’s lemma to ST = Ste

(
µ+σ2

2

)
(T−t)+σWT−t

we obtain dSt/St = µdt+ σdWt.

In order to prevent arbitrages on the volatility surface we will start from basic prin-

ciples and derive the constraints relevant to the strike and tenor.

3.3.1 From First Principles

Theorem 3.3.2 Following the axiom 3.3.1 and lemma 3.3.1 a Call C(·) will be ar-

bitrage free on the strike axis if and only if

∂2C

∂K2
= φ(ST , T ) > 0 (3.14)

Proof Using Dupire’s work [49, 50], we can write the price of a call according to

equation C(S0, K, T ) = e−rTEQ[ST − K]+ = e−rT
∫ +∞
K

(ST − K)φ(ST , T )dST where

φ(ST , T ) is the probability density of the call at time T . Let us differentiate C(·)
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twice with respect to K. We know C(S0, K, T ) = e−rTEQ[ST −K]+ = e−rT
∫ +∞
K

(ST −
K)φ(ST , T )dST . Now ∂C

∂K
= −e−rT

∫ +∞
K

φ(ST , T )dST = −e−rTE(ST > K) Also, we

know that 0 ≤ −e−rT ∂C
∂K
≤ 1. Differentiating a second time and setting r = 0 we find

φ(ST , T ) = ∂2C
∂K2 .

Note that using numerical approximations we obtain equation (3.15)

∀∆, C(K −∆)− 2C(K) + C(K + ∆) > 0, (3.15)

which is known in the industry as the arbitrage constraint of the positivity of the

butterfly spread [99]. The way to see this to note that given that the probability

density must be positive we have ∂2C
∂K2 ≥ 0, using numerical approximation, we obtain

∂2C
∂K2 = lim∆→0

[C(K−∆)−C(K)]−[C(K)−C(K+∆)]
∆2 = lim∆→0

C(K−∆)−2C(K)+C(K+∆)
∆2 , therefore

C(K −∆)− 2C(K) + C(K + ∆) ≥ 0.

Remark Gatheral and Jacquier [100] proved that the positivity of the butterfly con-

dition comes back to making sure that the function g(·) from equation (3.16) is strictly

positive.

g(k) :=

(
1− Kw′(k)

2w(k)

)2

− w′(k)2

4

(
1

w(k)
+

1

4
+
w′′(k)

2

)
. (3.16)

The idea from where equation (3.16) comes from is related to equation (3.14): ∂2C
∂K2 =

φ(·). More specifically, applying this formula to the Black-Scholes equation leads to,

for a given tenor

φ(k) =
g(k)√
2πw(k)

exp

(
−d2(k)2

2

)
, (3.17)

where w(k, t) = σ2
BS(k, t)t is the implied volatility at strike K and where d2(k) :=

−k√
w(k)
−
√
w(k).

3.3.2 Necessary but not Sufficient Condition

The literature around the butterfly condition is not confined to equation (3.14). More

specifically we have the below necessary but not sufficient condition which has

created confusion in the literature. We explore this point next.

Axiom 3.3.2 Assuming r = 0, let us define the Black-Scholes call function f :

R× [0,∞) −→ [0, 1) in terms of the tail of the standard Gaussian distribution Φ(x) =
1√
2π

∫ +∞
x

exp(−y
2

2
)dy and given by:

f(k, ν) =





Φ

(
k√
ν
−
√
ν

2

)
− ekΦ

(
k√
ν

+

√
ν

2

)
, if ν > 0,

(1 + ek)+, if ν = 0.
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Note that the assumption, the proof and its choice of boundaries12 is attributed to

Rogers and Tehranchi [57]. Please refer to the original paper [57] if clarifications are

required.

Proposition 3.3.3 Following axiom 3.3.2 we have

|T∂Kσ2(K,T )| ≤ 4,∀K, ∀T, (3.18)

Proof Let us call Vt(k, τ) the implied variance at time t ≥ 0 for log-moneyness k

and time to maturity τ ≥ 0. Let us now label our Kappa13 and Vega14, with the

convention that φ(x) = 1√
2Π

exp
(
−x2

2

)
:

fk(k, ν) = −ekΦ

(
k√
ν

+

√
ν

2

)
, (3.19a)

fν(k, ν) = φ

(
k√
ν

+

√
ν

2

)
/2
√
ν (3.19b)

Now define the function I : {(k, c) ∈ R × [0,∞) : (1 + ek)+ ≤ c < 1} −→ [0, 1)

implicitly by the formula: f(k, I(k, c)) = c. Calculus gives Ic = 1
fν

and Ik = −fk
fν

,

from here using the chain rule, designating ∂k+V as the right derivative. We have

∂k+V = Ik + Ic∂kE[(Sτ − ek)+] = −fk
fν
− P(Sτ>ek)

fν
< −fk

fν
= 2
√
ν

Φ
(
k√
ν

+
√
ν

2

)
φ
(
k√
ν

+
√
ν

2

) . Now using

the bounds of the Mills ratio 0 ≤ 1− xΦ(x)
φ(x)
≡ ε(x) ≤ 1

1+x2 , we have: ∂k+V ≤ 4
k/V+1

< 4.

Similarly, we can show [57] that ∂k−V > −4, therefore we have |∂kV | < 4.

Though elegant and certainly potentially very useful, had it been a necessary and

sufficient condition for the volatility surface to be arbitrage-free on the strike axis,

equation (3.18) was ultimately proven incomplete, having in the meantime guided

the literature for some time with famous researchers using the results [51] in their

research.

Counter Example We explore below a counter example.

Axiom 3.3.3 Let us call χR = {a, b, ρ,m, σ} a given parameter set for the function

f : R+,∗ × R+ × [−1,+1]× R× R −→ R+,∗ given by

f(k, χR) = a+ b[ρ(k −m) +
√

(k −m)2 + σ2] (3.20)

12E.g,: f : R× [0,∞) −→ [0, 1).
13Derivative with respect to the strike: equation (3.19a).
14Derivative with respect to the volatility: equation (3.19b).
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Lemma 3.3.4 Following axiom 3.3.3

b(1 + |ρ|) ≤ 4/T,∀K, ∀T, (3.21)

Proof Simply take ∂Kf(k, χR) = b(1 + |ρ|). Now applying proposition 3.3.3 to

b(1 + |ρ|) we obtain equation (3.21).

A counter example on the SVI15 inequality of equation (3.21) was provided by Axel

Vogt [25] in equation (3.22) which prompted a re-examination of the pillar assump-

tions [13].

(a, b,m, ρ, σ) = (0.0410, 0.1331, 0.3586, 0.3060, 0.4153). (3.22)

For instance, figure 3.2 represents the counter example of |T∂Kσ2(K,T )| ≤ 4 ap-

plied to the Raw SVI parametrization16. More specifically on the left hand side of

Remark 3.2. By a careful study of the minima and the shapes of the two slices w(·, t1)
and w(·, t2), it is possible to determine a set of conditions on the parameters ensuring no
calendar spread arbitrage. However these conditions involve tedious combinations of the
parameters and will hence not match the computational simplicity of the lemma.

For a given slice, we now wish to determine conditions on the parameters of the raw
SVI formulation (3.1) such that butterfly arbitrage is excluded. By Lemma 2.1, this is
equivalent to showing (i) that the function g defined in (2.1) is always positive and (ii)
that call prices converge to zero as the strike tends to infinity. Sadly, the highly non-linear
behaviour of g makes it seemingly impossible to find general conditions on the parameters
that would eliminate butterfly arbitrage. We provide below an example where butterfly
arbitrage is violated. Notwithstanding our inability to find general conditions on the
parameters that would preclude arbitrage, in Section 4, we will introduce a new sub-class
of SVI volatility surface for which the absence of butterfly arbitrage is guaranteed for all
expiries.

Example 3.1. (From Axel Vogt on wilmott.com) Consider the raw SVI parameters:

(a, b,m, ρ, σ) = (−0.0410, 0.1331, 0.3586, 0.3060, 0.4153) , (3.8)

with t = 1. These parameters give rise to the total variance smile w and the function g
(defined in (2.1)) on Figure 1, where the negative density is clearly visible.
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Figure 1: Plots of the total variance smile w (left) and the function g defined in (2.1)
(right), using the parameters (3.8).

4 Surface SVI: A surface free of static arbitrage

We now introduce a class of SVI volatility surfaces—which we shall call SSVI (for ‘Surface
SVI’)—as an extension of the natural parameterization (3.2). For any maturity t ≥ 0,

10

Figure 3.2: Vogt’s [25] total variance example verifying b(1+|ρ|) ≤ 4
T

(left figure: with
the x axis being the log-moneyness and the y axis being the implied variance) and
the corresponding ∂2

K,KBS (σ2(K,T )) approximating the (supposed) always positive
pdf (right figure: with the x axis being the log-moneyness and the y axis being the
non normalized pdf).

Figure 3.2, we can observe a standard implied volatility plotted using the raw SVI

equation (3.20) with Vogt’s example [25]. The latter example verifies the constraint

|T∂Kσ2(K,T )| ≤ 4 yet, on the right hand side the PDF yields a negative value infer-

ring an arbitrage. More specifically, this example when it is cross validated using first

principles (∂2
K,KBS (σ2(K,T )) > 0, numerically approximated by equation (3.15))

which yields a negative value in a small portion of the unormalized numerical PDF.

Indeed, it can be clearly seen around moneyness of [0.6, 1.5] that the curve goes below

15Note that we introduce more formally this parametrization in section 4.1.4.1.
16Yielding b(1 + |ρ|) ≤ 4

T .
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the y = 0 line yielding a butterfly arbitrage (sometimes a financial product that is

understood to be an “unnormalized density”)17.

Remark If this is not clear why this is important, CCPs create “stress tests” based

on historical scenarios. The latter scenarios need to be also coherent at the same

time18.

3.4 Arbitrage Condition on the Tenor

Theorem 3.4.1 Following the axiom 3.3.1 and lemma 3.3.1 a Call C(·) will be ar-

bitrage free on the tenor axis if and only if

C(K,T + ∆)− C(Ke−r∆, T ) ≥ 0. (3.23)

Proof One application of Dupire’s formula [49, 50] is that the pseudo-probability

density must satisfy the Fokker-Planck [101, 102] equation. This proof is taken from

El Karoui [103]. Let us apply Itô to the semi-martingale. This is formally done by

introducing the local time ΛK
T :

e−r(T+ε) (ST+ε −K)+ − e−r(T ) (ST −K)+ =

∫ T+ε

T

re−ru (Su −K)+ du

+

∫ T+ε

T

e−ru1{Su≥K}dSu +
1

2

∫ T+ε

T

e−rudΛK
u .

Local times are introduced in mathematics when the integrand is not smooth enough.

Here the call price is not smooth enough around the strike level at expiry. Now we

have: E
(
e−ru1{Su≥K}Su

)
= C (u,K) + Ke−ruP (Su ≥ K) = C (u,K) −K ∂C

∂K
(u,K).

The term of the form E
(∫ T+ε

T
e−rudΛK

u

)
is found due to the formula of local times,

that is:

E

(∫ T+ε

T

e−rudΛK
u

)
=

∫ T+ε

T

e−ruduE
(
ΛK
u

)
=

∫ T+ε

T

e−ruduσ2 (u,K)K2φ (u,K)

=

∫ T+ε

T

σ2 (u,K)K2 ∂
2C

∂K2
(u,K) du.

Plugging these results back into the first equation we obtain:

C (T + ε,K) =C (T,K)−
∫ T+ε

T

rC (u,K) du+ (r − q)
∫ T+ε

T

(
C (u,K)−K ∂C

∂K
(u,K)

)
du

+
1

2

∫ T+ε

T

σ2 (u,K)K2 ∂
2C

∂K2
(u,K) du.

17If this is still not clear, please see section 3.3.
18Through de-arbitraging which we see in the next Section.
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If we want to give a PDE point of view of this problem we can notice that φ (T,K) =

e−rT ∂2C
∂K2 (T,K) verifies the dual forward equation:

φ
′

T (T,K) =
1

2

∂2 (σ2 (T,K)K2φ (T,K))

∂K2
− ∂2 ((r − q)Kφ (T,K))

∂K
.

Integrating twice by parts, we find:

∂e−rTC (T,K)

∂T
=

1

2
σ2 (T,K)K2erT

∂2C (T,K)

∂K2
−
∫ +∞

K

(r − q)KerT
∂2C (u,K)

∂K2
∂K (T,K) du.

Now integrating by part again and setting dividends to 0 we find the generally ad-

mitted relationship:
∂C

∂t
=
σ2

2
K2 ∂

2C

∂K2
− rK ∂C

∂K

and therefore we have

σ =

√
2
∂C
∂t

+ rK ∂C
∂K

K2 ∂2C
∂K

.

From this formula and from the positivity constraint on Equation (3.14) we find that

∂C

∂t
+ rK

∂C

∂K
≥ 0.

Note that for very small ∆:

C(Ke−r∆, T ) ≈ C(K −Kr∆, T )

Using a Taylor expansion:

C(K −Kr∆, T ) = C(K,T )−Kr∆ ∂C

∂K
+ · · · ,

therefore

rK
∂C

∂K
≈ C(K,T )− C(Ke−r∆, T )

∆
.

Using a forward difference approximation we also have:

∂C

∂K
=
C(K,T + ∆)− C(K,T )

∆

and from the Fokker-Planck equation we have ∂C
∂t

+ rK ∂C
∂K
≥ 0. Substituting, we

obtain:
C(K,T + ∆)− C(K,T )

∆
+
C(K,T )− C(Ke−r∆, T )

∆
≥ 0.

Simplifying we find C(K,T + ∆)− C(Ke−r∆, T ) ≥ 0.

94



Month Day, Year LEGAL ENTITY, department or author (Click Insert | Header & Footer) 

USD 

EUR 

JPY 

σ3 

σ1 

σ2 

φ12 

Figure 3.3: Geometrical representation for three FX pairs and their correlation.

Remark If you work in the FX market then there are some idiosyncratic properties

of this specific market one can take advantage of [104]. For instance, let St,1 be the

exchange rate of EUR/USD pair and σ1 its implied volatility, St,2 the exchange rate

of USD/JPY pair and σ2 its implied volatility St,3 the exchange rate of EUR/JPY

pair and σ3 its implied volatility (see figure 3.3). Now notice that St,3 must equal to

St,1 × St,2 else there are arbitrage opportunities induced. Geometrically we have

σ1 + σ2 + σ3 > 2 max(σ1 + σ2 + σ3). (3.24)

Therefore ln(St,3) = ln(St,1 × St,2). Taking the variance on each side we obtain the

non-arbitrage condition on the volatility and the implied correlation given by

σ2
3 = σ2

2 + σ2
1 + 2ρ1,2σ1σ2.

By rearranging, the implied correlation can be isolated and given by

ρ1,2 =
σ2

3 − σ2
2 − σ2

1

2σ1σ2

= cosφ1,2,

or, arccos ρ1,2 = φ1,2,

(3.25a)

(3.25b)

align Figures (3.3) and equation (3.24) shows a visual representation of this non-

arbitrage constraint with φ1,2 representing the angle between σ1 and σ2. The rela-

tionship between ρ1,2 and φ1,2 is given by equation (3.25b).
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3.5 De-arbitraging

As we have seen in Section 3.1.5, there exist several pricing methodologies. We denote

by C(·) the relevant pricing methodology. But independently from the underlying

diffusion model, for our de-arbitraging methodology, we make sure that for every

pillar tenor and every pillar strikes the relevant points are mutually arbitrage free.

3.5.1 The General Idea

How do we algorithmically insure that a volatility surface is arbitrage free? We can

simply do that with a nested for loop. In Figure 3.4 the x axis represents the strike

space and the y axis the implied volatility space. A discretized version of the IVS

de-arbitraging methodology would then consist of taking the initial volatility (for

example the IV which has been stressed by one of the diffusions defined in Section 5)

and loop over all points while adjusting each adjacent point that induce an arbitrage.

If 

Then If 

+     - 

Call Prices Implied Volatility 

> 

Increasing Strikes 

Increasing 
Tenors 

- 
+ 

< 

Increasing Strikes 

Increasing 
Tenors 

Then 

Figure 3.4: Visualization for the Core Simple de-Arbing Idea

Remark We are yet to find a volatility surface that is difficult to de-arbitrage. We

have performed many simulations but we did not feel that presenting these simulations

would bring any interesting insight.
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3.5.2 The Case of the FX Asset Class

This intuitive representation of Figure 3.4 no longer works with the FX pillars like it

is shown by Figure 3.5. Indeed, though the tenor pillars (ON, 1W, 2W, 1M, 2M, 3M,

6M, 1Y, 18M, 2Y) are not really providing additional challenges in the methodology,

the fact that, on the strike axis, the market data is listed on the delta space (please see

Subsection 3.1.4) creates additional complications. The classic de-arbing algorithms

assumes that the data is conveniently aligned in log-moneyness space. We, however,

know that ∆f = φe−rftN(φ1
2
σ
√
t) so there is a way to turn the data in delta space of

the FX market into log-moneyness but the delta to log-moneyness conversion creates

increasing mis-alignments as the tenor increases and the convenient falling variance

check no longer works. We take this opportunity to make a couple of remarks here.

> 

Call Prices Implied Volatility 

Increasing Strikes 

Increasing 
Tenors 

Increasing Strikes 

Increasing 
Tenors 

If 

Then If 

+     - < Then 

- 
+ 

Figure 3.5: FX Strike Space Misalignment of Figure 3.4

Remark These Data Science related issues are of utmost importance. Great data

on an average model will give you mediocre results, but bad data on an exceptional

model will give you catastrophic results. The problem of normalization onto pillars

and the process of making the result volatility surfaces arbitrage free is critical in all

aspects of trading going from opportunity detection to risk management.

Remark Though, they have been recently studied formally [105] using Sinkhorn’s

algorithm, non-parametric de-arbitraging methodology are quite simplistic but sta-

bility and convergence are sometimes a problem [12]. This is because as one moves

away from the arbitrage zone, one may recreate arbitrages on adjacent points.
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We have explored, in this chapter, the three main forms of the vanilla options pricing

models. We also went over the arbitrage conditions that make the IVS coherent.

Though the main function of this chapter was to prepare the reader with respect

to the next chapters, and therefore relatively poor in terms of original contribution,

we believe to have clarified few historic mistakes that have created confusion in the

literature. More specifically though we knew how to derive the strike and the tenor

conditions from first principles, elegant shortcuts had emerged in the literature that

were necessary but not sufficient conditions (which the literature had taken as suffi-

cient). We also stressed the importance of using standardized pillars and have given

a simple methodology to achieve this standardization. Finally, we made an intuitive

introduction to de-arbitraging methodologies stressing the importance of making sure

the de-arbitraging is performed on data which is of good quality and standardized

appropriately. Generally speaking, because the volatility surface is a mathematical

concept of infinite dimension, and because questions may arise in terms of Interpo-

lation and Extrapolation techniques, parametrization approaches have been created

to handle dimensionality reduction. As it happens, reducing the dimensionality, also

helps the de-arbitraging algorithms to converge. We explore some of these method-

ologies in the next Chapter.
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Chapter 4

Big Data Changing the Vanilla
Options Landscape

In this chapter we go over few of the noticeable changes that have occurred in the area

of implied volatility parametrization. First we review the literature in Section 4.1.

More specifically we focus on the discrepancy between data as observed in the market

and assumptions associated to the wings sub-linearity. We take this opportunity to

introduce our own model which is a data and regulatory driven change from known

models in Section 4.2. We propose our de-arbitraging methodology in Section 4.3.

We spend the next two Sections (4.4 and 4.5) exploring data sciences related issues

such as updating and proxying volatility data in a hostile environment. Finally, in

Section 4.6 we discuss a few statistical arbitrage ideas.

4.1 Volatility Parametrization

4.1.1 Motivation

Volatility parametrization, a way to reduce the dimensionality of surfaces1 may have

very different motivations depending on ones function within a bank. For instance, if

pricing related, methods associated to Partial Differential Equations (PDE) require

convergence between the parametrization and the Heston model [59]. Within the

same sell side, parametrization can be used for proxying (e.g. Section 4.6). On

the buy side, parametrization can be used for statistical arbitrage as well as risk

management. If the objective is more IT related, then parametrization can help in

optimization. For instance, a volatility surface is free of arbitrage when Equations

(3.15) and (3.23) are satisfied. If using a brute force method, for example moving

1A mathematical concept of infinite dimension.
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implied volatility points towards the arbitrage free frontier, can create arbitrages

in other places of the volatility surface. Lagnado and Osher [106], Crepey [107]

and other authors have proposed relevant minimization algorithms. However, the

difficulties that can occur in handling de-arbitraging and dimenssionality of a surface

with (infinite) points create a natural need to limit the risk factors to a manageable

level. Using volatility parametrization instead of a grid can reduce the degree of

freedom and help in that optimization. These are among other aspects some of the

motivations behind parametrazing the volatility surface.

4.1.2 Schonbucher’s Model

In 1999 Schonbucher [108] introduced his parameterized version of the volatility sur-

face. The main advantage of the Schonbucher’s model is that it can be derived from

Heston [61], a stochastic volatility model used by many financial institutions.

Axiom 4.1.1 Let (Ω, (Ft)(t≥0),Q), be our probability space with (Ft)(t≥0) and Q, our

risk neutral probability measure, under which the stock price process (St)t≥0 is consid-

ered a martingale. Formally we have





dSt = rStdt+ σtStdWt

dσk,t = utdt+ γtdWt + νtdW
⊥
t

γ2
t + ν2

t = 1

where dWt and dW⊥
t are independent of each other. The implied stock volatility

function σk,t is yet to be specified, to simplify the notations let us redefine this implied

volatility variable as It and let γt be the correlation between the instantaneous volatility

and the spot price and νt chosen such that γ2
t + ν2

t = 1 [108].

Schonbucher asserts that the implied volatility surface should be modeled through

Equation (4.1).

Theorem 4.1.1 Following axiom 4.1.1, the implied variance, I2(·) converges asymp-

totically to

I2(x) = a+ bx+

√
1

4
σ4 + x2ν2 (4.1)

where x denotes the log moneyness2.

2Log moneyness of an underlier S with a forward price F with respect to a strike K is ln K
F .
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Proof Apply Itô’s lemma to the call price to obtain the drift restriction rCBS =
∂CBS

∂t
+ rS ∂CBS

∂S
+ u∂C

BS

∂I
+ γσS ∂2CBS

∂I∂S
+ 1

2

(
σ2S2 ∂2CBS

∂S2 + ∂2CBS

∂I2

)
. Using the Black-

Scholes formula for the call and its derivatives this reduces to a joint restriction on

the implied and instantaneous volatility of equation (4.2).

Iu =
1

2(T − t)(I2 − σ2)− 1

2
d1d2ν

2 +
d2√
T − tσγ,

d1 =
x

I
√
T − t +

1

2
I
√
T − t,

d2 = d1 − I
√
T − t,

(4.2a)

(4.2b)

(4.2c)

where we have used the standard definitions for d1 and d2 given by Equations (4.2b)

and (4.2c). Equation (4.2a) blows up as T−t goes to zero. This imposes the condition

that (I2−σ2)−d1d2ν
2(T − t) +d2σγ

√
T − t = O(T − t) and thus in the limit, noting

that lim
t→T

d1

√
T − t = lim

t→T
d2

√
T − t =

1

I
ln (S/K) and by setting a zero correlation

between spot and implied volatility3 we obtain I2(x) = 1
2
σ2 +

√
σ4

4
+ x2ν2. Note that

there is no at the money (ATM) skew but this is easily remedied by adding an extra

linear4 term which gives I2(x) = a+ bx+
√

σ4

4
+ x2ν2. We therefore find the original

equation (4.1).

4.1.3 The SABR Model

The “Stochastic Alpha, Beta, Rho”, a stochastic version of the Constant Elasticity

of Variance (CEV) model [109], commonly known as “SABR” model was developed

in 2002 [110] by Patrick S. Hagan, Deep Kumar, Andrew Lesniewski, and Diana

Woodward. The SABR model’s dynamics are given by

dFt = σtF
β
t dWt,

dσt = ασt dZt,

(4.3a)

(4.3b)

with F being a forward5 on S, σt its volatility, 〈dWt, dZt〉 = ρdt, −1 < ρ < 1,

0 ≤ β ≤ 1 and α ≥ 0. Though advertised to be cross asset, the SABR model ended

up being exclusively used on the rates market and unfortunately was made obsolete

due to the rates market going negative in 2015. This latter fact was addressed recently

[111].

3a simplification done by Schonbucher but not necessarily very realistic, specifically on the com-
modities market where for physical reasons the stochastic processes driving the commodities are
more driven by mean reversion than classic correlation [10].

4The linearity of the wings was at that time justified [56] even-though later challenged [12]. We
will develop this in details in Section 4.2.1.2.

5E.g., LIBOR forward rate, or forward swap rate, or a forward stock price.
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Remark Interest rates being unable to go negative was an assumption, places like

LCH6, assumed before 2015. Interest rates turning negative created crashes in LCH’s

initial margins pricers which was subsequently addressed by taking the normal as-

sumption instead.

For the special cases of α = 0 and β = 1, no closed-form solution for the implied

volatility can be obtained. In the more general case, we can express the solution in

terms of the implied volatility of the option. Indeed using the Black formula, and

forcing it onto the SABR model, the implied volatility is approximately given by:

σn
impl = α

F0 −K
D (ζ)

{
1 +

[
2γ2 − γ2

1

24

(
σ0C (Fmid)

α

)2

+
ργ1

4

σ0C (Fmid)

α
+

2− 3ρ2

24

]
ε

}
,

where we let C (F ) = F β, Fmid = (F0 +K) /2), ζ = α
σ0

∫ F0

K
dx
C(x)

= α
σ0(1−β)

×(
F 1−β

0 −K1−β
)

, γ1 = C′(Fmid)
C(Fmid)

= β
Fmid

, γ2 = C′′(Fmid)
C(Fmid)

= −β(1−β)

F 2
mid

, and D (ζ) =

ln

(√
1−2ρζ+ζ2+ζ−ρ

1−ρ

)
.

Remark Note that with the log-normal assumption, we obtain

σimpl =

{
1 +

[
2γ2 − γ2

1 + 1/F 2
mid

24

(
σ0C (Fmid)

α

)2

+
ργ1

4

σ0C (Fmid)

α
+

2− 3ρ2

24

]
ε

}

×α ln (F0/K)

D (ζ)
,

4.1.4 The Stochastic Volatility Inspired Model

4.1.4.1 The Raw SVI

Like the Schonbucher and the SABR models [108, 110], practitioners perceived that

the advantage of the Raw Stochastic Volatility Inspired (rSVI) model, sometimes

referred to as simply SVI [51], is that it can be derived from the Heston model

[61, 59], though not advertised as such at inception [51]. Above and beyond an

arguable point, the advantage of the SVI over the other parametrizations mentioned

so far is its simplicity. However, like the other models it came with linear wings (e.g.

Figures 4.6 and 4.7), no embedded Bid Ask and did not come with non-arbitrage

constraints or at least not with correct arbitrage conditions [51, 13, 8]. This latter

mistake was addressed in 2012 [100]. For each time to expiry, Gatheral proposes

σ2
BS(k) = a+ b[ρ(k −m) +

√
(k −m)2 + σ2], (4.4)

6The London Clearing House is the most important CCP in the world.
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where k is the log-moneyness, a adjusts the vertical displacement of the smile, b ad-

justs the angle between the left and right asymptotes, σ adjusts the smoothness of

the vertex, ρ adjusts the orientation of the graph and m is the horizontal displace-

ment of the smile. The advantage of Gatheral’s model was that it was a parametric

model that was easy to use, yet had enough complexity to model most of the volatil-

ity surface and its dynamics7 (or at least to the same extent Schonbucher’s model

does). Note that Schonbucher’s market model has one fewer parameter than the SVI:

the parameter m which centers the volatility surface around its minimum strike per

tenor8. Other than this, the two models are equivalent. But at the same time it was

simple enough that a solution could be found using simple optimization by constraint

algorithms. Figure 4.3 illustrates the change in the ρ parameter (the skew risk),

Figure 4.2 illustrates the change in the b parameter (the vol of vol risk), Figure 4.1

illustrates the change in the a parameter (the general volatility level risk), Figure 4.5

illustrates the change in the σ parameter (the ATM volatility risk) and finally, Figure

4.4 illustrates the change in the parameter m (the horizontal displacement risk).

4.1.4.2 The Natural SVI

There exist couple of additional equivalent forms of the SVI developed by Gatheral

and Jacquier [100] which are closely linked to the Raw SVI of Section 4.1.4.1. First,

the natural SVI parametrization of implied variance for each time to maturity is given

by

σ2
BS(k) = ∆ +

w

2

{
1 + ζρ(k − µ) +

√
(ζ(k − µ) + ρ)2 + (1− ρ2)

}
, (4.5)

where w ≥ 0,∆ ∈ R, |ρ| < 1 and ζ > 0. Though, this equation looks different from the

raw SVI model; we show next that they are equivalent. These different forms of the

SVI are useful for different functions within a financial institutions. The natural SVI

is seemingly more used in pricing and the raw SVI for risk management and statistical

arbitrage strategies (the parameters being more orthogonal). The transform functions

mentioned are useful when it comes to making sure different functions in a financial

institution can communicate efficiently.

Remark We take this opportunity to introduce lemmas 4.1.2 and 4.1.3 which we

will use in theorem 4.1.4.

7we will see its main limitation when we explore the gSVI.
8Please refer to page 89 for the definition of Normalized Tenors.
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Figure 4.1: Impact of a change in the value of parameter a in the rSVI/gSVI/IVP
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Figure 4.2: Impact of a change in the value of parameter b in the rSVI/gSVI/IVP
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Figure 4.3: Impact of a change in ρ parameter in the rSVI/gSVI/IVP
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Figure 4.4: Impact of a change in the value of parameter m in the rSVI/gSVI/IVP
model
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Figure 4.5: Impact of a change in the value of parameter σ in the rSVI/gSVI/IVP

Lemma 4.1.2 (Raw to Natural SVI Transform) Let χR = {a, b, ρ,m, σ} be a

given parameter set for the function f : R+,∗×R+× [−1,+1]×R×R −→ R+,∗ given

by f(k, χR) = a + b[ρ(k −m) +
√

(k −m)2 + σ2], and let χN = {∆, µ, ρ, w, ζ} be a

given parameter set for the function g : R+,∗×R+×[−1,+1]×R×R −→ R+,∗ given by

g(k, χN) = ∆ + w
2

{
1 + ζρ(k − µ) +

√
(ζ(k − µ) + ρ)2 + (1− ρ2)

}
. Then we define a

set of 5 functions ∪5
i=1Ti mapping χR onto χN the following way:

(a, b, ρ,m, σ) =

(
∆ +

w

2
(1− ρ2),

wζ

2
, ρ, µ− ρ

ζ
,

√
1− ρ2

ζ

)
(4.6)

Proof Using equation (4.5) and rearranging it in the form of equation (4.4), we

note that the ρ of χN is the same as χR, we can then solve the 4 other parameters

sequentially noticing that a = ∆+w
2
(1−ρ2), b = wζ

2
, m = µ−ρ/ζ and σ =

√
1− ρ2/ζ.

Lemma 4.1.3 (Natural to Raw SVI Transform) Let χR = {a, b, ρ,m, σ} be a

given parameter set for the function f : R+,∗×R+× [−1,+1]×R×R −→ R+,∗ given

by f(k, χR) = a + b[ρ(k −m) +
√

(k −m)2 + σ2], and let χN = {∆, µ, ρ, w, ζ} be a

given parameter set for the function g : R+,∗×R+×[−1,+1]×R×R −→ R+,∗ given by
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g(k, χN) = ∆ + w
2

{
1 + ζρ(k − µ) +

√
(ζ(k − µ) + ρ)2 + (1− ρ2)

}
. Then we define a

set of 5 functions ∪5
i=1Ti mapping χN onto χR in the following way

(∆, µ, ρ, w, ζ) =

(
a− bσ(1− ρ)3/2,m+

ρσ√
1− ρ2

, ρ,
2bσ√
1− ρ2

,

√
1− ρ2

σ

)
. (4.7)

Proof Using equation (4.4) and rearranging it in the form of equation (4.5), we note

that the ρ in χR is the same as χN , we can then solve the 4 other parameters sequen-

tially noticing that ∆ = a − bσ(1 − ρ)3/2, µ = m + ρσ/
√

1− ρ2, w = 2bσ/
√

1− ρ2

and ζ =
√

1− ρ2/σ.

Theorem 4.1.4 Let χR = {a, b, ρ,m, σ} and χN = {∆, µ, ρ, w, ζ} be a given set of

parameters defining respectively the Raw SVI given by σ2
R : R+,∗×R+× [−1,+1]×R×

R −→ R+,∗ given by σ2
R(k, χR) = a+ b[ρ(k−m) +

√
(k −m)2 + σ2], and σ2

R(k, χN) =

∆+w
2

{
1 + ζρ(k − µ) +

√
(ζ(k − µ) + ρ)2 + (1− ρ2)

}
respectively then σ2

R(k, χR) and

σ2
R(k, χN) are equivalent functions.

Proof Using proof of equivalence, we can use Lemma 4.1.2 to prove that σ2
R(k, χN)⇒

σ2
N(k, χR) and σ2

R(k, χN)⇐ σ2
N(k, χR) using Lemma 4.1.3, and therefore σ2

R(k, χN)⇔
σ2
N(k, χR).

Remark Note that there exist other versions of the SVI, notably the SVI Jump-

Wings (SVI-JW) parametrization which do not offer any advantage in the context of

this document. We refer the motivated reader to the original paper [100] for more

information.

4.2 Implied Volatility Parametrization

4.2.1 The Generalized SVI Model

4.2.1.1 Big Data Fueling an Industry Change

We have seen in Section 1.1.1 that the definition that best describes Big Data is

the one associated to large body of information that we could not comprehend when

used only in smaller amounts [19]. In that context, Jim Gatheral developed the SVI

model at Merrill Lynch in 1999 and implemented in 2005. The SVI was subsequently

decommissioned in 2010 because of its limitations in accurately pricing out of the

money variance swaps (for example short maturity Var Swaps on the Eurostoxx are

overpriced when using the SVI). This is because the wings of the SVI are linear and

have a tendency to overestimate the out of the money (OTM) variance swaps. Figures

4.7 and 4.6 illustrate that latter point.
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4.2.1.2 Academic Interpretation

Benaim, Friz and Lee [56] gave a mathematical justification for this market observa-

tion. Their paper suggests that the implied volatility cannot grow asymptotically any

faster than
√
k but may grow slower than

√
k when the distribution of the underlier

has finite moments (e.g., does not have heavy tails).

Remark Note that this latter point is another necessary but not sufficient condition

to make the implied volatility arbitrage free. Please see the previous chapter to get

clarification.

Gatheral and Jacquier explained that the SVI model is consistent with Roger Lee’s

moment formula [58]. However Roger Lee’s exact claims are that “the moment for-

mula has implications for skew extrapolation: it rejects functions that grow faster

than |x| 12 , and unless ST has finite moments of all orders, it rejects those

that grow slower than |x| 12 ”. Gatheral’s claim forewent the latter point. We will

show here first that the higher moments of the log-normal distribution are actually

finite even-though the distribution itself is considered heavy-tailed, and therefore

mathematically the assumption on the linearity of the wings is rejected by that claim

alone9.

Definition (Heavy-tailed distribution) The distribution of random variable X

with cumulative distribution function (cdf) F is said to have heavy-tails if:

lim
x→∞

ekx Pr[X > x] =∞ for all k > 0. (4.8)

Remark Gatheral and Jacquier [100] misquoted Lee’s statement on tail-wing be-

havior of implied variance, which original statement mentioned that implied variance

cannot grow faster than |k| but can grow slower than |k| when the underlying asset

price has finite moments of all orders. This latter statement was misquoted by claim-

ing that the Black-Scholes implied variance was exclusively linear. Later, Benaim

and Fitz [55] improved Roger Lee’s foment formula and concluded: “In models with-

out moment explosion (Black-Scholes, Merton’s jump diffusion model, FMLS with

β = 1...) the moment formula indicates sublinear behaviour of the implied variance”.

Lemma 4.2.1 (Moments of log-normal distribution) The log-normal distribu-

tion does not has finite moments of all orders.

9The log-normal distribution is wrongly considered part of the heavy tail distribution family due
to the conception that the tails are heavier (fatter) than the normal distribution but does not fulfill
the formal definition of equation (4.8). It’s possible Gatheral in [59] made this common mistake.
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Proof If X is log-normal, then Y = lnX is normal. Consider E[Xk] = E[ekY ] =∫∞
y=−∞ eky 1√

2πσ
e−(y−µ)2/(2σ2) dy. Now observe that, ky− (y−µ)2

2σ2 = −−2kσ2y+y2−2µy+µ2

2σ2 =

− 1
2σ2 (y2 − 2(µ+ kσ2)y + (µ+ kσ2)2 + µ2 − (µ+ kσ2)2) = −(y−(µ+kσ2))

2

2σ2 + k(2µ+kσ2)
2

.

Thus the kth moment is simply E[Xk] = ek(2µ+kσ2)/2
∫∞
y=−∞

1√
2πσ

e−(y−µ′)2/(2σ2)dy where

µ′ = µ + kσ2. But this latter integral is equal to 1, being the integral of a normal

density with mean µ′ and variance σ2. So E[Xk] = ek(2µ+kσ2)/2.

Remark The log-normal distribution is wrongly considered part of the heavy tail

distribution family due to the conception that the tails are heavier (fatter) than the

normal distribution but does not fulfill the formal definition of equation (4.8).

In any case this suggests that the linear wings of the SVI model may overvalue really

deep OTM options, as one can observe in the markets. Figures 4.7 and 4.6 illustrate,

for a couple of different asset classes, how the linearity of the wings assumption fails

when far from the at the money (ATM).
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Figure 4.6: Crude Oil Bid Ask Smile for the 1 Year Expiry as given by the CME

Remark In figure 4.6, the data has been downloaded by Farah Haddadin and taken

from the CME - live market data. The time stamp is 2018-09-10, the expiration date

is 2018-09-17 and the future price is $68.355.
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Figure 4.7: IVP & SVI with 1 year expiry S&P 500 index options [26] on 26/11/2016

4.2.1.3 Downside Transform

The downside transform in the gSVI was given by z = k
β|k−m|

, 1 ≤ β ≤ 1.4 to address

the mentioned wing limitations [12]. The resulting model becomes equation (2.2.3.1).

σ2
gSV I (k) = a+ b

[
ρ (z −m) +

√
(z −m)2 + σ2

]
,

z =
k

β|k−m|
, 1 ≤ β ≤ 1.4.

There are many ways of defining the concept of downside transform. One general

approach would be to define µ and η such that equation (4.1a) defines the change of

variable from strike space to modified strike space. The idea being that the further

away the option is from the ATM, the bigger the necessary adjustment on the wings.

Few examples of such downside transform are given by Equations (4.1a), (4.1b) and

(4.1c).

z =
k

βµ+σl|k−m| ,

z = e−β|k−m|(k −m),

z = ln (β|k −m|).

(4.1a)

(4.1b)

(4.1c)

We can, for example, choose µ = 1 and η = 4 and have the transformation in the form

z = k−m
β1+4|k−m| because it yielded interesting results on the FX markets [13] and also

because it relaxes the constraint on β since we incorporate a Bid Ask layer. Figure
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Figure 4.8: Impact of a change in the value of parameter β in the gSVI/IVP model

4.8 represents the impact of the β parameter in the gSVI. The geometric properties

of the gSVI, more specifically its ability to model smile, skew and inverse skew, while

at the same time correcting the linear wings of the SVI makes it applicable to all

markets (FX, Commodities, equities and rates).

Remark Section 3 is dedicated to the discussion associated to anomaly detection

in the context of arbitrage handling. However, we thought of making the following

point here. There exist two constraints that make the gSVI “often” (as illustrated

by Figure 3.2) arbitrage free. The first condition on the falling variance in equation

(3.18) does not change. However the butterfly condition changes. Using some of the

market conventions around what was initially thought to be an equivalent condition

to the butterfly condition [58], namely equation (3.18), we obtain equation (4.2),

which happens to be a necessary but not sufficient condition.

∣∣∣∣∣∣
T

1 + |k −m| ln β
β|k−m|


bρ+

( k
β|k−m|

−m)
√

( k
β|k−m|

−m)2 + σ2



∣∣∣∣∣∣
≤ 4. (4.2)

4.2.2 Implied Volatility Parametrization

4.2.2.1 Overall Formula

By incorporating the information on the gSVI, the ATM Bid Ask spread and the

curvature adjustment of the wings we define [12, 13] the Implied Volatility surface
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Parametrization (IVP) split with its mid in equation (4.3) below10

σ2
IV P,o,τ (k) = aτ + bτ

[
ρτ (zo,τ −mτ ) +

√
(zo,τ −mτ )

2 + σ2
τ

]
,

zo,τ =
k

β
1+4|k−m|
τ

,

(4.3a)

(4.3b)

which is essentially the gSVI [12] model, introduced in the previous section, as well

as its liquidity parameters in equation (4.4).

σ2
IV P,+,τ (k) = aτ + bτ

[
ρτ , (z+,τ −mτ ) +

√
(z+,τ −mτ )

2 + σ2
τ

]
+ ατ (p),

z+,τ = zo,τ [1 + ψτ (p)],

σ2
IV P,−,τ (k) = aτ + bτ

[
ρτ (z−,τ −mτ ) +

√
(z−,τ −mτ )

2 + σ2
τ

]
− ατ (p),

z−,τ = zo,τ [1− ψτ (p)],
ατ (p) = α0,τ + (aτ − α0,τ )(1− e−ηατ p),

ψτ (p) = ψ0,τ + (1− ψ0,τ )(1− e−ηψτ p),

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

(4.4f)

where a, b, ρ, m and σ represent the same risk factors as that is raw SVI which

we introduced in Subsection 4.1.4.1 and β is the same parameter as the gSVI in

Subsection 4.2.1. The ATM liquidity function is represented by equation (4.4e), where

p represents the position size, α0 the smallest volatility increment associated to the

smallest position size that one can trade and ηα, the price elasticity. The curvature

liquidity function is represented by equation (4.4f), where p represents the position

size, ψ0 the smallest volatility increment associated to the smallest position size that

one can trade and ηψ, the price elasticity. Next, the latter liquidity parameters are

being discussed in more details.

Remark Note that once the Bid Ask spread is incorporated, we care less about the

midprice in the context of vanilla options market making. Though the mid pricemay

have arbitrages at the portfolio level, the Bid-Ask relaxes these feasible arbitrage

constraints given by all possible butterfly, and calendar spread contracts. These two

adjustments are

∀∆,∀T,C(K,T + ∆, σIV P,+,t(k))− C(Ke−r∆, T, σIV P,−,t(k)) ≥ 0,

C(K −∆, σIV P,+,t(k))− 2C(K, σIV P,−,t(k)) + C(K + ∆, σIV P,+,t(k)) > 0.

(4.5a)

(4.5b)
10With flexibility on the way the downside transform is implemented.
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4.2.2.2 Modelling the Bid-Ask Wings Curvature

One of the innovations of the gSVI [12] when compared to the SVI [51] is the adjust-

ment of the Wings using a change of variable or downside transform: see equation

(2.2.3.1). Let us call the parameter which aim is to adjust the wings of the midprice

by βo,τ . Someone wanting to sell an option would want to sell it at a higher price

than the midprice so the dampening effect effect of the bid (β+,τ ) should be smaller

than the one of the mid therefore β+,τ < βo,τ . Using the same logic, the dampening

of the ask price should be βo,τ < β−,τ . The constraints on the β’s is given by

1 < β+,τ < βo,τ < β−,τ . (4.6)

In order to control the addition of these new parameters we incorporate the ψ pa-

rameter, mentioned in equation (4.7), to account for the symmetry for this Bid Ask

adjustment. Figure 4.9 illustrates how the variable ψ affects the β parameters and

hence the Bid Ask price curvatures.

β+,τ = (1− ψτ )βo,τ ,
β−,τ = (1 + ψτ )βo,τ .

(4.7)
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Figure 4.9: Impact of a change in the value of parameter ψ in the IVP model

Remark Note that the main reason why this discrepancy exists between the ATM

Bid-Ask spread and the rest of the implied volatility surface is mainly due to the

supply and demand. Indeed, usually exotic options trader try to hedge against the
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different risk factors. The delta11 of an option consists of a linear position of the

underlier but the vega12 of an option is only accessed through vanilla options which

liquidity is the highest around the ATM and the further you get from this ATM, the

less the economical need for these partical points.

4.2.2.3 Modelling the Bid-Ask ATM Spread

The curvature adjustment via the β parameters models the idea that the further away

the option is from the ATM, the bigger the Bid Ask spread, however this change of

variable yield a Bid Ask spread of 0 ATM. It is therefore necessary to adjust for this

issue by adding an ATM bid ask factor that will take the form of min (aτ/2, ατ ),

where ατ is the tentative “ATM Bid Ask half spread” but adjusted if its value is such

that it will be higher that the lowest point of the implied vol. Equation (4.4e) models

this concepts and Figure 4.10 illustrates how the variable α adjusts the ATM Bid Ask

spread.

Remark There are ways to improve this idea, especially if we assume that the implied

volatility behaves like a log-normal distribution around 0 but the benefit to complexity

ratio was optimal this way.
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Figure 4.10: Impact of a change in the value of parameter α in the IVP model

11∂V/∂x.
12∂V/∂σ.
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Figure 4.11: Impact of a change in the value of parameter p in the IVP model

4.2.2.4 Position Size

The functions α(p) (Figure 4.10) and ψ(p) (Figure 4.9) model the ATM and wing

curvature of the Bid-Ask keeping in mind the idea that the bigger the position size

the bigger the market impact and hence the wider the Bid-Ask. This market impact

parameter is controlled by p (Figure 4.11). Finally, a couple of additional parameters

model the elasticity of the liquidity: ηψ (Figure 4.12) and ηα (Figure 4.13).
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Figure 4.12: Impact of a change in the value of parameter ηψ in the IVP model
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Figure 4.13: Impact of a change in the value of parameter ηα in the IVP model

Remark Note that during the writing of the thesis, the objective was to improve the

status quo while not losing any elements of it. Mainly the original point of our model

(gSVI and especially IVP) is its ability to model the data supported sublinearity of

the wings as well as add a liquidity element. None of the current models incorporates

these two elements. On top of this argument, there is nothing that the SVI can model

that the IVP cannot and this by construction.

4.3 De-arbitraging with the IVP parametrization

We finished chapter 3 with Figure 3.4 which we explained to be an intuitive approach

to de-arbitraging. Equation (4.8) formalize the idea more mathematically. Namely,

we try to find the shortest distances between the input volatility grids and its closest

arbitrage free mirror, σ̃t(τ, d), spanned by the IVP parameters subject to the Call

spread and Calendar spread Conditions of equations (4.8b) and (4.8c) respectively.

solve: σ̂t(τ, d) = arg min︸ ︷︷ ︸
σ̃t(τ,d)

∑

τ

∑

d

[
C
(
σi,t(τ, d)

)
− C

(
σ̃t(τ, d)

)]2

subject to: ∀τ and ∀K
C
(
K −∆, σ0(K −∆, τ)

)
− C

(
K, σ0(K, τ)

)
≥ 0

C
(
K, τ + ∆, σ0(K, τ + ∆)

)
− C

(
Ke−r∆, σ0(Ke−r∆, τ)

)
≥ 0

(4.8a)

(4.8b)

(4.8c)
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The constraints of this optimization problem can be lifted by incorporating the con-

straints in the objective function directly. More specifically, by setting

σ̂t(τ, d) = arg min
∑

τ

∑

d

[σi,t(τ, d)− σ̃t(τ, d)]2 +K(CS1(K, τ) + CS2(K, τ)) (4.9)

where K is the constraint scalar13. We need to incorporate the constraints into the

objective function, and therefore have for the butterfly (or call spread) constraint

CS1(K, τ) =
∣∣∣C
(
K −∆, σ0(K −∆, τ)

)
− C

(
K, σ0(K, τ)

)∣∣∣× 1B, (4.10)

where the function 1B = 1 if C
(
K −∆, σ0(K −∆, τ)

)
− C

(
K, σ0(K, τ)

)
> 0 and 0

otherwise. For the calendar spread constraint, we have

CS2(K, τ) =
∣∣∣C
(
K, τ + ∆, σ0(K, τ + ∆)

)
− C

(
Ke−r∆, σ0(Ke−r∆, τ)

)∣∣∣× 1C. (4.11)

where 1C = 1 if C
(
K, τ + ∆, σ0(K, τ + ∆)

)
− C

(
Ke−r∆, σ0(Ke−r∆, τ)

)
> 1 and 0

otherwise. These indicator function enforce directly, in the objective function, the

relevant constraints.

4.4 Updating Volatility Data

4.4.1 Reclaiming Data Science’s Intuitive Meaning

Data Science is more known for the methodologies associated to understanding data

[112] than extracting information from structured data [113]. However, we propose to

add few methodologies associated to restructuring unstructured data in this section.

The importance of the latter is critical in any mathematical analysis and the data is

useless on its own (without the classic tools in Mathematical Finance).

4.4.2 Updating Volatility from Listed Markets

In the of presence of a listed market14, in which all the log moneynesses are visible

across rolling contracts, proxying the unknown points is done in two steps. We first

use the falling variance formula15 to provide us with a possible volatility smile and we

pick the relevant moneyness on that smile. However, the latter needs to be checked

for coherence and the surface needs to go through a de-arbitraging methodology,

provided by equation (4.8), in order to reach the closest arbitrage free volatility.

13A large enough number to make sure the constraints are respected, but not too large to create
numerical instabilities.

14Note that this is to contrast with over the counter (OTC) markets.
15Equation (3.23).
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4.4.3 Updating Volatility outside Listed Markets

There are few ways to see how the updating function should be defined in the absence

of a listed market. If we take a naive lagging approach we can certainly update

the volatility surface point-wise. For instance, let Σt be the normalized matrix as

explained from Subsection 1.2.2.3 and let σi,jt be the jth strike of the ith tenor of Σt,

then the isolated arrival σi,jt+ε overrides Σt by copying all but the σi,jt ’s element while

substituting the latter with σi,jt+ε. This methodology is commonly used in the market

but the lack of liquidity in uncommonly traded moneynesses and the asynchronicity

of the trades in these moneynesses means that the volatility surface that is recorded

and stored by the end of the day is one made of apples and oranges. This is best seen

with fluctuations in the wings that are not coherent if the data had arrived at the

same time. Figure 4.6 illustrates this latter point16.

4.4.4 The Midprice Smoothing Approach

Though not perfect, this search and replace process can be enhanced by a smoothing

stage which consists of making the resulting implied volatility more realistic. The

first option available is to apply a simple de-arbitraging methodology on the mid

price. In algorithm (2) the function dearbMid achieves this objective. This widely

used methodology may in fact re-position the newly arrived data σt+ε(i, j) back to

its old position σt(i, j). The process can be enhanced by adding a time kernel to put

more weight on the points that are most recent.

4.4.4.1 The Midprice Constrained Smoothing Approach

One way to address the limitation described by the dearbMid algorithm (2) is to add

a constraint to equation (4.8a) to get equation (4.12)

Σ̂mid,t = arg min︸ ︷︷ ︸
Σt

|Cτ |∑

q=1

|Ck|∑

p=1

[σt(p, q)− σ̃t(p, q)]2 +K (CS1 + CS2) , (4.12)

where Σ̂mid,t represents the collections of modified implied volatility midprice money-

ness and tenors in Cτ and Ck. CS1 and CS2 are as before, the calendar and butterfly

conditions as defined by Equations (3.23) and (3.15) and finally K is a scalar. This

penalizes potential moves from the newly arrived point σt(i, j). In algorithm (2) the

function dearbAroundPointAndPropagade achieves this objective.

16It also illustrates a point about the SVI and the sub-linearity of the wings which we will delve
on more in section 4.2.1
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Algorithm 2: Update Implied Volatility

Input: Current implied volatility Σt and new arrived data σi,jt+ε.
Output: Updated implied volatility Σt+ε.

. Make a copy implied vol
Σt+ε ← Σt

. Search and replace
for p = 1 to |Cτ | do

for q = 1 to |Ck| do
if (i = p)||(j = q) then

σp,qt+ε ← σi,jt+ε

. Smoothing stage
if F =“dearbMid” then

We de-arb the mid implied volatility disregarding liquidity;
Σt+ε ←dearbMid(Σt+ε)

else if F =“dearbLiquidity” then
We de-arb the mid implied volatility focusing on the liquidity parameters;
Σt+ε ←dearbLiquidity(Σt+ε)

else if F =“dearbAroundPointAndPropagade” then

We de-arb while making sure σi,jt+ε is not modified during smoothing;
Σt+ε ←dearbAroundPointAndPropagade(Σt+ε)

else if F =“EducatedGuessForecast” then
We use Generalized Bumping methodology to modify the implied vol;
Σt+ε ←EducatedGuessForecast(Σt+ε)

else
Default setting: no smoothing;
Σt+ε ← Σt+ε

. Return state
return Σt+ε

4.4.4.2 The Liquidity Adjustment Smoothing Approach

It can however be questionable to temper with data points that have been observed

just recently on the basis of one new point. One conservative way to adjust the

implied volatility as a market maker is to include the liquidity model introduced in

Section 4 and only adjust the liquidity components in such a way as to comfortably

envelop all the points, like it is the case with the constraints of equation (4.13)

Σ̂liq,t = arg min︸ ︷︷ ︸
αq ,ψq

|Cτ |∑

q=1

|Ck|∑

p=1

[σt(p, q)− σ̃t(p, q)]2 +K1(CS1 + CS2), (4.13)

where Σ̂liq,t represents the collections of modified implied volatility liquidity parame-

ters of all tenors with the corresponding liquidity adjusted arbitrage conditions (Equa-
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tions (4.5b) and (4.5a). In algorithm (2) the function dearbLiquidity achieves this

objective

Remark We recommend reading chapter 3 concurrently.

4.4.4.3 The Forecasting Smoothing Approach

Let us recall briefly the Principal Component Analysis (PCA) methodology. Let

M = (Xij) ∈ Rm×n be a matrix of explanatory variables, M̄ is its centered version

and M̃ is its reduced and centered version such that

M̄ =



X1,1 − X̄1 · · · X1,N − X̄N

...
. . .

...
XK,1 − X̄1 · · · XK,N − X̄N


and M̃ =




X1,1−X̄1

σ(X1)
· · · X1,N−X̄N

σ(XN )
...

. . .
...

XK,1−X̄1

σ(X1)
· · · XK,N−X̄N

σ(XN )


.

We look for the vector u such that the projection of the cloud to u has maximal

variance. This projection of X on u is denoted by πu(M̃) = M̃ · u and its variance

πu(M̃)T · πu(M̃) = uT · M̃T · M̃︸ ︷︷ ︸
C

·u. We also have C diagonalizable. We call P the

change of basis and ∆ = Diag(λ1, . . . , λN) the diagonal matrix made of its spectrum

πu(M̃)T · πu(M̃) = uTP T∆Pu = (Pu)T∆ (Pu)︸ ︷︷ ︸
v

.

The values (λ1, . . . , λN) of ∆’s diagonal are classified by decreasing order. The unit

vector u which maximizes vT∆v is an eigenvector of C associated to the eigenvalue

λ1, we then have vT · ∆ · v = λ1. The proof is done by setting up the optimization

by constraint method17. The same methodology is used in order to find the other

eigenvalues such that λ1 ≤ λ2 ≤ · · · ≤ λN . This latter observation allows us to

quantify in terms of proportion the combined explanatory power of the first ith com-

ponents λ1+λ2+···+λi
λ1+λ2+···+λN . The PCA suffers from several limitations such as the fact that

it relies on linear assumptions, it relies on orthogonal transformations of the original

variables, directions with largest variance are assumed to be the most important, and

finally PCA is not scale invariant.

Remark In Section 4 we will see methods surrounding the parametrization of the

implied volatility surface and the reader may stop here and read the relevant chapter

before proceeding.

17in which we maximize the variance projected onto u (under the constraint that its norm should
be 1 and via the Lagrange multiplier α: L(u, α) = uT · C · u− α(uTu− 1).
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Consistent with the results of the SABR model [110], a PCA analysis on the risk

factors (per tenors) of the implied volatility reveals that the three most important

components explaining the dynamics of the implied volatility are, in decreasing im-

portance, the “ATM Vol”, the “Vol of Vol” and the “Skew”. The most important

factor that explains the shape of the implied volatility is therefore the overall volatil-

ity level. This is the main rationale behind the proposed methodology. indeed the

last proposed adjustment is to take simply the first element in explaining the dynam-

ics of the implied volatility by applying a proportional move equal to σt+ε(i,j)
σt(i,j)

to the

remainder of the point. In algorithm (2), F represents the switching flag between the

methodologies described in this section.

Remark Considering the benefits to complexity ratio, one may choose to use differ-

ent smoothing algorithms depending on whether one is working within a trading desk,

a risk methodology desk in a bank or within a CCP as quant researcher dealing with

margin calls. Indeed, within a trading desk, it is important that the combination of

products sold to the counter-party is such that, overall the trader is not arbitrageable.

With this in mind “dearbLiquidity” will be the smoothing algorithm used in this case.

Within a risk methodology desk, the quants usually work with the mid prices and

therefore a “dearbMid” smoothing algorithm is recommended.

4.5 Proxying Volatility with Sparse Data

One of the consequences of Big Data’s arrival is that it helped showcase and highlight

the limitations of some the classic financial mathematics models (e.g. Figure 4.7).

Remark Note that, to some extent, limiting assumptions in the branch of financial

mathematics were already well documented. We can point here [94] that Fama [114],

Samuelson [115] and Mandelbrot [116] had all raised concerns around related concepts

(such as fat tails) more than half a century ago. The whole development of the Levy

Process is centered around the limitations of Bachelier’s assumptions [37]. However,

the data associated to algorithmic trading (e.g. Figure 4.7) is new. Fama, Samuelson,

Mandelbrot or Paul Levy all had access to low frequency data which have certainly

guided their research on a path that would perhaps be different had they gotten access

to the kind of interactions that are taking place in figure 4.7 or on the options market.

The arrival of BD, paradoxically, exposed the lack of data in certain circumstances

such as for example in certain strikes and moneynesses of illiquid option contracts

and therefore generated the need to develop the data science branch called proxying.
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We will take a look at a proposed methodology for proxying illiquid vanilla options

in this section.

4.5.1 Implied Volatility and Risk Factor Decomposition

First, let us note that proxying only makes sense if there is no reliable data. But

proxying carries the risk of being wrong. Decomposing a closely related products

into risk factors is a necessary first step. The way we propose to decompose the

volatility surface is through the IVP18 model presented by equations (4.3) and (4.4).

Each of the resulting risk factors will then be used to fill in the missing information

appropriately.

4.5.2 Proxying and Economic Factors

When choosing a proxy for missing data there are several aspects one must take into

consideration.

4.5.2.1 Asset Class

First, it is important to note that the asset class (e.g. equities, commodities, rates,

FX, etc) is an important driver for the shape of the risk factors. For example in

commodities you have the skew parameter which is opposite to the one of the equities

market19. Indeed people in commodities are afraid of prices going up (for example,

because of a drought in the agricultural markets) but in equities people are more

afraid of bankruptcies. For this reason calls are bought at a premium compared to

puts in commodities and the reverse is true in equities. The choice of the proxy,

when it comes to the ρ parameter20, can therefore be a critical factor when it comes

to proxying a product within a specific asset class. For example looking forward

proxying skew for an illiquid single stocks in equities with commodities data will be

a bad idea. For an illiquid single stock (for which ATM is available), it would be

better to proxy skew with the ρ parameter of the S&P500 than the ρ parameter of

the Goldman Sachs Commodities index.

18The formal introduction to the model is done in Section 4.
19With the exception of oil which skew behaves like in the equities market.
20Captures the imbalance in price between the put compared to the call prices: used in the IVP

model introduced in section 4.2.
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4.5.2.2 Economic sector

Whether you are working within equities or commodities you can always find ways

to fine tune how close the products that needs to be proxied is to the subgroups

composing this asset class. For example in equities you could group the underliers

into pharmaceuticals or electronics groups. In commodities you could further group

the asset class into economic sector like energy, agricultural or metals. For the latter

two, the sector can be further decomposed into subgroups21. You can always find

ways to target your proxy when you have the choice. These different markets have

very different volatility of volatilities. For example commodities are famous for being

more volatile than the equities markets. Parameters like the b or the a in the IVP

model22 will be very different in these two asset classes. The process of choose the

right proxy is as much associated to economics than it is with mathematics.

4.5.2.3 Product Diffusion Types

We have shown in Section 3.1.5 that the derivative markets can be priced following

different diffusion-based processes. Recall that the log-normal diffusion is assumed

from the equities Market, the normal diffusion for the rates market and the Garman-

Kohlhagen for the FX markets. Depending on the asset class, the prospect of the

long term mean reversion of the underlier may change. For instance, even though

traders on the rates market understand the limitations of the Black-Scholes model,

the linearity of the wings can become increasingly a limiting factor for OTM options.

In these markets the control, and therefore the proxy, for the β parameter in the IVP

model becomes increasingly important.

4.5.2.4 Geographical Location

Geographical location is also another component to keep in mind. For instance,

emerging markets have a very different risk profile than the market of developed

countries.

4.5.2.5 Liquidity Profile & Size of the Company

For liquidity related parameters we suggest to take a look at the volume traded and

depth of similar products. For example; indices are traded often with a deep order

book but single stocks less.

21E.g., metals can be divided into precious and industrial metals, and agricultural can be divided
into grains livestock etc.

22From section 4.2.
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4.5.2.6 Linear Interpolation & Parameters Surrounding Tenors

One other way of proxying parameters of an unobserved tenors is to take the linear

interpolation of these specific tenors.

Remark The de-arbitraging methodology still needs to be implemented after prox-

ying.

4.5.3 Sequential Bootstrapping

4.5.3.1 Definition

In this subsection we propose a sequential bootstrapping solution. First let us give a

definition and go through couple of remarks to help us understand the methodology.

Definition (Sequential bootstrapping): let χt = {at, bt, ρt,mt, σt, βt} ∪ {ψ0,t, α0,t, ηψ,t,

ηα,t} where t ∈ Cτ the set of target IVS induced by the incomplete original point data

σ̃(p, q) (where q ∈ C̃k ∈ Ck, p ∈ C̃τ ∈ Cτ ). Similarly let us call the set of proxies

χp,t = {ap,t, bp,t, ρp,t,mp,t, σp,t, βp,t} ∪ {ψ0,p,t, α0,p,t, ηψ,p,t, ηα,p,t}. We construct the op-

timization by constraint with the aim to construct a volatility surface which would

go through every known σ̃(p, q) and recover the remaining point using χp,t for the

remaining points and subject to the usual arbitrage constraints of Equations (3.15)

and (3.23).

Remark The set of proxies χp,t does not necessarily need to come from the same

underlier. For example, assume we have three stocks A, B and C. Stock C is missing

both bo,t and ρo,t in its set χo,t. Stock C is very close in terms of market fundamentals

to B (e.g. stocks with the same sector and geographical location) and is close to C but

further away in terms of these same fundamentals (e.g. stocks with the same sector

but maybe different geographical location). However stock B has also a missing ρo,t

but it has bo,t. The completed set χp,t for C will consist of the bo,t of B and the ρo,t

from A. For the sake of keeping the mathematical specifications under control, p in

χp,t, refers to the closest available proxied risk factor.

4.5.3.2 Proxying Missing IVP Factors & Priorities

There are no set methodologies that we are aware off when it comes to proxying.

We tried to summaries the main points developed in Section 4.5.2 in the Table 4.1,

bearing in mind that these are qualitative suggestions.
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Missing IVP Risk Factor Proxying priorities

a usually given with the parameters σ and m

b AOTSPST, GL, PTES, AC

ρ AOTSPST, PT, AC, ES

m usually given with the parameters a and σ

σ usually given with the parameters σ and m

β AOTSPST, PDT

α0 LPSOTC, AOTSPST

ψ0 LPSOTC, AOTSPST

ηα LPSOTC, AOTSPST

ηψ LPSOTC, AOTSPST

Table 4.1: Proposed Proxying Missing Factor to Proxying priorities hash table

4.5.3.3 Post Proxy Selection & Smoothing

Once the proxies have been selected, one still needs to make sure that the resulting

implied volatility surface goes through the points where data is available. We also

need to ensure that the newly constructed IV is arbitrage free. We will refer the

reader here to Section 3 for the theory and description behind our de-arbitraging

methodology. The points addressed in that Section 3 will be assumed as understood

in the following paragraphs.

4.5.3.4 Optimization by Constraint for Sparse Data

We will now formalize the optimization problem where the aim is to calibrate the

set χt with χp,t and σ̃t(p, q) by minimizing the loss of current information. Namely,

if we set Σt = ∪|Ck|q=1 ∪|C
τ |

p=1 σt(p, q) the set of implied volatility points generated by

the parametrization χt, its calibration will be given by equation (4.14). Note that

equation (4.14) is the same as the classic de-arbitraging methodology using the IVP

parameters but it is really the addition of the last constraint controlled by K3 that
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allows for the appropriate calibration.

Σ̂t = arg min︸ ︷︷ ︸
Σt

|Cτ |∑

q=1

|Ck|∑

p=1

[σt(p, q)− σp,t(p, q)]2

+K1(CS1 + CS2) +K2[σt(i, j)− σ̃t(i, j)]2 +K3

10∑

i=1

[χp,t(i)− χt(i)]2

(4.14a)

(4.14b)

with K1 ≈ K2 > K3 > 0 meant to represent the hierarchy in the optimization process.

As we have seen previously, we first make sure that the result IVP does not have any

arbitrage. Then we make sure that the IVP goes through all the points observed and

finally we try to be as close as possible to the selected proxies. The reason why we

set K1 ≈ K2 is that it is assumed that the points observed are mutually arbitrage free

and that, therefore, we will never be faced with the case in which we need to select

either an arbitrage free IV or one that goes through all the observed points.

Remark Assume the degree of certainty or comfort in the choice of proxies is different

(e.g. you work in equities and you are definitively comfortable that the ρ parameter

should be taken from an equity index but you are less sure of the value of parameter

β). How would you modify the constraints in the sub-equation (4.14b) in such a way

so as to engineer preferences on the choice of the proxies? Note that in sub-equation

(4.14b) the 3rd term K3

∑10
i=1[χp,t(i)− χt(i)]2 is the term engineering the preferences

in the proxies. An additional layer of granularity can be engineered is the choice of

the constants, namely K3

∑10
i=1[χp,t(i)−χt(i)]2 would become in sub-equation (4.14b)

K̃3

∑10
i=1K3,i[χp,t(i)− χt(i)]2 with K3 ≥ K̃3K3i.

4.5.4 Tracking Volatility & Resampling Risk Factors

Provided the arrival of implied volatility data is always incomplete, we can interpret

this arrival in terms of a change in one of the risk factors. This make the IVP an ideal

candidate to track the whole surface using a particle filter23 on the different risk factor

scenarios. With this objective in mind, we need to define the scenario’s likelihood

function. We must first define the arrival and the weighting process associated to

the arrival time. Let the set of IVP parameters which best fit our implied volatility

surface be

χit = {χM,i
t ∪ χL,it }, (4.15)

23Please see chapter 8 for a literature review.
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where i ∈ Cτ , χit = {ait, bit, ρit,mi
t, σ

i
t, β

i
t} and χM,i

t = {ψi0,t, αi0,t, ηiψ,t, ηiα,t} represent the

mid-IV and liquidity parameters of each pillar tenors. In addition, denote by σ̇(p, q)

(where q ∈ Ck and p ∈ Cτ ) the most recent data and the array of weights. We must

also rank the risk factors from most likely to least likely. There are several methods

that can be used to perform the latter task, we recommend a stepwise regression [117]

based on historical data as it is simple enough but recognize that other methods could

be potentially better [118].

Definition (Risk Factor Importance): We define λ0, the r224 contribution of a

pointwise change of the IVS, λp = {λa, λb, λρ, λm, λσ, λβ} the set of ranked r-squared

contribution of each of the 6 parameters ∈ χit = {ait, bit, ρit,mi
t, σ

i
t, β

i
t} where i ∈ Cτ

representing the mid-IV and liquidity parameters of each pillar tenors. We denote

λs = {λ(a,b), λ(a,ρ), . . . , λ(m,β)} the set of unique pairwise parameter changes. Note

that there really is one set of pairwise parameters that interests us (the combine

change in skew and vol of vol). We define the subset of λp ∪ λ(b,ρ) of all accepted

scenarios:

λ = {λ0, λa, λb, λρ, λm, λσ, λβ, λ(b,ρ)}. (4.16)

We define, in algorithm (3), H(·), the function that takes as input a uniform random

variable u ∼ U [0, 1] and returns the set of parameter(s) associated to λ.

Finally, we denote by N t
p the number of particles at time t. It always mean reverts

towards Np so we choose Np instead for convenience sake. When information about

a specific point, σd,τ , of the IVS has arrived we can assume that this change may be

isolated but this specific point propagates arbitrage free constraints on the IVS which

would otherwise remain constant (BPC)25. It could also correspond to a change in

“vol of vol” (the b parameter in the IVP model: Figure 4.2) BPC. It could correspond

to a change in “skew” (the ρ parameter in the IVP model: Figure 4.3) BPC. It could

correspond to an individual change of any other of IVP parameters. It could also

correspond to a multiple change of any of the IVP parameters (more specifically “spot-

vol”). The reason why mapping onto the IVP parameter is a good idea is because the

parameters of the IVP not only fit better than any parameterized model the market

observed prices but also its parameters map to easily understandable economical risk

factor like we have seen before. The sampling methodology will consist of changing

each parameters of the 3 sets of types of sampling. The first type of sampling is one

24Alternatively called the coefficient of determination, “r-squared” represents the proportion of
the variance explained by the model.

25We substitute this sentence in italic by BPC from now on
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Algorithm 3: Hash Function H(λ)

Input: λ
Output: a set of parameter(s) is returned
u ∼ U

[
0, λ0 + λa + λb + λρ + λm + λσ + λβ + λ(b,ρ)

]

if 0 ≤ u < λ0 then
return (0)

else if λ0 ≤ u < λa then
return (a)

else if λa ≤ u < λb then
return (b)

else if λb ≤ u < λρ then
return (ρ)

else if λρ ≤ u < λm then
return (m)

else if λm ≤ u < λσ then
return (σ)

else if λσ ≤ u < λβ then
return (β)

else if λβ ≤ u < λb,ρ then
return (b, ρ)

else
return ERROR

in which we only move that new point that just arrived. We call this Sample 0P26.

The second type consists of sampling 1 parameter of the IVP to explain the new data

to map the change of price by a change of the economic climate. For example, the

ATM is the point which arrived the most recently, then our PF will assume with one

of its scenarios that this is due to a change in Vol of Vol (and therefore) all the point

of the implied volatility should be adjusted accordingly. We denote by this sampling

Sample 1P. The third type consists of assuming that the point change is the result

of two economic factor happening at the same time. For example, imagine you are

assigned the task to mark an in the money call for wheat and the economical climate

is that there are political tension with Russia27 (therefore Vol of Vol increases) and

that at the same time we have information that there are possible droughts that are

incoming (there is a change of skew). This leads our PF to assume with one of its

scenarios that this is due to a change in Vol of Vol and Skew at the same time. We

26Note that we could have called this one Sample 1P with the “P” meaning “point” but this could
be also interpreted as “parameter” which we use for the second type of sampling. Therefore in order
to limit confusion we preferred calling it Sample 0P for 0 parameters

27Russia is one of the first exporters of wheat
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denote this sampling Sample 2P.

Sample0P:

x
(i)
k = arg min

σ̃t(τ,d)

∑
τ

∑
d[C(σt(τ, d))− C(σ̃t(τ, d))]2

subject to:

∀d ∈ Ck, CB,d,τ1 < CB,d,τ2

∀τ ∈ Cτ , CC,d,τ1 < CC,d,τ1

σ̂(p, q) = σ̇(p, q)
1|ait−ãit|>0 + 1|bit−b̃it|>0 + 1|ρit−ρ̃it|>0 + 1|mit−m̃it|>0+

1|σit−σ̃it|>0 + 1|βit−β̃it |>0 = 0

Sample1P:

x
(i)
k = arg min

σ̃t(τ,d)

∑
τ

∑
d[C(σt(τ, d))− C(σ̃H(λ),t(τ, d))]2

subject to:

∀d ∈ Ck, CB,d,τ1 < CB,d,τ2

∀τ ∈ Cτ , CC,d,τ1 < CC,d,τ1

σ̂(p, q) = σ̇(p, q)
1|ait−ãit|>0 + 1|bit−b̃it|>0 + 1|ρit−ρ̃it|>0 + 1|mit−m̃it|>0 + 1|σit−σ̃it|>0 + 1|βit−β̃it |>0 = 1

C
(
K, σ0(K, τ)

)
< C

(
K −∆, σ0(K −∆, τ)

)
,

C
(
Ke−r∆, σ0(Ke−r∆, τ)

)
< C

(
K, τ + ∆, σ0(K, τ + ∆)

)

Sample2P:

x
(i)
k = arg min

σ̃t(τ,d)

∑
τ

∑
d[C(σt(τ, d))− C(σ̃H(λ),t(τ, d))]2

subject to:

∀d ∈ Ck, CB,d,τ1 < CB,d,τ2

∀τ ∈ Cτ , CC,d,τ1 < CC,d,τ1

σ̂(p, q) = σ̇(p, q)
1|ait−ãit|>0 + 1|mit−m̃it|>0 + 1|σit−σ̃it|>0 + 1|βit−β̃it |>0 = 0

1|bit−b̃it|>0 + 1|ρit−ρ̃it|>0 = 2

C
(
K, σ0(K, τ)

)
< C

(
K −∆, σ0(K −∆, τ)

)
,

C
(
Ke−r∆, σ0(Ke−r∆, τ)

)
< C

(
K, τ + ∆, σ0(K, τ + ∆)

)

Remark Note that we could employ the same methodology with three or more of the

parameters but usually higher order Greeks beyond the second-order are considered

negligible on the market and therefore it is not worth adding complexity as the ratio

of the benefits over the latter does not invite such extension. However, for the sake

of rigour, one may decide to apply higher order sampling as an exercise. We could

very well imagine scenarios in which the parameters of different tenors react together

at the same extent but the de-arbitraging methodology would partially take care of

this specific additional type of sampling. We also thought that the methodology was
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complex enough the way it is currently proposed.

4.6 Statistical Arbitrage for Vanilla Options

4.6.1 Point-wise Approach

One natural way to describe an implied volatility σt(k, τ) of price Ct(Ke−r∆, T ) at

time t of strike k and tenor τ where k and τ are observable pillar points is to do it as

a function of the adjacent 4 points as seen by Figure 3.4 or by Table 4.2.

Remark For the sake of making the notation a bit more intuitive, we have used the

notation from Table 4.2 with where equation (4.17) provides the relevant equivalences.

P i−1,j
t

P i,j−1
t P i,j

t P i,j+1
t

P i+1,j
t

P i−1,j
t := Ct(Ke−r2∆, T −∆)

P i,j−1
t := Ct(K −∆)e−r∆, T )

P i,j
t := Ct(Ke−r∆, T )

P i,j+1
t := Ct(K + ∆)e−r∆, T )

P i+1,j
t := Ct(K,T + ∆)

(4.17a)

(4.17b)

(4.17c)

(4.17d)

(4.17e)

Table 4.2: Implied Volatility Grid and Formula

We aim at studying the Bayesian probability problem of equation (4.18).

p
(
Pi,j − l(Pi,j)

∣∣∣l(Pi,j), l(Pi−1,j), l(Pi,j−1), l(Pi,j+1), l(Pi+1,j)
)

(4.18)

where, in the discrete space, P = Pτ∈[1,t] and l represents the lag inducing function

such that l(Pt+1) = (Pt).

4.6.2 Simplified IVP & Closed Form Calibration

We employ the simplification suggested in the previous section to show how the

closed-form calibration is made easier by choosing the parameters a, b and ρ. More

specifically, we show how the calibration is done on the mid-IV parameters in equation

(4.19) and how it is done on the liquidity parameters with equation (4.21). Let us

however prior to that formalize the definition of the Simplified IVP (SIVP).

Definition (Simplified IVP): Let χ = {χM , χL} with χM = {aτ , bτ , ρτ ,mτ} and

χL = {ατ , ψτ} a given parameter set for the function f : R+,∗ ×R+ × [−1,+1]×R×
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R+ × R+ −→ R+,∗, the Simplified IVP (SIVP) is given by

σ2
IV P,o,τ (k) = aτ + bτ

[
ρτ (k −mτ ) +

√
(k −mτ )

2

]
,

σ2
IV P,±,τ (k) = aτ + bτ

[
ρτ (z±,τ −mτ ) +

√
(z±,τ −mτ )

2

]
± ατ ,

z±,τ = k[1± ψτ ].

(4.19a)

(4.19b)

(4.19c)

Proposition 4.6.1 (Simplified IVP Mid’s Closed-form Calibration) The sim-

plified IVP model’s midprice presented by equation (4.19a) can be calibrated in closed

form using equation 4.20.

m̂τ = arg min︸ ︷︷ ︸
k

σ2
o,τ (k) ,

âτ = σ2
o,τ (m̂τ ) ,

b̂τ =
σ2
o,τ (m̂τ + k) + σ2

o,τ (m̂τ − k)− 2âτ

2|k| ,

ρ̂τ =
σ2
o,τ (m̂τ + k)− σ2

o,τ (m̂τ − k)

2b̂τk
.

(4.20a)

(4.20b)

(4.20c)

(4.20d)

Proof Set m̂τ = arg min︸ ︷︷ ︸
k

σ2
o,τ (k), we know that b̂τ ≥ 0, therefore âτ = σ2

o,τ (m̂τ ). Now

choose 2 symmetrical points around the vertical axis passing through the minimum

point, use σ2
o,τ (k) = aτ + bτ

(
ρτ (k − m̂τ ) + |k − m̂τ |

)
, we have an equation with two

unknowns and two observation that allow us to solve the system.

Proposition 4.6.2 (Simplified IVP Bid-Ask spread closed form calibration)

The simplified IVP model’s Bid-Ask presented by equation (4.19b) can be calibrated

in closed form using equations 4.21.

α̂τ = σ2
+,τ (m̂τ )− âτ + m̂τ b̂τ ρ̂τ + |m̂τ |b̂τ ,

ψ̂τ =
σ2

+,τ (m̂τ ) + σ2
−,τ (m̂τ )− 2âτ

2|m̂τ |b̂τ
.

(4.21a)

(4.21b)

Proof Using the results from proposition 4.6.1, we estimate âτ , b̂τ , ρ̂τ and m̂τ . Now

we select a couple of reliable observed points and plug into the IVP equation to

obtain σ2
IV P,±,τ (k) = âτ + b̂τ×

[
ρ̂τ (k[1± ψτ ]− m̂τ ) +

√
(k[1± ψτ ]− m̂τ )

2

]
±ατ . We

now have a system of two equations with two unknowns that can be solved in a

straightfoward fashion.
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4.6.2.1 Formal Bayesian Set-up

We aim at studying the following probability distribution function (4.22).

p
(
Ωτ − l(Ωτ )

∣∣∣l(ΩL(τ)), l(Ωl(τ))
)

(4.22)

where, in the discrete space, Ωτ = {mτ,t, aτ,t, bτ,t, ρτ,t} with τ ∈ ON, 1W, 2W, 1M,

3M, 6M, 1Y, 2Y28, t ∈ [1, T ] and l represents the lag inducing function such that

l(mτ,t+1) = (mτ,t), ml(ON),t+1 = m1W,t . . . ml(1Y),t+1 = (m2Y,t) and vice versa for the

mL(1W),t+1 = (mON,t) . . . mL(2Y),t+1 = (m1Y,t).

Remark One of the trade-offs in reducing the number of points of interest (three

in this example) is that with a higher number of parameters we can obtain several

combinations of parameters which may fit the three points (Figure 4.14). One may

show that a combination of a, b, σ from equation (4.3) may fit these three points in

different ways. This is the reason why we need to limit our strikes of interest (on

ln(F/K)
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Figure 4.14: Sets of Fixed Points Modeled by Different Sets of IVP Parameters

which we ultimately trade) to three available highly liquid points: the ATM and a

couple more at ±x strikes around the ATM.

We have seen in chapter 2 examples of mean reverting stochastic processes and we

have seen in this chapter potentially mean reverting parameters. However, most

risk systems assume normality or log-normality, therefore symmetry in the forecasted

distribution, improper for these complicated risk factors. We propose in the next

chapter a methodology to address this issue using clustering methodologies.
28Arbitrary, but usually tenor pillars in most asset classes.
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Chapter 5

Clustering for Distribution &
Regime Change Forecasting

We have seen in chapter 2 an example of mean reverting stochastic process. However,

most risk systems assume normality or log-normality in the distribution of the under-

lying variable. Irrespective of whether we are dealing with short term interest rates or

complex implied volatility risk factors, both express some form of mean-reversion. In

this section we show how to solve this issue via clustering, as a simple enhancement

(rather than an opposition) of classic stochastic models from financial mathematics.

Taking a general approach, we discuss how these clustering techniques can help us

model complex risk factors such as for example the ones we introduced in Section 4

in a simple way. We also introduce in that effect the concept of Responsible VaR [7]

to illustrate our findings.

5.1 Introduction

5.1.1 Objectives

5.1.1.1 Leading vs Lagging Risk System

The current risk models available to practitioners are at best Responsive and therefore

lagging with respect to regime changes which means that one (or few depending on

the quantile level) risk breaches is needed for the mathematical model to be able

to adjust to the changing market condition. The first objective for this part is to

lay down the mathematical specification for a risk system that would be leading as

opposed to lagging.
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5.1.1.2 SDE vs Gaussian Processes

Domain knowledge can lead the wise Machine Learnist to replace a complex parame-

terized problem (with its design issues and limitations) with a Gaussian process that

is statistically more optimal and with higher potential for robustness. Such examples

exist in the literature [119] but none makes the connection with the world of stochas-

tic differential equations (SDE) as it pertains to quantitative finance and therefore to

the proxying examples we gave in the previous chapter.

5.1.2 Mathematical formulation of Anticipative VaR

In this section we formulate the concept of Anticipative VaR going from the intuitive

SDE approach and trying to extend what is considered the classic approach towards

what is more realistic. We take this approach to introduce intuitively the clustering

mirror approach in Section 5.3.

Definition (Responsive VaR): A VaR model that will be able to adapt, a poste-

riori, to increased volatility conditions will be referred to as Responsive VaR.

Definition (Anticipative VaR): A VaR model that will be able to adapt, a priori,

to increased volatility conditions will be referred to as Anticipative VaR.

Remark We have chosen to introduce the concept of clustering in the context of

Risk as opposed to trading as we felt that this simple distribution forecasting element

provided more innovation in the context of Risk than of Trading.

5.1.3 Agenda

In Section 5.2, we introduce the SDE approach. More specifically, using the gener-

alized diffusion model methodology, split in primary and secondary parameters, we

formalize a forecast distribution for risk purposes. We also summarize some of the

benefits associated with respect to the current used models. We also provide the

calibration methodology. In Section 5.3 we introduce the corresponding clustering

methodology and go through the benefits and calibration of the latter as well. In Sec-

tion 5.5 we go through an example while attempting to break few of the margining

misconceptions in the process. We introduce in this context the concept of Anticipa-

tive VaR.
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Remark The concept of VaR and Expected shortfall will be interchangeably used

in this thesis (though the formal definition is different) as the use of either of these

risk measures can be interchangeably used in the context of risk anticipativity and

risk responsibility. Also note that this section along with Section 5.6.4 in which we

lay down the foundations of Responsible VaR are sections that are interesting to read

concurrently.

5.2 The SDE Approach

5.2.1 Generalized Diffusion for Risk Factors Model

In order to expose some of the benefits of the SDE approach we first need to introduce

the Generalized Diffusion for Risk Factors model.

Definition (Generalized Diffusion for Risk Factors): We consider a risk factor

process (Xt)t≥0 with natural filtration (Ft)t≥0, and we define the forward risk factor

process (Ft)t≥0 by Ft := E(Xt|F0) generated by equation (5.1).

dXt = θt,τ (µt,τ −Xt)dt+ σXα
t (1−X2

t )βdWt, (5.1)

where θ is the rolling speed of mean reversion, µ is the long term rolling mean, α is the

positivity flag enforcer, β ∈ [−1,+1] is boundary flag enforcer and {⋃ dWi}ti=t−τ , the

set of historical deviation of your assumed model’s distribution (e.g. all the historical

absolute bumps1 in the context of a normal diffusion) and τ the tenor.

Remark In practice it may sometimes be worth tweaking the parameters to make

them more flexible for back-testing efficiency purposes. Equation (5.2) represents this

modified “backtesting friendly” version. With this in mind we introduce the alterna-

tive “Backtesting Friendly Generalized Diffusion for Risk Factors” which includes a

couple of additional parameters, κθ and κW aiming at allowing a more conservative

approach to risk by widening the distribution generated by equation (5.1).

Definition (Backtesting Friendly Generalized Diffusion for Risk Factors):

We consider a risk factor process (Xt)t≥0 with natural filtration (Ft)t≥0, and we define

the forward risk factor process (Ft)t≥0 by Ft := E(Xt|F0) generated by equation (5.2).

dXt =
θt
Sl,tθ

(µt −Xt)dt+ κWσX
α
t (1−X2

t )βdWt, (5.2)

1This is a jargon used sometimes in the industry to mean historical deviations from a model.
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where θ, the rolling speed of mean reversion, µ is the long term rolling mean, α in the

positivity flag enforcer, β ∈ [−1,+1] boundary flag enforcer and {⋃ dWi}ti=t−τ , the

set of historical deviation of your assumed model’s distribution (e.g. all the historical

absolute bumps in the context of a normal diffusion), with τ is the rolling window

length (e.g. three years), meaning that all of the primary parameters will now be

function of this rolling window, κθ is the speed of mean reversion dampener, κW is

the variance enhancer and µt function of a constant drift µ.

5.2.2 Calibration

As we will see in this section the calibration of the parameters of our bumping model

from equation (5.2) comes in 4 steps. First we need to choose our assumptions and

start with the model of (5.1) instead2. This is where we decide whether the risk factor

ought to be mean reverting or not, enforce positivity or not, enforce being in [−1,+1]

or not. Second we need to carefully choose the order of the sequential estimation

of the primary parameters. Third, we need to fine tune the backtest thanks to the

secondary parameters. And last we need to make the adjustment of the λ parameter

in the Responsible VaR equation (5.11f) to fit the manager’s risk appetite3.

5.2.2.1 Choice of Model Assumption

We recommend the following flags to be enforced according to the risk factor. For

any, assumed, non mean reverting random process which has to stay positive (e.g.

spot), in equation (5.1), set θ = 0, α = 1, β = 0 and we obtain the classic Log-Normal

model. For any volatility related mean reverting bumps where we enforce positivity,

set θ 6= 0, α = 1, β = 0. For interest rate assume, mean reverting bumps where we

do not enforce positivity (like in the case of the OU [120] diffusion), set θ 6= 0, α = 0,

β = 0. For assigning a diffusion on correlation itself or the ρ parameter in the SVI,

gSVI, IVP [100, 12, 13], that is mean reverting bumps bounded in [−1, 1], set θ 6= 0,

α = 0, β = 1. For assigning a diffusion on the minimum of the moneyness axis in

an implied Vol, we recommend a mean reverting process which can go negative and

positive, set θ = 0, α = 0, β = 0 and we obtain the model with an underlier following

the normal assumption. These choices for model assumption have been summarized

in Table 5.1.

2We assume that κθ = κW = 1.
3We see this step more in details in Section 5.6.4.
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Distribution θ α β Risk Factor

Normal = 0 = 0 = 0 Non Mean reverting Spread

Log-Normal = 0 = 1 = 0 Equity

CIR-like > 0 = 1 = 0 Positive Rates

OU Process > 0 = 0 = 0 Positive & Negative Rates

[−1, 1] Bounded OU Process > 0 = 0 = 1 ρ Parameter in IVP

Table 5.1: Generalized SDE to known SDEs

5.2.2.2 Calibration of the Primary Parameters

If mean reversion is not enforced, the calibration of the model is trivial. If this is

not clear we invite the reader to go back to equation (5.1) and think more about

what each parameter does. Once we are in the context of mean reversion, we need to

calibrate in sequence µ̂, θ̂ and finally the errors from the model {⋃ dŴi}ti=t−τ . The

calibration of µ is straight forward, done by equation (5.3).

µ̂t,τ = E[Xt,τ |Ft,τ ] =
1

N

t∑

i=t−τ
Xi, (5.3)

where N = card{τ, τ+1, · · · , t−1, t}4. The parameter θ happens to be tricky. Indeed

if one rearranges equation (5.1), we obtain θt,τ =
dXt−σXα

t (1−X2
t )βdWt

(µt,τ−Xt)dt . However if one

was to take all the available samples for θ and compute E[θt,τ |Ft,τ ] like in equations

(5.3), the estimation would quickly be dominated by instances where µt,τ is very close

to Xt and where θ “explodes” as a consequence. This navive approach creates a

random bias in the estimation of θt,τ , which needs to be avoided. A solution to this

issue is to incorporate a variance reduction technique. The idea comes from noticing

the explosion effect described previously and in [10]. In the proposed methodology

we deliberately choose to neglect zones in which the explosion is highly likely, for

instance as it is described by figure 2.8. The relevant zones are B+ = |max(Xi,i∈[t−τ,t])
2

|,
and B− = | inf(Xi,i∈[t−τ,t])

2
|5. These zones can be visualized in figure 2.8. In this figure,

Zθ represents situation in which sampling θ is very likely to be of high quality. When

4which is essentially the number of sample used to estimate µ.
5We note that the estimation of θ is noised when Zσ = B+ > |Xi, i ∈ [t−τ, t]| > B−. The reverse

is true when Zθ = |Xi, i ∈ [t− τ, t]| > B+

⋃ |Xi, i ∈ [t− τ, t]| < B−, sampling θ is a good idea. We
will therefore sample θ in Zθ.
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we apply this idea of variance reduction technique, we obtain

θ̂t,τ =
1

n

∑

i∈Zθ

∆Xi − σXα
i (1−X2

i )β∆Wi

(µ̂t,τ −Xi)
1Xi∈Zθ (5.4)

as for a proper estimation of θ, where n is the cardinality of the set of all instances

in which we sampled in the Zθ zone. In practice doing this average over the 40th and

60th percentiles provides enough data and filters out enough outliers to make a better

quality estimator than without the variance reduction technique. Once µ and θ have

been estimated, we need to estimate the deviation from the model, this is done by

isolating the shocks (i.e, increments of the Brownian motion) in equation (5.1). The

following equation provides this estimation for the errors term.

∆Ŵi =
∆Xi − θ̂t,τ (µ̂t,τ −Xi)

Xα
i (1−X2

i )β
. (5.5)

5.2.2.3 Secondary Parameters in the Anticipative VaR

Equation (5.2) has three secondary parameters. The calibration of these secondary

parameters are, as we will see, very much qualitative in approach and geared towards

practitioners rather than pure probabilist. The first secondary parameter, τ , repre-

sents the “rolling window of interest”. This window can be chosen so as to either

satisfy the regulatory constraints on model selection or/and based on how well your

backtest performs with respect to your risk appetite. The second secondary param-

eter, from equations (5.2) and (5.1) is κθ. The latter can be, intuitively understood

to be the “elastic aging factor”. The larger κθ, the more the speed of mean reversion

estimated by the assumed model would get weaker and the more we converge towards

a drift-less model (classic models). This is particularly useful in situation in which the

risk manager believes that the long term mean reversion factor should be weaker than

what is estimated by the data. The third and last secondary parameter, κW , can be

thought of the “returns beef-upper”. It was created so as to create more conservative

(but more penalizing at the same time) risk engines to match different risk appetite

especially considering that this is a new proposed model.

5.2.3 Benefits

There are multiple benefits from choosing such generalized stress scenario formula.

First it is versatile as it models all the known risk models on top of new ones. Second

it is deployable and robust: once the estimation has been performed the same code

works for every risk factor. Third it is leading as opposed to lagging as it allows for
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anticipation in the regime change as opposed to waiting passively for responding to

a regime change. Fourth it is more realistic from mean reverting risk factors (e.g.

implied volatility, short term interest rates). This is because when these risk factors

are high, applying relative shifts (the classic model) overestimates the moves on the

upside but underestimate the moves on the downside. Finally it decreases arbitrages

scenarios: since the diffusion of equation (5.1) is more realistic with respect to market

observable phenomenon which are in turn function of arbitrage conditions that can

occur at the portfolio level (implied volatility mean reverts).

5.2.4 Drawbacks

The choice of the boundaries of some these assumption is quite arbitrary. For instance

if we had chosen the CIR like diffusion (in which θ > 0, α = 1 and ρ = 0) in

2014, our risk engine would not have been able to accommodate the regime change

of 2015 in which we started entering the bizarre world of negative interest rates.

There are also lots of practitioners who have difficulties understanding the concept of

assumed distribution. More specifically the idea conveyed by the α and β parameters

and the resulting diffusions induced by equation (5.1) is beyond many practitioners

comfort zone as many feel that the mean reversion component introduces a bias in the

estimation of the risk distribution. There are also some challenges in the calibration

process even when considering the variance reduction techniques described in the

Section 5.2.2.

5.3 The Machine Learning Approach

As we have seen from the previous Section 5.2 the selection of the parameters, their

calibration and the practitioners culture makes conducting Risk Management using

the SDE approach challenging on several levels. We introduce in this section a solution

which we will show improves the status quo on many fronts.

5.3.1 Mathematical Specifications

We introduce first the concept of a simple band-wise clustering methodology to mimic

some of the SDE properties.

Lemma 5.3.1 (Statistic of Order To Gaussian Mixture) Let R = {x1, . . . , xn}
be a set of empirical random variables taken from equation 5.1 with cumulative distri-

bution function F (x) and density f(x). Let O = {x(1), . . . , x(n)} be the ordered set of
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R such that x(1) < x(2) < . . . < x(n) and Oi
p = {x(d(n(i−1)+1)/pe), . . . , x(bn(i)/pc)}. Then

the empirical distribution function for an SDE of the form of equation (5.1) can be

approximated by a union of band-wise Bernoulli process given by

F̂n(xi|Ft) =
1

n

p∑

j=1

ζ∑

i=η

1xi∈Ojp (5.6)

with η = dn((i− 1) + 1)/pe and ζ = bn(i)/pc.

Remark In the case where p = 3, using a Gaussian Mixture such that F̂n(xi|Ft) =

N (−3, 1)1xt∈O1
3

+N (0, 1)1xt∈O2
3

+N (3, 1)1xt∈O3
3
, we obtain the approximate stratifi-

cation shown in figure 2.8. The stratification, in our case, is such that the cardinality

in each Oj
p is approximately the same, as opposed to being the result of a geometrical

separation function of x(1) and x(n). Figure 5.1 illustrates this remark.

Lemma 5.3.2 (SDE to p-Gaussian) The distribution given by equation 5.6 con-

verges towards a p-Gaussian Mixture.

Proof The indicator function 1xi∈Ojp is a Bernoulli random variable with parame-

ter p, and because the sum of Bernoulli random variable is Binomial distributed,

F̂n(xi|Ft) = 1
n

∑p
j=1

∑ζ
i=η 1xi∈Ojp . We can also see that in equation (5.1) that the

limn→∞,p→∞(µt,τ −Xt) = λt,τ and therefore dXt − λt,τ = σXα
t (1−X2

t )βdWt becomes

a locale martingale. Using Glivenko-Cantelli theorem [121, 122], we get ‖Fn−F‖∞ =

supx∈R |Fn(x) − F (x)| a.s.−→ 0. Therefore, the distribution from equation (5.1) can be

approximated by ∪pi=1N (λi, σi).

Remark by looking at the difference between Figure 5.1 and Figure 5.2, we see how

increasing the value of p can lead to a smoothing probability distribution function.

Theorem 5.3.3 Let (Ω, (Ft)(t≥0),Q) be our probability space, with (Ft)(t≥0) where Q
is the risk neutral probability measure. The probability distribution f(x|Ft) induced by

the SDE dXt = θt,τ (µt,τ −Xt)dt+σXα
t (1−X2

t )βdWt converges almost surely towards

a p-Gaussian mixture as n and p converge towards infinity.

Proof We split the proof in 2 steps. Indeed, lemmas 5.3.1 and 5.3.2 have been

introduced in order to make the proof for this theorem more readable. In lemma

5.3.1 we have shown how ordering the returns can allow us to define zones where

the returns are assumed to be sampled approximately through the same distribution.

And in lemma 5.3.1 we have shown that in discrete time the SDE behaves in well

defined limited zones like a martingale.
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Figure 5.1: Gaussian distribution mimicking approximately Figure 2.8. The top fig-
ure, represents a zone in which our forecast by the mean reverting SDE is significantly
above its historical mean (therefore the forecasted distribution is biased on the down-
side). The bottom figure represents the zone in which our mean reverting SDE is
significantly below its historical (therefore the forecasted distribution is biased on the
upside). In red we have the forecasted distribution which is centered around zero
because we are at the historical long term mean
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Figure 5.2: Exact same situation as in figure 5.1 but with two additional zones (in
green)
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5.3.2 Calibration

Note that we have included few simulations in section 2.4.9.

5.3.2.1 The Bayesian set-up

Let Bt = {B+
n,t, B

+
n−1,t, . . . , B

+
1,t, B

−
1,t, . . . , B

−
n−1,t, B

−
n,t}, such that B+

n,t > B+
n−1,t > . . . >

B+
1,t > 0 > B−1,t > . . . > B−n−1,t > B−n,t. We study Xt of equation (5.1) in the

context of of this Bayesian construction. We have seen that depending on the spread,

the resulting approximated distribution of the samples differ [7]. The calibration

algorithm consists of creating as many zones as possible whilst converging to the

results from Theorem (SDE to Band-wise Gaussian Mixture) of page 140 introduced

originally in [7].

5.3.2.2 A straightforward learning algorithm

The idea behind the calibration of the Band-Wise Gaussian Mixture is similar, though

not exactly the same as to the variance reduction technique of Figure 2.8 explained in

the same section. Namely, depending on the selected zone, the resulting approximated

distribution of the samples differ. The calibration algorithm consists of creating as

many zones as possible trying to converge to the results from the theorem 5.3.3.

Algorithm (4) is a rough pseudo-code for the calibration process.

Remark Note that in algorithm (4), we use a QuickSort, which can be substituted

by other sorting algorithm. We invite the motivated readers to investigate on their

own this idiosyncratic issue. Also note that this algorithm has neither been optimized

nor checked for data quality (e.g. the combination of n and p should be such that

each band has enough data (e.g. minimum 30) for the statistical estimators to be

significant.

5.3.3 Benefits

One important point to note about the additional benefits of the Machine Learning

approach over the SDE approach6 is to take a look at the example associated to the

way LCH was handling interest rates in Europe and USA up to 2014. Indeed, it was

assumed that interest rates, in Europe and USA7 could never become negative. Risk

managers, at LCH, would assume a β = 0 and an α = 1 (in equation 5.1) in the SDE

6Beyond the obvious benefits associated to achieving the same results though through a simpler
channel and also bypassing convoluted SDE calibration issues in the process.

7Note that interest rates had been negative in Japan for many years prior to that.
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Algorithm 4: Band-Wise Gaussian Mixture

Input: array X1:n and number of bands p
Output: Ω(1:p), [B+

(1:p), B
−
(1:p)] are returned.

Sorting state:
X(1:n) ← QuickSort(X1:n)
[B+

(1:p), B
−
(1:p)] ← FindPercentileBands(X(1:n), p)

Ω(1:dn/pe) ← []

Allocation state:
for j = 1 to p do

for i = 1 to n do
if B−(1:p) ≤ X(i) < B+

(1:p) then

Amend(Ω(j), X(i))

Checking Approximation state:
µ̂1:p ← mean(Ω(1:p))
σ̂1:p ← stdev(Ω(1:p))
Print(∪pi=1N (µ̂i, σ̂i))

Return state:
Ω(1:p), [B+

(1:p), B
−
(1:p)]

approach: the latter two parameters enforcing positivity for the simulated scenarios

of our risk factor. This very reasonable assumption (at least up to that point) crashed

the whole risk engine in the most important clearing house in the world. The ML

approach would have however been able to continue its dynamical learning scenario

without any problem8.

5.4 Application to Pairs Trading

Remark Note that some of this material appeared in [5] but the thesis structure was

such that part is instead presented in chapter 2 and more specifically Section 2.4 on

portfolio optimization for cointelated pairs which the reader should get familiar with.

Now we present the trading signal that translates to investment strategy in machine

learning approach. We set, from equation (2.5) ∆t = Xt−Yt, assume for now that r >

0 and Bt = {B+
n,t, B

+
n−1,t, . . . , B

+
1,t, B

−
1,t, . . . , B

−
n−1,t, B

−
n,t}, such that B+

n,t > B+
n−1,t >

8This point of view was not shared with all the members of the jury during the PhD defense [94].
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. . . > B+
1,t > 0 > B−1,t > . . . > B−n−1,t > B−n,t. We have seen that depending on

the spread, the resulting approximated distribution of the samples differ [43]. The

calibration algorithm consists in creating as many zones as possible and testing for

strategy optimality within these bands. For instance, in a situation in which we take

a direct approach (see Remark 5.4) consisting of 4 strategies:

• Strategy S++ in which we are long both X and Y at time t in between bands

[a, b] and with P&L V ++
[a,b],t.

• Strategy S+− in which we are long X and short Y at time t in between bands

[a, b] and with P&L V +−
[a,b],t.

• Strategy S−+ in which we are short X and long Y at time t in between bands

[a, b] and with P&L V −+
[a,b],t.

• Strategy S−− in which we are short both X and Y at time t in between bands

[a, b] and with P&L V −−[a,b],t.

Where the P&Ls are defined as follows:

V ++
[a,b],T =

T∑

t=0

[w++
[a,b],t∆Xt + (1− w++

[a,b],t)∆Yt]1a<∆t≤b,

V +−
[a,b],T =

T∑

t=0

[w+−
[a,b],t∆Xt − (1− w+−

[a,b],t)∆Yt]1a<∆t≤b,

V −+
[a,b],T =

T∑

t=0

[−w−+
[a,b],t∆Xt + (1− w−+

[a,b],t)∆Yt]1a<∆t≤b,

V −−[a,b],T =
T∑

t=0

[−w−−[a,b],t∆Xt − (1− w−−[a,b],t)∆Yt]1a<∆t≤b.

Remark We call this approach direct, since ideally the number of strategies should

consist of a more granular weight distribution. However for the sake of this example

we wanted to keep the explanation more intuitive.

We define the maximum P&L achieved by each of these strategies by V ∓∓,∗[a,b],T , as given

by equation (5.8) and define S∗∗[a,b],T of P&L V ∗∗[a,b],T in equation (5.9), the optimal

strategy using Gaussian Learning in band [a, b].

V ∓∓,∗[a,b],T = arg max
w∓∓

[a,b],t∈[0,T ]

V ∓[a,b],T , w
∓∓
[a,b],t ∈ [0, 1], (5.8)

V ∗∗[a,b],T = max(V ++,∗
[a,b],T , V

+−,∗
[a,b],T , V

−+,∗
[a,b],T , V

−−,∗
[a,b],T ). (5.9)
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Algorithm 5: GMforCointelatedPairs(P, h)

Input: array P1:n and number of bands h
Output: Ω(1:h), [B+

(1:h), B
−
(1:h)] are returned

. Sorting state
P(1:h) ← QuickSort(P1:h), [B+

(1:h
2

)
, B−

(1:h
2

)
] ← FindPercentileBands(P(1:n), h)

B(1:h) ← [B+

(1:h
2

)
, B−

(1:h
2

)
], Ω(1:dn/he) ← []

. Allocation state for j = 1 to h do
for i = 1 to n do

if P(i) ∈ Bi then
Amend(Ω(j), P(i))

. Optimize the 4 types of P&L for each band
for i = 1 to h do

V ++,∗
Bi,T

← arg maxw++
Bi,t∈[0,T ]

V ++
Bi,T

, V +−,∗
Bi,T

← arg maxw+−
Bi,t∈[0,T ]

V +−
Bi,T

V −+,∗
Bi,T

← arg maxw−+
Bi,t∈[0,T ]

V −+
Bi,T

, V −−,∗Bi,T
← arg maxw−−

Bi,t∈[0,T ]
V −−Bi,T

. Rank and return best strategy for each band
for i = 1 to h do

V ∗∗Bi,T ← max(V ++,∗
Bi,T

, V +−,∗
Bi,T

, V −+,∗
Bi,T

, V −−,∗Bi,T
) S∗T ←

(S++,∗
Bi,T

, S+−,∗
Bi,T

, S−+,∗
Bi,T

, S−−,∗Bi,T
)

S∗∗Bi,T ← returnCorrespondingStrat(V ∗∗Bi,T , S
∗
T ),

. Forecasting & Return buy/sell signals
signalS, signalSl ← forecast(S∗∗Bi,T , St, Sl,t)

We further provide algorithm (5) as the pseudo-code for the calibration process. Note

that in both algorithm (4) and (5), we have used a QuickSort which can be substituted

by other sorting algorithm. We invite the motivated readers to investigate on their

own this idiosyncratic issue. Also note that, in order to keep the algorithm easy to

read and only focused on the optimization process, the pseudocode does not include

a section on data quality or on the optimality of the band sizes9. Also note the

use of self explanatory functions such as returnCorrespondingStrat(x,y) which given

the set of strategies and the P&L that maximized that strategy returns as its name

indicates the corresponding strategy. The function forecast(x,y,z) takes as input the

set of trained strategies and the current level of St and Sl,t and returns a prediction of

where the signals for the latter two should be. Finally the use of the arg max function

in lines 13-16 can be replaced by a simple for loop but in the interest of not making

the pseudocode too crowded we have kept it this way.

9E.g., the combination of n and p should be such that each band has enough data (e.g. minimum
30) for the statistical estimators to be significant.
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Remark We have seen [43] that a reasonable risk manager or trader can assume the

generalized SDE (5.1) with β = 0 and an α = 1, in order to enforce positivity for the

simulated scenarios of our risk factor. This very reasonable assumption would have

crashed the whole risk engine. The approach we advocate would have, however, been

able to continue its dynamical learning scenario without any problem.

Finally note that some simulations have been included in section 2.4.9.

5.5 Application To Risk Management

5.5.1 Margining: Classic & Anticipative Methodologies

Before going further, it would be useful to gain acquaintance with some of the prac-

titioners technical jargon.

Definition (Full Revaluation) : Let N denote the total number of risk factors

relevant to a portfolio P and Ri each of the relevant risk factors (e.g. exchange

rate, interest rate, skew, vol of vol, ATM vol etc.) of this portfolio. Then define f ,

the function that takes all the historical scenarios10 as input and would revalue the

portfolio’s11 risk distribution. The reported risk statistics such as the VaR or the

expected shortfall are then function of these stressed scenarios.

5.5.2 Drift in Risk & Misconceptions

The best way to describe the margining methodology is to see how it works with the

currently models. This will help later when it comes to introducing the concept of

Anticipative VaR. Table 5.2 is a good tool when it comes to understanding the classic

methodology under the log-normality12 and normality13 assumptions. The resulting

returns at the portfolio level would be given by P&Lt,τ = f
(
St(1 + ∆Sτ ),ΣE,K,t +

∆ΣE,K,τ , · · ·
)

. Note that in the function f , we have incorporated the symbol14 “· · · ”
to signify that the same methodology is used for all the relevant vol points for all the

relevant tenors.

Remark The stressed scenarios may be cleansed prior the revaluation using de-

arbitraging methodologies [12] but, Table 5.2 was designed to be a simple example to

introduce next the concept of Anticipative VaR.

10∪Ni=1 ∪Tτ=1 Ri,t + ∆
Ri,τ
t−τ .

11Note that τ ∈ [0, T ] with T being the length of the available relevant data (e.g. 10 years).
12“We use proportional bumps”.
13“We use absolute bumps”.
14A convenient notation.
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Date τ dSt = StdŴ
a
t dΣE,K,τ = dŴ b

t · · · P&Lt,τ

t− 1 ∆St−1

St−1
∆ΣE,K,t−1 · · · −1.7%

t− 2 ∆St−2

St−2
∆ΣE,K,t−2 · · · + 0.7%

...
...

...
...

...

t− 750 ∆St−750

St−750
∆ΣE,K,t−750 · · · −1.4%

Table 5.2: Example of full revaluation table under classic Risk engines

5.5.3 Margining in the context of Anticipative VaR

Table 5.3 is the translation of Table 5.2 but in an Anticipative format: under the

assumption of mean reversion using equation (5.2). Usually the part which is most

Date τ dSt = StdŴ
a
t dΣE,K,τ = θ̂(µ̂− ΣE,K,t)dt+ ΣE,K,τdŴ

b
t · · · P&Lt,τ

t-1 ∆St−1

St−1
∆ΣE,K,t−1 · · · -1.9%

t-2 ∆St−2

St−2
∆ΣE,K,t−2 · · · +0.8%

...
...

...
...

...

t− 750 ∆St−750

St−750
∆ΣE,K,t−750 · · · −1.6%

Table 5.3: Example of full revaluation table under anticipative Risk engines

misunderstood in this methodology is how {⋃ dWi}ti=t−τ behaves in either of the

models. The key in understanding this part is to realize that {⋃ dWi}ti=t−τ represent

the “deviations/error” from an assumed model. For instance you could mix a model

in which you try to capture the risk of a call and try to define the corresponding risk

factor. You assume that the underlier follows a log normal distribution (you enforce

θ = 0 but α = 1), you assume that the ATM vol is mean reverting and positive

(you enforce θ 6= 0 but set α = 1), you assume interest rates are mean reverting but

could be negative (you enforce θ 6= 0 but α = 0). The correlation at the infinitesimal

level of these errors from these models {⋃ dWi}ti=t−τ will be preserved if the time

stamp is preserved. The resulting returns at the portfolio level would be given by

P&Lt,τ = f
(
St(1 + ∆Sτ ),ΣE,K,t−1 + θ(µ̂−ΣE,K,t) + ∆Sτ , · · ·

)
. We invite the reader

to take a look at the column labeled P&Lt,τ in both Table 5.2 and 5.3. The numbers

in Table 5.2 have been chosen randomly but the ones from Table 5.3 are chosen in

terms of what one would expect in terms of approximate difference had the vol been

different from its historical mean. So the P&L is shifted because the risk is now
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asymmetric. Figure 5.3 describes how the forecasted risk distribution behaves as a

result of where the risk factor is positioned with respect to its long term mean.

5.5.4 Results & Rolling Conditional Distribution

We can observe how the historical deviations of equation (5.1) behaves as a function

of where the stochastic process stands with respect to its long term mean. Indeed,

in a situation where one assigns β = 0, α = 1 for the ATM implied volatility for the

2 years expiry we obtain Figure 5.3. What this figure attempts at exposing is the
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Figure 5.3: Example of forecasted distributions, in green under the Anticipative VaR
hypothesis. In zones 1 and 5, the ATM is about the historical mean and therefore
the forecasted distribution is biased on the downside. In zones 3 and 4, we have the
exact opposite case and finally in zone 2 the distribution is symetrical because the
ATM is equal to the long term mean µ.

asymmetric/skewed behavior for the distribution of the generated stressed scenarios

as a function of where the risk factor stands with respect to its long term mean15.

Indeed, we can see in zones 3 and 4, that the risk factor is biased towards the upside

whereas in zones 1 and 5 in which the risk factor is above its historical rolling mean,

the simulated distribution is biased on the downside. Note here that in a situation

in which you are below your historical mean, you can still have simulations that take

you below your current value (the reverse is true for the symmetric situation in which

you are above your historical mean). A second interesting point to note is that the

15We have assumed for display purposes that the mean will not be rolling in this graph but fixed.
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more the risk factor is significantly above its historical mean, the more skewed is the

resulting distribution (for example the distribution of zone 5 is more skewed towards

the downside compared to the one of zone 2 because the deterministic side of the

stochastic differential equation pressures the simulations more on the downside, even

though it still allows moves on the upside). From these few zones, the reader can

now understand the terminology chosen (“Anticipative”) for this new risk concept.

This can be opposed to the concept of Responsive VaR in which one always takes

a symmetric approach and re-scales the risk factors returns once a big market move

has already occurred (so the VaR is Responsive as opposed to Anticipative).

5.6 Reconciling Responsive & Stable VaR

We reconcile in this section the concept of Responsive VaR and Stable VaR which are,

as we have see in the introduction two discordant concepts. They remain, however,

equally desirable by practitioners.

5.6.1 Generating Risk Scenarios

The area of Risk scenarios generation is a complex one on its own. Choosing the

underlying assumptions around the diffusion process has a great deal of influence on

the Risk profile we obtain. More specifically, we see some of these challenges in details

in Section 5. In this section we assume that we have generated these scenarios and

that the task is now to make sure the risk profile is both responsive and stable.

5.6.2 Responsive VaR

Once the underlying assumptions of the stress testing scenario diffusions (for example:

log-normal, normal or mean-reversion) has been decided the stressed scenarios need

to be adjusted in order to address the market change of volatility, so as to get the

label of “responsiveness”.

Definition (Responsive VaR): A VaR model that will be able to adapt, a poste-

riori, to increased volatility conditions will be referred to as Responsive VaR.

There are few ways to conceptually address this concept and they all rely on a scaling

of long term volatility compared to recent volatility.
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5.6.2.1 The Exponential Weighting Approach

An Exponential Weighting Approach (EWMA) is often used as a solution since the

latter does not have an arbitrary cut off point but rather older data’s contribution

in the calculation of σc (the current volatility) must decrease exponentially. In this

situation the unnormalized weights are calculated using w1 = 1, wt = λwt−1 and the

normalized weights are given by w̃t = wt/
∑N

i=1wi. Though regulations change on

a regular basis [44], at the time this thesis was written, the instructions were that∑N
i=1wi ≥ 728 [44] so λ is chosen in order to respect this regulatory constraint. The

latter essentially means that the calculation of a measure of risk ought to be at least

two years of data [44].

5.6.2.2 The Local to Historical Volatility Approach

We define σh from equation (5.10a) as being the standard deviation over our entire

history of relevant data [1, . . . , N ], and σc from equation (5.10b) the standard devia-

tion over more recent history, with N > p > 1, the responsive VaR formula is given

by equation (5.10c).

σh =

√∑N
i=1(xi − x)2

N − 1
,

σc =

√∑N
i=p(xi − x)2

N − p− 1
,

RVaRα(X) =
σc
σh

VaRα(X),

(5.10a)

(5.10b)

(5.10c)

where α the quantile level and RVaRα(X) = σc
σh

inf{x ∈ R : P (X+x < 0) ≤ 1−α} =
σc
σh

inf{x ∈ R : 1− FX(−x) ≥ α}.

Remark Note that p in equation (5.10b) is a free parameter, which is usually the

result of a constrained optimization problem in which the financial institution calcu-

lating its VaR tries to minimize its capital requirement16 with the constraints being

set by the regulators in order to make the relevant statistics significant17.

5.6.3 Responsive vs. Stable VaR

Technical documents written by practitioners exposed the conflicting properties of

Responsive and Stable VaR [27, 123].

16And choses the best p to minimize that VaR.
17The Basel committee usually likes to see 2 years of data, therefore N − p needs to be at least

two years.
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Definition (Stable VaR): A VaR model that remains robust will be referred to as

Stable VaR.

Youngman’s [27] is an example of how the duality between between Responsive and

Stable VaR are understood and used by practitioners. Figure 5.4 plots three graphs

for the 99% VaR of triple B rated corporate bond (so a linear product) using 3 different

lookback periods18. The VaR model in this situation is quite simple. We assume that

Reports  

BANK OF CANADA    Financial System Review    june 200952

properties generate destabilizing effects in financial 
markets, whereby declines in asset prices cause VaRs 
to increase, which, in turn, leads to breaches of the VaR-
based risk limits. Institutions respond to the limit breaches 
by closing out the risky positions, thus exacerbating the 
initial price decline and causing more volatility. Thus, the 
use of risk-sensitive measures that reduce risk for indi-
vidual firms can create more risk in the system as a whole. 
While it is unlikely, at least in the short run, that firms react 
mechanistically to increases in VaR, there is some evidence 
that this dynamic was at work during the current crisis 
(Longworth 2009).

Another observation from Charts 1 and 2 is that a longer 
lookback period produces more stable VaR estimates that 
do not fall as quickly in quiet times, nor rise as sharply in 
crisis periods. The use of a longer lookback period may 
reduce short-run forecasting accuracy, but could reduce 
systemic risk by discouraging an excessive buildup of 
trading positions during quiet periods in the markets. With 
smaller trading positions, volatile periods in the markets 
would not be as damaging.

Other criticisms of VaR models centre on the difficulties in 
modelling financial asset prices, especially in the tail of the 
distribution, which is particularly relevant for risk manage-
ment. While VaR models can be improved to better account 
for the statistical properties of financial time series, no 
model is perfect. 

The MRA adjusted for some of the weaknesses discussed 
above. Setting the capital requirement on the average VaR 
over the past 60 days, instead of on yesterday’s VaR, tends 
to smooth sharp changes in VaR coming from changes in 
market volatility (Jorion 2002). Multiplying the VaR by three 
is an adjustment that may account for the fact that most 
financial times series are known to have “fat tails,” and that 

The Procyclicality of VaR Models

Value-at-risk models have several widely recognized short-
comings and have been heavily criticized by academics and 
practitioners. While banks have developed many variants of 
VaR models, all of them still rely on historical data to esti-
mate the probability distribution of future outcomes. Most 
banks use a relatively short period of data (the “lookback 
period”) to estimate the probability distribution of market 
factors, and some use weighting schemes, whereby within 
the lookback period, more recent data points are given a 
higher weight. These techniques can ensure that estimated 
VaRs accurately reflect the stylized fact that many financial 
time series exhibit time-varying volatility. In this sense, such 
VaR models are “risk sensitive,” in that they relate capital 
to current estimates of risk. This risk sensitivity results in 
VaRs that are cyclical: rising and falling with market vola-
tility. Charts 1 and 2 show daily VaR estimates for Canadian 
equity and corporate bond markets, estimated with dif-
ferent lookback periods.2

Note the sharp rise in VaRs since late 2008. A bank using 
VaR to set trading limits would use an increase in VaR as 
a signal to reduce its trading positions. From the perspec-
tive of that bank, the reduction in trading positions during a 
high-volatility period will reduce risk.

This type of dynamic is troubling if many market partici-
pants react to increased volatility in the same way. The 
herding hypothesis (Persaud 2001) holds that when many 
financial institutions use VaR to set risk limits, its cyclical 

2	 The historical simulation approach was used to compute the VaR used in the 
charts. This is one of the methods commonly used by banks. The VaR com-
puted for the S&P TSX Index assumes a long position; the VaR for corporate 
bonds uses the Merrill Lynch BBB corporate bond index and assumes a long 
position in spreads versus Government of Canada bonds.

Sources: Bloomberg, Merrill Lynch, author’s calculations
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Figure 5.4: Youngman’s [27] example of One-Day 99% VaR BBB Corporate Bonds.

the underliers follows a rolling log-normal distribution in which the rolling windows

are, in this example 1 (in green), 3 (in red) and 5 (in blue) years. What we can see

is that the green plot, which is the one with the shortest rolling window, happens to

be the most responsive to market events whereas the blue plot (the biggest rolling

window) happen to be the most stable. The rational is that, for VaR stability, the

green plots fluctuates too much and can create liquidity congestion in the case where

the market would get used to a low VaR market environment. For VaR responsiveness,

the blue line is too conservative in low volatility environment and not reactive enough

in situations of increased volatility.

18For example the p parameter in equation 5.10b.
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5.6.4 Responsible VaR

Reconciling the conflicting properties of a Responsive VaR and Stable VaR is the

second problem we solve by introducing to the concept of Responsible VaR.

Definition (Responsible): A VaR model that is Responsive on the upside and

Stable on the downside will be called Responsible. Let νt represent the VaR at the

α level at time t. Responsible VaR is jointly defined by the stochastic processes ν̃+
t

and ν̃−t summarized by

α =

∫ ν+
t

−∞
pt(x)dx,

ν̃+
0 = ν+

0 ,

ν̃+
t = max

(
ν+
t , λν̃

+
t−1 + (1− λ)ν+

t

)
,

1− α =

∫ +∞

ν−t

pt(x)dx,

ν̃−0 = ν−0 ,

ν̃−t = min
(
ν−t , λν̃t−1 + (1− λ)ν−t

)
.

(5.11a)

(5.11b)

(5.11c)

(5.11d)

(5.11e)

(5.11f)

where λ is a scalar that controls the stability of our risk measure on the downside.

Note the lower the λ, the more stable is the Responsible VaR. Figures 5.5, 5.6, 5.7 and

5.8 illustrate how λ impacts the risk measure. This methodology can in fact be used

independently of whether we are in a Responsive or an Anticipative VaR context.

Remark Adaptive Smoothing Methods for non stationary data [124], though optimal

mathematically are sometimes less useful in a challenging regulatory environment.

The concept of Responsible VaR can be summarized by a system of two controlled

Snell Envelopes of the VaR level at their respective quantile level. In a practical

point of view one must record the VaR of a specific portfolio in time and record

the instantaneous Anticipative or Responsive VaR and adjust it based on equation

(5.11f). That particular last point may be deterrent in direct use if the IT constraints

are not flexible or too slow.

This concludes the first part19 of the thesis in which we illustrated how data-driven

models can be gently20 “apposed” to classic FM models. In the next Part of the

thesis21 we take the challenging opposite view and try to illustrate how the new

models could be a revolution in QF.
19Part II.
20where we presented Machine Learning as a granular enhancement tool to QF.
21Part III.
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Figure 5.5: Anticipative Responsible VaR USD/EUR straddle backtest: λ = 0.000
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Figure 5.6: Anticipative Responsible VaR USD/EUR straddle backtest: λ = 0.990
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Figure 5.7: Anticipative Responsible VaR USD/EUR straddle backtest: λ = 0.999

 4.50  

 5.50  

 6.50  

 7.50  

 8.50  

 9.50  

 10.50  

 11.50  

 12.50  
0

9
/0

9
/2

0
0

5
 

0
9

/1
0

/2
0

0
5

 

0
9

/1
1

/2
0

0
5

 

0
9

/1
2

/2
0

0
5

 

0
9

/0
1

/2
0

0
6

 

0
9

/0
2

/2
0

0
6

 

0
9

/0
3

/2
0

0
6

 

0
9

/0
4

/2
0

0
6

 

0
9

/0
5

/2
0

0
6

 

0
9

/0
6

/2
0

0
6

 

0
9

/0
7

/2
0

0
6

 

0
9

/0
8

/2
0

0
6

 

0
9

/0
9

/2
0

0
6

 

0
9

/1
0

/2
0

0
6

 

0
9

/1
1

/2
0

0
6

 

0
9

/1
2

/2
0

0
6

 

0
9

/0
1

/2
0

0
7

 

0
9

/0
2

/2
0

0
7

 

0
9

/0
3

/2
0

0
7

 

0
9

/0
4

/2
0

0
7

 

0
9

/0
5

/2
0

0
7

 

0
9

/0
6

/2
0

0
7

 

0
9

/0
7

/2
0

0
7

 

0
9

/0
8

/2
0

0
7

 

0
9

/0
9

/2
0

0
7

 

0
9

/1
0

/2
0

0
7

 

0
9

/1
1

/2
0

0
7

 

0
9

/1
2

/2
0

0
7

 

0
9

/0
1

/2
0

0
8

 

0
9

/0
2

/2
0

0
8

 

0
9

/0
3

/2
0

0
8

 

0
9

/0
4

/2
0

0
8

 

0
9

/0
5

/2
0

0
8

 

0
9

/0
6

/2
0

0
8

 

0
9

/0
7

/2
0

0
8

 

ATM μ 

conditional density for the stressed scenarios 

2 3 4 5 1 

-3.50% 

-3.00% 

-2.50% 

-2.00% 

-1.50% 

-1.00% 

-0.50% 

0.00% 

0.50% 

1.00% 

1.50% 

2.00% 

2.50% 

3.00% 

0
5

/0
3

/2
0

0
8

 

0
5

/0
6

/2
0

0
8

 

0
5

/0
9

/2
0

0
8

 

0
5

/1
2

/2
0

0
8

 

0
5

/0
3

/2
0

0
9

 

0
5

/0
6

/2
0

0
9

 

0
5

/0
9

/2
0

0
9

 

0
5

/1
2

/2
0

0
9

 

0
5

/0
3

/2
0

1
0

 

0
5

/0
6

/2
0

1
0

 

0
5

/0
9

/2
0

1
0

 

0
5

/1
2

/2
0

1
0

 

0
5

/0
3

/2
0

1
1

 

0
5

/0
6

/2
0

1
1

 

0
5

/0
9

/2
0

1
1

 

0
5

/1
2

/2
0

1
1

 

0
5

/0
3

/2
0

1
2

 

0
5

/0
6

/2
0

1
2

 

0
5

/0
9

/2
0

1
2

 

0
5

/1
2

/2
0

1
2

 

0
5

/0
3

/2
0

1
3

 

0
5

/0
6

/2
0

1
3

 

0
5

/0
9

/2
0

1
3

 

0
5

/1
2

/2
0

1
3

 

0
5

/0
3

/2
0

1
4

 

0
5

/0
6

/2
0

1
4

 

0
5

/0
9

/2
0

1
4

 

Anticipative VaR 0.975 Anticipative Responsible VaR  (0.975, 1) 

Anticipative VaR 0.025 Anticipative Responsible VaR  (0.025, 1) 

Realised P&L 

Figure 5.8: Anticipative Responsible VaR USD/EUR straddle backtest: λ = 1.000
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Part III

From a Top-Down to a Bottom-Up
Approach in Financial Modelling
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Chapter 6

Agent-Based Intelligent System,
from Shallow to Deep Learning

Following Bouchaud’s1 call for a revolutionary change in economics [16], taking a

bottom-up approach via Agent-Based Models, instead of the traditional top-down

approach2, this section will focus on an example in which the traditional Financial

Mathematics approach can be revolutionized by tools from Machine Learning and

therefore provide an argument opposing these two fields rather than apposing them.

Served more as an introductory chapter to the second part of the thesis, our aim

here is to showcase methods that are associated to the other STEM fields that we

believe have their space in twenty first century QF as well as translate them in

QF jargon. More specifically, first we make the parallel with the scientific method

used in Conway’s Game of Life [52, 53] in Section 6.1. Then we delve into some

formalization of Electronic Trading in Section 6.3. In Section 6.4 we go through a

very brief literature review of Neural Networks in order to introduce the rational of

certain types of architecture and their learning potential. In Section 6.5 we introduce

the core DNA for our financial strategies and expose how this structure can model

many of the well known financial strategies. Finally, in Section 6.6, in the context of

Electronic Trading, we reflect on the relationship between architecture and meaning

in order to explain the incentive for Deep Learning (DL). We use in that occasion the

same methods used in adversarial algorithms in order to expose how Deep Learning

can naturally result from simpler strategies in Shallow Learning.

1Quant of the year 2017 and 2018.
2as best symbolized by the Brownian Motion assumption in Financial Mathematics
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6.1 The Financial Game of Life

In chapters 6, 7 and 8 of this thesis we will take a methodological approach similar to

the Game of Life, a well known 4 rules cellular automaton published by Conway [52]

in the mid 70’s3. More specifically, we inspire ourselves from the scientific method

a) Death ͞by loneliness͟ 

c) Reproduction 

ď) Death ͞ďy oǀerpopulation͟ 

d) No Đhange ͞otherǁise͟ 

Figure 6.1: Conway’s Game of Life rules illustrated
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Figure 6.2: Three snapshots of a simulation of Conway’s Game of Life

but use it instead to the world of High Frequency Trading (HFT) while adjusting

some of the idiosyncratic parts of the exercise. As a reminder, Conway’s Game of

Life assumes that complexity in an ecosystem4 arises from simple rules. To illustrate

3Figure 6.1 provides the rules of the Automaton and Figure 6.2 represents 3 snapshot of one
random simulation.

4In this thesis Ecosystem and Market are interchangeable since the former is taken to be an
intuitive image of the latter.

158



this Simplicity-to-Complexity path, in the Game of Life, the four simple rules of

Figure 6.1 can lead to many different families of complex automatons. As a reminder,

starting with random seeds and after few iterations, the simulation leads to stable,

oscillating and moving forms. For stable forms5, the concept of financial stability

may be raised through a similar methodology. The reader may guess that the concept

of financial cycles or HF oscillations (Figure 1.1) may be induced through a similar

methodology: for example in the Game of Life we also have oscillating forms6. Finally

the moving forms7 may have different sizes and speeds8. The parallel to the world

of quantitative financial strategies would be the following. First interacting agents

lead to market price fluctuations. More specifically their interaction determines the

stability or instability of the market9. Second, the market will not necessarily follow

the rules of a zero-sum game10 (with, however, random seeds). Third agents (e.g.

strategies) will follow a simple rule for their births and deaths.

6.2 Generative Adversarial Networks

Introduced in 2014 [54], Generative Adversarial Networks (GANs) are a relatively

recent, but promising field in Machine Learning. Usually classified as among the al-

gorithms used in unsupervised learning, they usually involve a system of two neural

networks competing in a zero-sum game settings. More specifically these two net-

works, already trained with the same objective (e.g., being good at a strategy game

for instance), but trained with slightly different data compete in a zero-sum game

and this in turn becomes new data, sometimes called latent data, which in turn is

used to improve the two networks. This process can continue as long as needed since

the lack of data is no longer a problem. The £400 million buyout of DeepMind by

Google popularized the model in 2014 [125].

5For example the “Block”, the “Beehive”, the “Loaf”, the “Boat”.
6For example the “Blinker (2 period iteration)”, the “Toad” (2 period iteration), the “Beacon”

(2 period iteration), the “Pulsar” (3 period iteration), the “Pentadecathlon” (15 period iteration).
7for example the “Glider” and the “Lightweight spaceship” (LWSS)
8This latter family is arguably conceptually not really providing a useful comparison to our

problem.
9Depending on what the market is made of in terms of the strategies involved as well as the

evolving order-book.
10Meaning that its evolution is determined by its initial state, requiring no further input.
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6.3 Electronic Trading

6.3.1 Description

An order book, traditionally consists of a list of orders that a trading venue such as

an exchanges uses to record the market participants’ interests in a particular financial

product [126]. Typically a rule based algorithm records these interests taking into

account, the price and the volume proposed (on either side of the Bid-Ask) as well

as the time in which that interest was recorded (in situations in which interest at the

same price is recorded by few different market participants, a referee decides which

would win the trade: usually FIFO).

6.3.2 Variable Definition

Definition (Order-Book): We label by at1 and bt1 the best ask and bid total volumes

at time t. By extension ati, b
t
i with i ∈ {1, 2, 3, 4} would correspond to total volume at

the relevant depths’ of the order book with the special case where i = 4 which then

would represent the total volume at the 4th depth level in addition to all the other

market depths superior in price (in the case of the Asked price and vice versa for the

bid price). We denote by mt the midprice of the best bid/ask at time t. The price

increment, at the different levels, l is usually 1bps11. Equation (6.1) formalises the

price as a function of the level. Figure 6.3 represents our version of the order book.

ptl = mt[1 + (−1× 1l∈bti + 1× 1l∈ati)× 0.001%]i (6.1)

Remark We will assume that the Leading Indicators for the price process can only be

taken from the order book which is a reasonable assumption in the higher frequencies.

Some usually accepted leading indicators are the price of the underlier itself and the

accumulated volume at different market depths of the order book (4 on the bid side

and 4 on the ask side for a total of 9 leading indicators with the price process: see

Figure 6.3 for visual representation).

6.4 Neural Net Architecture & Learning Potential

6.4.1 A Brief Qualitative History

In the spirit of explaining the complex through simple incremental steps, like in

Econophysics [127], this particular subsection is dedicated to how complexifying sim-

11bps stands for basis points or in terms of percentage: 0.01%.
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m 

aͳ 

volume 

price mሺͳ − Ͳ.Ͳͳ%ሻସ best  bid 

best  ask 

bʹ 

aͶ 

b͵ 

aͶ ≔ aͶ + aͷ + ⋯ aʹ 

… + b͸ + bͷ + bͶ ≔ bͶ   

bͳ 

bͶ 

mሺͳ + Ͳ.Ͳͳ%ሻଷ 

bͳ aͳ 

Figure 6.3: Order-book visual representation

ple Artificial Neural Network’s (ANN) architecture with more hidden layers12 or with

feedback connection can lead to useful enhanced learning potential such as the one

offered by Deep Learning (DL). More specifically, taking this approach allows us to

slowly move towards Deep Learning and unweave13 the black box associated to the

latter challenging14 mathematical concept. With this in mind, two well known, but

important milestones in Machine Learning are worth reminding of. Especially for the

beginners, these two milestones can shed light on why the core building blocks of our

HFTE model is a certain way and also prepare intuitively the reader for sections 6.5

and 6.6. First, Warren McCulloch and Walter Pitts [128] introduced their threshold

logic model in 1943 which is agreed to have guided the research in NN for more or

less a decade. Second, Rosenblatt [129] formally introduced the perceptron concept

in 1962 though some early stage work had started in the 1950s. The idea of the

perceptron was one in which the inputs x1 and x2 as depicted in Figure 6.4 could

act as separators15 and therefore a direct equivalence could be made to the Multi-

Linear Regression (MLR) which we will provide more details in Section 6.5.3. One

observed limitation of the perceptron, as described by Rosenblatt in 1969, was that

a simple yet critical well known functions such as the XOR function could not be

modeled [130]. This resulted in a loss of interest in the field until it was shown that a

12“Deep Learning” is arguably just a fancy word for a Perceptron with many hidden layers.
13Note that the unweaving analysis goes forward instead of backward.
14The current status quo is that Deep Learning works for many applications but that we do not

necessarily know why in the details.
15The exact research was one in which the methodology acted as a 1, 0 through a logistic activation

function f(x) = 1
1+e−x as opposed to a linear one. However that small distinction is not significant

enough in this context to delve too much into it.
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Figure 6.4: Simple Neural Network Modelling a Linear Regression

Feedforward Artificial Neural Network (ANN) with two or more layers could in fact

model these functions (see Figure 6.5 for the illustration). Added, to this we have the
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Figure 6.5: Feedfoward ANN with 1 Hidden Layer & the XOR Function

well known over-fitting [131] problems when it comes to supervised learning which,

to some extent would like to keep adding hidden layers when the learning potential

has been absorbed. This problem of learning potential to over-fitting has been there

since inception, though regular progress is being made in that domain without real

breakthrough16. A real breakthrough happened, however, in 1956 with what is now

known as Kolmogorov’s superposition theorem [132] which we formalize next.

16We refer here the reader to area of ML known as Regularization.

162



6.4.2 Kolmogorov-Arnold’s Superposition Theorem

Born in what is speculated as a heated supervisor/supervisee relation17, the Kolmogorov-

Arnold’s superposition theorem [132, 133] is perhaps the most remarkable result in

formalized mathematical machine learning of the 20th century. It states that every

multivariate continuous function can be represented as a superposition of continuous

functions of two variables. First designed to address Hilbert’s thirteenth problem

that he presented in Paris in a mathematics conference in 1900, the theorem ended

up being a generalization18 of what was considered one of the top 23 most important

problems defined by Hilbert19. The theorem below formalizes the results.

Theorem 6.4.1 Let f : In := [0, 1]n → R be an arbitrary multivariate continuous

function. Then the function f has the representation:

f(x) = f(x1, ..., xn) =
2n∑

q=0

Φq

(
n∑

p=1

φq,p(xp)

)
(6.2)

with continuous one-dimensional inner and outer functions Φq and φq,p. The func-

tions Φq and φq,p are defined on the real line. The inner functions φq,p are independent

of the function f .

Proof The full proof and potential minor improvements of the latter can be found

in the mathematics litterature [134].

Remark Note the sentence “every multivariate continuous function can be repre-

sented as a superposition of continuous functions of two variables” is the way Kol-

mogorov’s paper was translated into English. It may be a tad confusing as two

functions are involved in equation (6.2) each involving n and 2n variables (so not nec-

essarily two variables). One can think about each of the possible pairs of variables as

being combined into simpler intermediate functions which is then recombined either

directly20 or indirectly21. The inner functions are usually not represented with two

variables in the NN literature (because trivial) which may make this sentence a tad

confusing today. In order to understand the rational of why Kolmogorov expressed

17Kolmogorov and Arnold published separately their results [132, 133].
18The initial problem was to solve 7th degree equation using algebraic continuous functions of two

parameters.
19One of the most influential mathematicians of the 20th century.
20Through the inner function for example linearly or non linearly (e.g: Sigmoid function.
21Through function composition via the outer function.
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the theorem this way, we need to understand the context in the past. Indeed the the-

orem was initially designed to solve 7th degree equation using algebraic continuous

functions of two parameters, and though it can be seen, today, as a generalisation

of this problem, the initial objective was focused on two parameters only, hence the

wording.

Besides his own student [134] which he shares the main results of the theorem with,

the theorem prompted several contributions. They can be categorized as focused on

the inner or outer functions. Notably, Lorentz relaxed the constraint on the outer

functions Φq and noticed that they could be the same [135, 136]. Sprecher proved

that the inner functions φq,p can be replaced by λpφq,p with some rules around the

scalar λp [137, 138]. Another notable technicality around the interpretation came

with Hecht-Nielsen [139, 140, 137] who translated the theorem into a feed-forward

neural networks with an input layer, one hidden layer and an output layer.

6.5 Intelligent Agents & Financial Strategies

6.5.1 The High Frequency Financial Funnel

The pillars associated to the construction of the High Frequency Trading Ecosystem

(HFTE) model has in its inspirational roots the idea that strategies in the market

interact, or to choose an alternative jargon “Mutually Excite” [141], and it is their

interaction that creates the fluctuations in the prices (the same way interaction create

complexity in the Game of Life [52]). It also assumes that strategies can invade others

and therefore the study of the financial market partially comes to studying an n-

species predator prey stochastic model. Another pillar is that the construction of each

of these strategies must have the same DNA22: a financial funnel (e.g. Figure 6.6). The

idea of a common DNA is its ability to model many classic strategies and more. For

instance our proposed DNA should be able to model Trend Following (TF) strategies,

Moving Average Convergence Divergence (MACD), Multi-Linear Regression (MLR)

or XOR like strategies like it can be seen by figures 6.7, 6.8, 6.9, and 6.12 respectively.

Because of its ability to model all these strategies with a relatively shallow neural

network (as opposed to using a Deep Neural Network23) is the main drivers which

have led us to propose the Funnel, introduced by Martin Nowak [30], as the simplest

possible network to model (therefore which minimizes over-fitting) the key functions

22Called HFFF: a Neural Network Architecture we explain next.
23We will discuss more in details the Bias-Variance Dilemma in Section 6.6.
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for our application. The area of evolutionary graph theory is quite rich. Many graphs

provide interesting properties but Nowak’s suggestion seems adequate as we illustrate

next but let us first introduce the network formally.

Definition (High Frequency Financial Funnel): We can formalize the learning

process from all of our strategies using the HFFF of Figure 6.6 by providing a set H,

as described by equation (6.3) of weights corresponding to all the possible weights of

this particular figure.

H ,





∪j∈[1,9]w
i
s̄,j ∪j∈[1,9]w

i
s,j,

∪j∈[1,9],i∈[1,3]w
h1
s̄,i,j ∪j∈[1,9],i∈[1,3]w

h1
s,i,j,

∪j∈[1,3]w
h2
s̄,j ∪j∈[1,3]w

h2
s,j,

wos̄,j∈[1,9] wos,j∈[1,9]





(6.3)

with wi, wh and wo, respectively the weights associated to the input, hidden and

output layers. More formally let the HFFF [4] be a NN architecture of 9 inputs, 3

hidden layers and 1 output layer. Each node connects to the next layer and to itself.

Each connection to itself will be labelled by ws and the others by ws̄. We will admit

that ws̄ ∼ U [−1, 1] and that ws ∼ U [0, 1] and therefore the more generally we have

equation (6.4).

wx ∼ U [−1x=s̄, 1] (6.4)

Remark Note that in the context of this paper we have chosen to work with Martin

Nowak’s [30] funnel, which modification is described in Figure 6.6. This architec-

ture offers the advantage of linking some interesting bridges between the worlds of

information theory, evolutionary dynamics and biology. Indeed in information theory

it also resembles the classic structure of a Neural Network and can therefore easily

accommodate the mapping of classic and less classic financial strategies. In evolution-

ary dynamics, Moran like Processes can easily be formalized through similar means.

In biology the topological structure is a potent amplifier of selection [30].

Note also that the HFFF from Figure 6.6 can easily be trained using a classic error

back propagation algorithm like the one described in algorithm (6)24. We see next

how the HFFF models classic financial strategies starting with the Exponentially

Weighted Moving Average (EWMA).

24Where the activation function would be linear so as to make sure the MLR strategy can be
exactly replicated.
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Figure 6.6: The High Frequency Financial Funnel

6.5.2 The EWMA Architectures

6.5.2.1 Trend Following

A very common trading strategy is known as trend following (TF). The idea of TF is

that if the price has been going a certain way (e.g., up or down) in the recent past,

then it is more likely to follow the same trend in the immediate future.

Definition (TF): The mathematical formulation of a TF can be diverse but in the

context of this thesis we use an exponentially weighted moving average (EWMA):

x̂t = (1− λ)xt + λx̂t−1, λ ∈ [0, 1] (6.5)

Remark In this equation, λ ∈ [0, 1] represents the smoothness parameter. The lower

the λ, the more the next move will be conditional to the immediately adjacent previous

move. Conversely, the higher the λ, the more the future move will be function to the

long term trend. The idea being that through a simple filtering process, the noise

is extracted from the signal which then returns a clean time series x̂t traders like to

seldom use directly or sometimes by using it with couple of other similar equations

166



Algorithm 6: Backpropagation

Input: topological structure H with unoptimized weights
Output: topological structure H with optimized weights
for d in data do

Forwards Pass
. Starting from the input layer, do a forward pass trough the network,

computing the activities of the neurons at each layer.
Backwards Pass

. Compute the derivatives of the error function with respect to the
output layer activities

for layer in layers do
. Compute the derivatives of the error function with respect to the

inputs of the upper layer neurons. Compute the derivatives of the
error function with respect to the weights between the outer layer
and the layer below. Compute the derivatives of the error function
with respect to the activities of the layer below.

. Updates the weights

. Return Net with updated architecture

with a different value of λ and therefore defining a signal as a difference of these

various filtered time series.

Proposition 6.5.1 The HFFF can model trend following strategies.

Proof We set to 0 all the unnecessary connections: ∪j∈[1,4]w
i
s̄,j = 0, ∪j∈[1,4]w

i
s,j = 0,

∪j∈[6,9]w
i
s̄,j = 0, ∪j∈[6,9]w

i
s,j = 0, ∪j∈[1,4],i∈[1,3]w

h1
s̄,i,j = 0, ∪j∈[1,4],i∈[1,3]w

h1
s,i,j ∪j∈[6,9],i∈[1,3]

wh1
s̄,i,j = 0, ∪j∈[6,9],i∈[1,3]w

h1
s,i,jw

h
s̄,3 = 0, whs,1 = 0 and whs,3 = 0.

The proof is illustrated in Figure 6.7 (the weights equal to 0 have not been rep-

resented25). We will address the problem of rigorously formalizing mathematically

what constitutes a trend following in a subsequent paper. However for now, in order

to keep the discussion intuitive, we consider a trend following strategy to have an

architectural DNA which would look like the one in Figure 6.7.

6.5.2.2 Mean Reversion

One of the current hurdles in our research is our classification issue and the Moving

Average Convergence/Divergence (MACD) strategy is a good example as to why.

Indeed the MACD strategy which is technically associated to the EWMA family tries

25Note that there is different ways to achieve the same numerical results though with a different
NN format.
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Figure 6.7: The EWMA Strategy in HFFF format

to capture a behavioural finance meaning which can potentially be classified as an

antithetic TF strategy (which are in the EWMA family).

Proposition 6.5.2 The HFFF can model the MACD strategy.

Proof The MACD was designed to reveal changes in the direction and duration of a

trend. It essentially models difference between a “fast” EWMA
(
S
Nf
t

)
and another

“slower” EWMA
(
SNst

)
. For instance the popular MACD(12,26), M12,26

t is given by:

M
Nf ,Ns
t = S

Nf
t − SNst , (6.6)

Sαt =

{
S1, t = 1

α · St + (1− α) · Sαt−1, t > 1,
(6.7)

α = 2/(Nα + 1), (6.8)

Nα = {Nf , Ns} . (6.9)

The MACD(12,26) (e.g, {Nf , Ns} = {12, 26}) in particular has gained recent attrac-

tion with practitioners. For instance it has gained a great deal of momentum for

algorithmic traders. Figure 6.8 represents a generic MACD. If one is looking specif-

ically for a MACD(12,26), then the weights of the hidden layers must be such that

α12 = 2/13 and α26 = 2/27 and the ones of the output layers must be a simple

subtraction to abide by the above definition.
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Figure 6.8: MACD Strategies (or a difference of EWMAs) in HFFF format

6.5.3 Multi Linear Regression NN Format

The Multi Linear Regression (MLR) is another well known, relatively simple strategy

traders have been using in the industry.

Definition (MLR): Given {yi, xi−1,1, . . . , xi−1,9}ni=1 where n is the sample size, xi

the explanatory variable, yi the dependent variable and εi the error term, then our

MLR is given by:

yi = β1xi−1,1 + · · ·+ β9xi−1,9 + εi (6.10)

= xT
i−1β + εi, i = 1, . . . , n.

where T denotes the transpose, so that xT
i−1β is the inner product between vectors xi

and β. The best unbiased estimator of β is given by β̂ = (xTx)−1xTy and sometimes

also referred to βOLS.

Proposition 6.5.3 The HFFF can model multi linear regression like strategies.

Proof Set ∪j∈[1,4]w
i
s̄,j = 0, ∪j∈[1,4]w

i
s,j = 0, ∪j∈[6,9]w

i
s̄,j = 0, ∪j∈[6,9]w

i
s,j = 0, whs̄,1 = 0,

whs̄,3 = 0, whs,1 = 0, whs,3 = 0.
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Figure 6.9: The MLR strategy in HFFF format

4 3 2 1 0 1 2 3 4 

Figure 6.10: Another MLR strategy in HFFF format

Figure 6.9 represents a possible form of the MLR. As discussed before, different

NN formats may lead to more or less the same strategy (figure 6.10 can translate
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mathematically to what figure 6.9 translates into). We also note that, logistic or

weighted MLR can be modeled through the same HFFF of Figure 6.9 by simply

changing respectively the activation function (from linear to logistic) and the weights.

6.5.4 Regularized NN Format & Lasso Regression

The bias-variance dilemma (BVD) is a technical term representing the optimization

by constraints problem which aims at simultaneously minimizing the error from erro-

neous assumptions (bias) in our learning algorithm or commonly called “under-fitting”

and the error from the out of sample analysis (variance) or commonly called “over-

fitting”. One of the properties of DL is its dual ability to learn the most complicated

functions but also makes it prone to over-fitting. It is therefore recommended that

one applies conscious efforts in studying carefully the associated benefits to complex-

ity ratio in the context of the BVD. Regularization is usually the term employed for

the methodology that aims at finding the optimal model according to the BVD. The

mathematical formalization suggests that we calibrate a function f which takes as

input a potential infinite number of explanatory variable x1, x2, ...xn so as to minimize

the distance to a target y under some cost measure V subject to a penalization, or

regularization term26 R(f). Equation (6.11) refers to this generic Regularization.

min
f

n∑

i=1

V (f(xi), yi) + λR(f) (6.11)

Within the family of Regularized methodologies the Lasso27 methodology is the most

common one and usually associated with the MLR we have seen in the previous

paragraph . They have been gaining momentum in the past few years as they represent

the simplest ML technique which has the reputation to work in systematic trading

provided the strategy and the input variables are sound.

Definition (Lasso Regression): Given {yi, xi−1,1, . . . , xi−1,9}ni=1 where n is the sam-

ple size, xi the explanatory variable, yi the dependent variable and εi the error term,

then our Lasso Regression is formalized by equation (6.12).

yi = β1xi−1,1 + · · ·+ β9xi−1,9 + εi subject to
9∑

j=1

|βj| ≤ λ. (6.12)

where λ is an input parameter that determines the amount of regularisation desired.

26or regularizer.
27Short for Least Absolute Shrinkage and Selection Operator.
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Proposition 6.5.4 The HFFF can model Lasso regression like strategies.

Proof Simply set whs̄,2 = 0, make sure the regularizarion is done exclusively on one of

the remaining hidden layer and finally make sure the remaining hidden layer calibrates

its weight the same way as the βOLS from the MLR. Figure 6.11 gives an illustration.

4 3 2 1 0 1 2 3 4 

Figure 6.11: A Lasso regression in HFFF format

Remark Figure 6.11 and Figure 6.13 look the same but the weights and activation

functions are different.

6.5.5 XOR NN Format

We recall here the truth table associated by the XOR function in Table 6.1. Let us

look at the following known HF relationship. This will justify why the HFFF must

be able to model the XOR function.

Definition (Open Interest): We define the Open Interest (OI) as being the differ-

ence between the total volume on the bid side minus the total volume on the asked

side.
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Remark The concept of OI, in equation (6.13a), and orderbook imbalance [126], in

equation (6.13b), are conceptually the same though the latter is normalised in [−1, 1]

and the former is not. For mally we have

Id = Od
b −Od

a,

Ĩd =
Id

Od
b +Od

a

,

(6.13a)

(6.13b)

where Od
b and Od

a represent the total OI on the bid and ask side of the orderbook in

the d’s depth.

It is known that when the price and the OI are rising then the market is bullish, when

the Price is rising but the Open Interest is Falling then the market is bearish, when

the Price is falling but the Open Interest is rising then the market is bearish, and

finally when the Price is falling and the Open Interest is falling then the market is

bullish. These 4 market situations can be summarized by Table 6.1.

I1 I2 O Price (I1) Open Interest (I2) Signal (O)

1 1 0 Rising Rising Buy

1 0 1 Rising Falling Sell

0 1 1 Falling Rising Sell

0 0 0 Falling Falling Buy

Table 6.1: XOR Relationship Between Open Interest, Price & Signal

Proposition 6.5.5 The HFFF can model XOR like strategies.

Proof Simply set ∪j∈[1,4]w
i
s̄,j = 0, ∪j∈[1,4]w

i
s,j = 0, ∪j∈[6,9]w

i
s̄,j = 0, ∪j∈[6,9]w

i
s,j = 0,

whs̄,1 = 0, whs̄,3 = 0, whs,1 = 0, whs,3 = 0.

Remark We make two observations. First, the preceding proof is visually illustrated

by Figure 6.12 (the weights equal to 0 have not been represented). Second, the XOR

HFFF can be designed in various ways. We will address the problem of rigorously

formalizing mathematically what constitutes an XOR in a subsequent paper. However

for now, in order to keep the discussion intuitive, we will consider an XOR strategy

to have an architectural DNA which would look like the one from Figure 6.12. Figure

6.13 represents an equivalent alternative example of an XOR strategy.
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4 3 2 1 0 1 2 3 4 

Figure 6.12: The XOR strategy in HFFF format

4 3 2 1 0 1 2 3 4 

Figure 6.13: Another XOR strategy in HFFF format
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6.6 Network HFFF & Deep Learning Thoughts

6.6.1 Deep Learning Brief Recent History

Deep learning (DL) has been gaining a great deal of momentum as a subbranch

of Machine Learning for very good reasons. For instance, Deep-Mind was created in

2011 and subsequently bought by Google in 2014 for $400M [125]. DL became famous

for building an AI algorithm, AlphaGo, which outperformed the best Go master in

the world. Though, an event in which a Machine Learning algorithm would beat a

master was not an original feature28, the complexity of the game and the number

of possible moves made the Deep-Mind director speculate that the algorithm worked

intuitively rather than using a pure logic based approach like it was done with chess

and Deep Blue. This extraordinary feature was achieved through an initial deep

neural network architecture in which an initial data set is used for training purposes

and the algorithm, once the data is exhausted, would play an older version of itself

and get incrementally better this way. The ultimate goal behind this self learning

A.I. is to create a general purpose Algorithm.

6.6.2 Methodology

The scientific methodology behind the construction of the game of Go is one we wish

to apply to our HFFFs and create a dynamical ecosystem of quantitative financial

strategies. For instance increasingly advanced strategies compete with each other and

we eventually get an interesting portfolio of strategies as well as their co-evolution.

However, the HFFF itself potentially suffers from similar kind of limitations that

prevented the XOR function to be learnt without 1 hidden layer (see Figure 6.5

and 6.4 as well as paragraph 6.4). A legitimate question can be asked on whether

a single hidden layer is enough. The answer to this question is in fact negative

as Convolutional Neural Network (CNN) have shown more potential compared to

shallow learning [143]29 architectures. Some other studies reveal universal features

of price formation [144] but lack a study on simpler intermediate benchmarks. For

instance in [144] a logistic regression is used as a benchmark. It would have been

interesting to see some more complex intermediate30 benchmarks. We have arbitrarily

taken as hypothesis the HFFF to be good enough to model few critical strategies in

28The computer “Deep Blue” beat Kasparov in May 1997 [142].
29I am however personally skeptical on the results of these published studies but I do accept the

potential of CNN in trading.
30Starting with a shallow NN and increasing in complexity in order to understand whether the

universal features learnt are because the NN is deep or is it because it has a hidden layer.
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the domain of QF and above all proceeding this way is important in unweaving the

black box associated DL.

6.6.3 Our Hypothesis

Ensuing the above we make the following hypothesis: increased NN architectural

complexity leads to the domination of simpler strategies architecturally. For example,

the TF strategy “should dominate” a random swarm of strategies. In turn the MLR

strategy “should dominate” the TF. The idea here is that the MLR strategy “should

capitalize” on areas of the orderbook the TF strategy does not have access to because

the DNA is limiting (information on the OI in absent in the TF but present in

the MLR). Similarly the XOR strategy “should dominate” the MLR by splitting

the OI surface in additional zones that the MLR cannot understand (lacking the

necessary hidden layer). Figure 6.14 illustrates these hypotheses. In some way you

TF rand

MLR XOR …

farm

2

3

1

5

4 6

MLR XOR … farm5rand TF 4321

Figure 6.14: Illustration for intuitive strategy invasion: “denser NN” lead to increased
potential for invasion.

could extrapolate this “invasion” to “increased network complexity” tendencies to a

system that could potentially converge towards a DL infrastructure. It is however

usually accepted in the industry that the likelihood of overfitting increases as one

adds hidden layers. However, we have also seen with Shallow Learning that adding

hidden layers can also allow us to do regularization which removes to some extent the

latter argument against. Natural questions arise here. Are the hypothesis between

“invasion” to “increased network complexity” verified empirically? How does these

different architectures impact each others performance as well as the market? We

study this latter point in the next Chapter.
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Chapter 7

Evolutionary Dynamics & Strategy
Ecosystem

In the context of the bottom-up approach for algorithmic trading for which we dis-

cussed the strategy architecture in chapter 6, here we formalize the interaction rules

at the ecosystem level. More specifically, we go from the premise that a good theory

can be simulated but that a simulation can also help bring intuition on what the the-

ory might be, and these two research tools can go back and forth until the theory is

ironed out [145]. In doing so, we will first do a very brief review of relevant inference

and dynamical models in Section 7.1, Game Theory in Section 7.2 and Theoretical

Biology in Section 7.3. Indeed, we first let the random states of the latter HFFF

strategies interact through the primitive strategies swarm via the market order-book.

We then show, in Section 7.4, that although not necessarily optimal, the simulation

provides a great deal of intuition that help us formalize additional simulations through

a simple MCMC. More specifically we perform few simulations is Section 7.5 in or-

der to illustrate how the computer tournament presented here would work in order

to expose some complexity hurdles. The latter will lead to Section 7.6 in which we

introduce the concept of Path of Interaction1 which we present as the better option

for studying the market using the bottom-up approach.

7.1 Review of Markov Chain Monte Carlo Models

In this section we go over a brief overview of classic Inference and Dynamical models

focusing on Markov Chain Monte Carlo (MCMC). MCMC algorithms [146] sample

from a probability distribution based on a Markov chain that has a desired equilibrium

distribution, the quality of the sample improving at each additional iteration.

1Defined formally later in this Chapter.
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7.1.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a MCMC method that aims at obtaining a

sequence of random samples from a probability distribution for which direct sampling

is difficult [147] because of high dimensions. At each iteration xt, the proposal next

point x′ is sampled through a proposed distribution g(x′|xt). We then calculate:

• a1 = P (x′)
P (xt)

: the probability ratio between the proposed and the previous sample,

• a2 = g(xt|x′)
g(x′|xt) : the ratio of the proposal density in both directions2,

and set a = max(a1a2, 1). We then accept xt+1 = x′ if r ∼ U [0, 1] ≥ a which

essentially means that if a = 1, accept is always true otherwise you accept with a

probability a1a2. The algorithm works best if the proposal distribution is similar to

the real distribution (so feature engineering can be helpful here). Note that the seed

is slowly forgotten as the number of iterations increases.

7.1.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo3 [148], is an MCMC method for obtaining a sequence of

random samples from a probability distribution for which direct sampling is difficult.

It serves to address the limitations of the Metropolis-Hastings algorithm by adding few

more parameters. The idea of the methodology is to reduce the correlation between

successive samples using a Hamiltonian evolution process4.

7.1.3 Gibbs Sampling

Perhaps one of the simplest MCMC algorithms, the Gibbs Sampling (GS), was first

introduced in Geman & Geman [149] in the context of an application to image pro-

cessing. Later it was discussed in the context of missing data problems [150]. The

benefit of the Gibbs algorithm for Bayesian analysis was demonstrated in Tanner and

Wong [150]. To define the Gibbs sampling algorithm, let the set of full conditional

distributions5 be: π(ψ1|ψ2, . . . ,ψp), . . . , π(ψd|ψ1,ψ2, . . . ,ψd−1,ψd+1, . . . ,ψp), . . . ,

π(ψp|ψ1, . . . ,ψp−1). One cycle of the GS, described in algorithm (7), is completed by

sampling {ψk}pk=1 from the mentioned distributions, in sequence and refreshing the

conditioning variables. When d is set to 2 we obtain the two block Gibbs sampler

2Equal to 1 is the proposal density is symmetric.
3Sometimes also referred to as hybrid Monte Carlo though more in the past.
4Targeting states with a higher acceptance rate
5We define π(·) as the probability distribution and by ψi the variable i.

178



Algorithm 7: Gibbs Sampling

Input: Specify an initial value ψ(0) =
(
ψ

(0)
1 , . . . ,ψ

(0)
p

)

Output:
{
ψ(1),ψ(2), . . . ,ψ(M)

}

. Sample:
for j = 1, 2, . . . ,M do

Generate ψ
(j+1)
1 from π

(
ψ1|ψ(j)

2 ,ψ
(j)
3 , . . . ,ψ

(j)
p

)

Generate ψ
(j+1)
2 from π

(
ψ2|ψ(j+1)

1 ,ψ
(j)
3 , . . . ,ψ

(j)
p

)

...
Generate ψ

(j+1)
d from π(ψd|ψ1,ψ2, . . . ,ψd−1,ψd+1, . . . ,ψp).

...
Generate ψ

(j+1)
p from π

(
ψp|ψ(j+1)

1 , . . . ,ψ
(j+1)
p−1

)

. Return the values:{
ψ(1),ψ(2), . . . ,ψ(M)

}

described by Tanner & Wong [150]. If we take general conditions, the chain generated

by the GS converges to the target density as the number of iterations goes towards

infinity. The main drawback with this method however is its relative computational

heavy aspect because of the burn-in period. The model is described in pseudo-code

in algorithm (7).

7.1.4 Ordered Over-relaxation

Over-relaxation is usually a term associated with a Gibbs Sampler but in the context

of this subsection we discuss Ordered Over-relaxation. The methodology aims at

addressing the slowness associated in performing a random walk with inappropriately

selected step sizes. The latter problem was addressed by incorporating a momentum

parameter which consist of sampling n random variables (20 is considered a good

[151] number for n), sorting them from biggest to smallest, looking where xt ranks:

say at p’s position, amongst the n variables, and then picking n−p for the subsequent

sample xt+1. This form of optimal “momentum” parameter design is a central pillar

of research in MCMC [152].

7.1.5 Slice Sampling

Slice sampling is one of the remarkably simple methodologies [152] of MCMC which

can be considered as a mix of Gibbs sampling, Metropolis-Hastings and rejection

sampling methods. It assumes that the target density P ∗(x) can be evaluated at
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any point x but is more robust compared with the Metropolis-Hastings especially

when if comes to step size. Like rejection sampling it draws samples from the volume

under the curve. The idea of the algorithm is that it switches vertical and horizontal

uniform sampling by starting horizontally, then vertically performing “slices” based

on the current vertical position. MacKay made quality contributions especially when

it comes to its visual representation [151].

7.1.6 Multiple-try Metropolis

One way to address the curse of dimensionality is the Multiple-try Metropolis which

can be though of as a enhancement of the Metropolis-Hastings algorithm. The former

allows multiple trials at each point instead of one by the latter. By increasing both

the step size and the acceptance rate, the algorithm helps the convergence rate of

the sampling trajectory [153]. The curse of dimensionality is another central area of

research in MCMCs [152].

7.1.7 Reversible-Jump

Another variant of the Metropolis-Hastings, and perhaps most promising methodol-

ogy when it comes to our application is the Reversible-jump MCMC (RJ-MCMC)

developed by Green [154]. One key factor of the RJ-MCMC is that it is designed to

address changes of dimensionality issues. We face a dual type issues around change

of dimensionality. The first being the frequency of each strategy in an ecosystem and

the second element being the HFFF which branching structure and size changes as

a function of the strategy6. More formally, let us define nm ∈ Nm = {1, 2, . . . , I},
as our model indicator and M =

⋃I
nm=1 Rdm the parameter space whose number of

dimensions dm is function of model nm (with our model indicators not needing to be

finite). The stationary distribution is the joint posterior distribution of (M,Nm) that

takes the values (m,nm). The proposal m′ can be constructed with a mapping g1mm′

of m and u, where u is drawn from a random component U with density q on Rdmm′ .

The move to state (m′, n′m) can thus be formulated as (m′, n′m) = (g1mm′(m,u), n′m).

Function gmm′ := (m,u) 7→ (m′, u′), with (m′, u′) =
(
g1mm′(m,u), g2mm′(m,u)

)
must

be one to one, differentiable, and have a non-zero support: supp(gmm′) 6= ∅, in or-

der to enforce the existence of the inverse function g−1
mm′ = gm′m (itself differentiable

as well). Consequently (m,u) and (m′, u′) must have the same dimension, which

is enforced if the dimension criterion dm + dmm′ = dm′ + dm′m is verified (dmm′ is

6See in section III and Figures 6, 9, 10 and 11.
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the dimension of u). This criterion is commonly referred to as dimension matching.

Note that if Rdm ⊂ Rdm′ then the dimensional matching condition can be reduced to

dm + dmm′ = dm′ , with (m,u) = gm′m(m). The acceptance probability is given by

a(m,m′) = min
(

1,
pm′mpm′fm′ (m

′)
pmm′qmm′ (m,u)pmfm(m)

∣∣∣det
(
∂gmm′ (m,u)

∂(m,u)

)∣∣∣
)

, where pmfm, the poste-

rior probability is given by c−1p(y|m,nm)p(m|nm)p(nm) with c being the normalizing

constant. Many problems in data analysis require the unsupervised partitioning.

Roberts, Holmes and Denison [155] re-considered the issue of data partitioning from

an information-theoretic viewpoint and shown that minimization of partition entropy

may be used to evaluate the most probable set of data generators which can be

employed using a RJ-MCMC.

7.2 Game Theory Review

In this Section we present relevant concepts from the world of Game Theory.

7.2.1 Prisoner’s Dilemma

The prisoner’s dilemma (PD) is a well known standard example of a game. The way

it is usually explained is in the context of a situation involving 2 prisoners who have

organized illegal actions for which they have been caught by a third party (the police)

who however needs confessions from either of the prisoners in order to abide by the

complex legal proceedings. The prosecutor wants to close the case and send someone

to prison (at least one of the two suspects), so he offers a deal involving a confession

against a more lenient judgment. Both captives are offered this deal independently

and away from each other. If the criminals both cooperate (C), nobody goes to prison

but they each get a heavy fine. If one denounces7 (D) the other, then he will be free

without any fine, but the one being denounced has to go to prison and get a fine. If

they each denounce each other they go to prison without a fine. Broadly speaking

that little story can be formalized into a 2 by 2 matrix8 with CC, CD, DC and DD

with respective payoffs (2,2), (0,3), (3,0) and (1,1). Although the prisoners should

clearly cooperate here, given that they do not know what the other is going to do,

by expectation (with equal probability for a C and a D) any of the two users should

denounce the other given that the expectation of the payoff for denouncing is 2 as

opposed to a 1 for a cooperation. This is the reason why this game theory concept is

referred to as a “dilemma”.

7Sometimes also referred in the literature as “Deceits”.
8Figure 7.1a.
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ALL C: CCCCCCCCCCC … 
Vs. 
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WSLS: CDCDCDCDCD … 
Vs. 
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ALLD : DDDDDDDDD … 
Vs. 
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Vs. 
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ALLD: DDDDDDDDD  … 
Vs. 

TFT: CCCDCDCDCDCD … 
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ALLD ALLC 
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WSLS rand 

d) War & Peace Chart 

TFT:  CCCCCCDCCCC … 

GTFT: CCCCCCCCCC … 
Vs. 

GTFT:  CCCCCCDCCCC … 

ALLC:  CCCCCCCCCC … 
Vs. 

Figure 7.1: Some classic Game theory Representations [28, 29, 30, 31]

7.2.2 Axelrod’s Computer Tournament

However this optimal strategy, in a “single iteration” presented in Section 7.2.1,

changes when the game becomes iterative. This concept was formalized by Robert Ax-

elrod [28, 29]. Indeed, he designed a computer tournament aiming at understanding

what makes a strategy optimal in the context of an ecosystem in an iterative format.

In that occasion he invited Mathematicians, Computer Scientists, Economists and

Political Scientists to code a strategy they believed could win such tournament with

the constraints of PD rules in which it is not known when the tournament will stop9.

Many strategies were thrown into this ecosystem in this form of computer tourna-

ment. The range of strategies went from being very simplistic like “Always Deceit”

(AD)10 to many other more complicated strategies which generic representation can

9E.g., it is by expectation best to deceit if one plays the PD only once. By iteration he should
always deceit on the last move, but knowing this, the opponent should also deceit. Using this logic
each player should deceit on the next to the last move and the same logic kicks in and very quickly
one is led to the conclusion that he/she should deceit from the very first move.

10or its mirror: the AC “Always Cooperate” (AC) strategy.
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be looked at in Figure 7.1b. Surprisingly the Tit For Tat (TFT) strategy came at

the top of this tournament. The TFT is considered, in the literature, to be a nice

strategy, meaning that it is never the first to deceit (its first move is by design to be

a C), but it is also a strategy that is able to retaliate in situation in which it was

previously deceived. Finally, it is a strategy that is able to forgive: meaning that if

it sees that the adversary algorithm has decided to cooperate after a deceit, then he

switches back to a C.

7.2.3 Evolutionary Dynamics

Martin Nowak [30] enhanced some of Axelrod’s work by introducing new strategies

and further developing the concepts of invasion/dominance11 within a competitive

strategic ecosystem. For instance, we can see from Figure 7.1d that some strategies

invade others but these latter strategies can be, in turn, invaded by other ones which in

turn can be invaded by the very first strategy mentioned and induce cycles12. Indeed

an ecosystem composed of a set of unbiased random strategies (that would randomly

cooperate (C) or deceit (D)) would invite the invasion of an ALLD (always defect)

kind. In turn the frequency of ALLD would take the ecosystem which would invite

the TFT strategy which would benefit from the mutual cooperation within the same

proximity. This process continues in a similar fashion. Figure 7.1d) exposes how some

of these strategies may interact with each other. The following additional information

may help in refreshing what some of these acronyms mean: The main takeaway from

Acronym Strategy Description

TFT Tit for Tat Developed in the previous Section

GTFT Generous Tit for Tat Less grudge prone than TFT

WSLS Win-Stay, Lose-Shift Outperforms TFT [30, 31]

ALLC Always Cooperates Self explanatory

ALLD Always Deceits Self explanatory

rand Random Strategy Outputs a C or a D with equal probability

Table 7.1: Evolutionary Dynamics Related Strategies

this parallel was to expose how the rise and fall of strategies can easily be engineered

11by extension when applied to finance some strategies may dominate and invade others.
12one may extrapolate that economical cycles may be influenced by similar kind of processes.
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through simple systematic rules based on an ecosystem and how complexity can be

induced from simple rules. Figure 7.1 summarizes some of the main messages from

Axelrod’s [28, 29] and Nowak’s [30, 31] work.

7.2.4 Minority Game

7.2.4.1 A Short Introduction

Extending some of the ideas we discussed in an economical context is not new. For

instance the Minority Game (MG) [156], considered to be a simple congestion game,

involves players who need to choose between two options (+1,−1). Those who have

selected the option chosen by the minority “win”. Figure 7.2 illustrates the game. The

−1 −1 −1    −1
−1 −1 +1    −1
−1 +1 −1    +1  
−1 +1 +1    −1
+1 −1 −1    −1
+1 −1 +1    +1
+1 +1 −1    −1
+1 +1 +1    +1 

input output

+1
N

−1−1action +1

minority rule

m

...−1 +1 +1 −1 −1 +1 +1

+1

next winning group

feedback

Figure 1: Left: An example of an strategy form = 3. Right: Cartoon of the MG model for a given
time step: in this case the strategy maps the last three winning groups (m = 3) into the agent decision.
Solid thick lines mimic how the information flows in the system: theN agents take the lastm numbers
(−1,−1,+1 in this case) from the sequence of winning groups and performan action accordingly. The
N actions are transformed into the next winning group (+1 in this case) through the minority rule. This
information is shared with the agents for their own feedback[Eq. (2)] and becomes the next number in
the sequence of winning groups.

the prediction of a strategy is given by itsµ(t) ∈ {1, . . . , 2m} component, whereµ(t) is a number
whose binary representation correspond to the last winninggroups1. If we denote~I(t) the vector whose
components are zero excepting theµ(t) component which is one, then the prediction of strategy~r α

i is
given by~r α

i · ~I(t). For example, if the last three winning groups were−1,+1,+1 thenµ(t) = 4 and
~I(t) = (0, 0, 0, 1, 0, 0, 0). Thus, strategies are all possible2m-dimensional vectors with±1 components.

Adaptation comes in the way agents choose at each time step one of theirs strategies: they take
the strategy within their own set of strategies whose performance over time to predict the next winning
group is biggest. In order to do that each agenti assigns virtual pointspαi (t) to his strategyα after each
time stept when they predicted correctly the winning group:

pαi (t+ 1) = pαi (t)− ~r α
i · ~I(t) g[A(t)] (2)

whereα = 1, . . . , s andi = 1, . . . , N . However these points are only virtual points as they recordonly
agents’ strategies performance and serve only to rank strategies within each agent set. After timet agent
i takes the first strategy in his personal ranking which tells him what to do in the future. If we denote
agenti best strategy at timet in his ranking asβi(t) ∈ {1, . . . , s},2 then his action at timet is given by:

ai(t) = ~r
βi(t)
i · ~I(t). (3)

The fact that this personal ranking can change over time makes the agents adaptative: the ranking of
each agent’s strategies can change over time and thenβi(t) could be different at different times.

1In the binary representation ofµ(t) we make the correspondence−1 ↔ 0 and+1 ↔ 1. Thus, if the last winning groups
were−1,+1,+1 the binary representation ofµ(t) is 011 andµ(t) = 4.

2When two strategies have the highest number of points, the best strategy is chosen by coin tossing.

5

Figure 7.2: Minority Game (right) with m = 3 & possible strategy Table (left) [32]

game was latter formally studied in its mathematical details in [157] with a statistical

mechanics perspective. More formally, the game consists of N (odd) agents. At each

time step, t the N agents take an action ai(t) ∈ {−1,+1} with i = 1, . . . , N . The

total “Market” action is calculated according to equation (7.1).

A(t) =
N∑

i=1

ai(t). (7.1)

Each of the N agents is given a payoff given by equation (7.2).

pi(t) = −ai(t)g [A(t)] , (7.2)
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where g(x) = sgn(x) though this latter function can find other forms. The winning

outcome W (t + 1) = sgn [A(t)]. At this stage of the analysis, we assume arbitrarily

that the agents all have the same memory and they can only remember the m last

winning outcomes, W (t+ 1),W (t), . . .W (t+ 1−m) and that their actions can only

be sampled from a set of strategies, all using a weighted average of these outcomes.

The number of available strategies is by construction 22m = s and their prediction is

given by its µ(t) ∈ {1, . . . , 2m} components (number whose representation {−1, 1} is

the last winning group). Let
#»

I (t) be the vector with zero components except its µ(t)

component. The payoff of each strategy α of agent i is given by equation (7.3).

pαi (t+ 1) = pαi (t)− #»r αi ·
#»

I (t)g [A(t)] . (7.3)

These are considered intermediate calculations as only the best performing strategy

gets to decide what to do next. We call βi(t) ∈ {1, . . . , } the best strategy of agent i

then the action in given by equation (7.4).

ai(t) = #»r
βi(t)
i · #»

I (t). (7.4)

Though the optimal strategy can be obviously changing, and therefore ultimately

modify the dynamic of the market some interesting seasonality were observed [32].

For instance in Figure 7.3 we can clearly see patterns appearing A(t). In Figure 7.4
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Figure 2: Time evolution of the attendance for the original MG with g(x) = x andN = 301 ands = 2.
Panels correspond tom = 2, 7 andm = 15 from top to bottom. Periodic patterns can be observed for
m = 2 andm = 7.

Finally, the information~I(t) is updated by adding the last winning group: the only nonzerocompo-
nent of~I(t+ 1) is theµ(t+ 1) one which is given by [14]

µ(t+ 1) = [2µ(t) + (W (t+ 1)− 1)/2]modP, (4)

wereW (t+ 1) = signA(t) is the winning group.
Equations (2) and (3) together with the implicit ranking of each agent’s strategies define the process

of adaptation. Note that the minority rule is encoded in the functiong(x) of the attendance and appears
in the way public information~I(t) is built and also when virtual points are given to the strategies.
Finally, interaction between agents in eq. (2) is through the attendanceA(t) which is of the mean-field
type. The heterogeneity among agents shows up at the set of~r α

i which could be different for different
agents.

An interesting point is to observe that the variables which define the state of the game at each
time step arepαi (t) together with the public information~I(t). But, on the other hand, eq. (4) and (2)
introduce a non trivial feedback in the dynamics since the state of the system at timet depends on the
lastm winning groups. This is one of the characteristic features of the MG, since the dynamics given
by eqs. (2)-(4) is non-local in time.

4 Coordination due to adaptation
It is not worth an intelligent man’s time to be in the majority. By definition, there are already
enough people to do that.
Godfrey Harold Hardy

Initial studies of the MG model relied in simulations [9, 12,13, 45, 38]. Typical simulations of
the MG in its original formulationg(x) = sign(x) are given in figure 2. As we mentioned in the
introduction, the aggregateA(t) never settles down and it fluctuates around the comfort level,A(t) = 0,
as observed by Arthur in his paper [3]. Thus we have〈A(t)〉 = 0 where〈· · ·〉 is a time average for long
times and· · · is an average over possible realizations of~r α

i . Despite its trivial mean value the possible

6

Figure 7.3: A(t) with m = 15, 7, 2 with visible seasonality [32].

we can observe that σ2/N is only a function of α = 2m/N , which considering the

complexity of the interactions between the set of agents can be quite remarkable.

Generally speaking we observe that simple economical games can yield very complex

systems but that “physical laws” (e.g. Figure 7.4) can emerge out of this complexity.
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Figure 3: Volatility as a function of the control parameterα = 2m/N for s = 2 and different number of
agentsN = 101, 201, 301, 501, 701 (�, ♦, △, ⊳, ▽, respectively). Inset: Agent’s mean success rate as
function ofα.

values ofA(t) display a nontrivial shape and the fluctuations are important [9]. Moreover for small
values ofm the attendance display time periodic patterns which are lost for large values ofm.

4.1 Volatility

While the behavior of〈A(t)〉 is somehow trivial, fluctuations ofA(t) around its mean value given by
the varianceσ2 = 〈[A(t) − 〈A(t)〉]2〉 have a more interesting behavior (see figure 3). First note thatσ
is related to the typical size of the losing group, so the smaller σ, the more winners are in the game. The
varianceσ2 is usually known as the volatility or (the inverse of) globalefficiency. The behavior ofσ2

as a function of the parameters of the modelm, s andN shows a quite remarkable behavior [45, 53]:

• It was found by extensive simulations thatσ2/N is only a function ofα = 2m/N for each value
of s (see figure 3). This finding not only identifies the control parameter in this model,α, but
also paves the way for the application of tools of statistical mechanics in the thermodynamic limit
N → ∞. Since qualitative results are independent ofs ≥ 2 we take the simplest cases = 2 for
the rest of the chapter.

• For large values ofα, σ2/N approaches the value for the random choice gameσ2/N = 1, i.e.,
the game in which each agent randomly choosesai(t) = −1 or ai(t) = 1 independently and with
equal probability at each time step.

• At low values ofα, the average value ofσ2 is very large, actually, it scales likeσ2/N ∼ α−1

which means thatσ ∼ N and thus the size of the losing group is much larger thanN/2.

• At intermediate values ofα, the volatilityσ is less than the random case, and it attains a minimum
value atα ≃ 1/2. In this region, the size of the losing group is close toN/2 (which is the
minimum possible size for the losing group).

7

Figure 7.4: Relation between σ and m N = 101, 201, 301, 501, 701 [32].

This latter point has been elegantly raised in the finance’s scientific literature [16]

but not perhaps enough incorporated. More specifically though the problem is clearly

understood [16, 158], the current approach to the scientific method is still top-down.

7.2.4.2 Criticism

Though rigorous in the scientific method13 and incorporating interesting features

such as the possibility of non rational agents [157], the rules of the game seem to have

been chosen to reveal something interesting about the physics of the game rather

than attempts at genuinely reproducing a realistic economical model14. This point

of view is, however, personal and disputed15 [70]. Another weak argument for the

Minority Game is that is assumes perfect synchronisation. The latter16 cannot be

achieved; even worse, all the trade orders arrive sequentially, hence simultaneity is

a theoretician’s phantasm at best [159]. Also in a pure trading point of view it is

really the combined notional of the market participants that decides on the direction

of the market. To clarify, let us imagine an ecosystem of algorithm trading on the

market: the majority of these algorithm are TFs following an upward trend and there

is within these algorithms one (the minority) which has a contrarian view of the

market. This algorithm would do very poorly in this ecosystem but would prevail in

13Rules at the microscopic level reveal laws at the macroscopic level [157].
14The minority game remain an economical model since it is a game theoretical model but perhaps

not realistic when applied to the Financial markets.
15Jean Philippe Bouchaud believes that this point of view is “harsh”. More specifically he feels

that some of the findings associated to the Majority Game [159, 160, 161] would help nuance our
opinion.

16Like it is the case the Minority Game.
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the MG. Choosing the more realistic assumption, and perhaps renaming the exercise

the majority game instead, would yield uninteresting mathematical results but would

be slightly more realistic in its economical assumptions17. Also, a very important

feature of real economic models for algorithmic trading is the volume traded18 but

this latter point is entirely neglected in the MG. Generally speaking, there are also

additional points points orthogonal to the volume argument. For instance, economic

theory has been dominated in the past two centuries with the idea that in acting

selfishly, agent contribute in a way that is most advantageous to society [162]. This

latter point contrasts with the MG, where the minority wins but the extend at which

the minority wins is lower than the total lost by the majority. This means that

iteratively the game is not “win-win” or even “zero-sum” but “lose-lose” which does

not reflect the increased utility the economy has had on our lives as real agents.

7.3 Theoretical Biology Review

It is widely accepted, in the context of ecosystem modelling, that complexity should

always arise from simplicity [163, 53]. The stability of an ecosystem, once complex

is however more prone to a debate. More specifically, it was discussed in the 1960s

[164] that complexity in an ecosystem insures its stability or to keep the same jargon

communities not being sufficiently complex to damp out oscillations have a higher

likelihood of vanishing [165, 166]. The diversity-stability debate has in fact been

ongoing since the 1950s [167] with no consensus being ever reached. It was initially

believed that nature was infinitely complex and therefore more diverse ecosystem

should insure more stability [167, 168, 169]. This assertion was however ultimately

challenged through rigorous mathematical specification [163, 170, 171] in the 1970s

and 1980s by using Lotka-Volterra’s Predator/Prey model initially published in the

1920’s [172, 173] with similar “non-intuitive” results. More recently the work has

been extended to small ecosystems of three-species food chain [174]. The intuitive

three species example we have chosen to discuss is the one containing Sharks (denoted

by z parameter), Tunas (denoted by y parameter) and Small Fishes (denoted by x

parameter), the idea being that tunas eat small fishes and tunas are eaten by sharks.

Without loss of generality sharks are assumed to die of natural causes and their

decomposing bodies join an infinite supply of food for the small fishes. This idea can

be formalized by a set of differential equations summarized in equation (7.5).

17Note that this latter point has been disputed with the rational that the market favours the
sellers when most want to buy and vice versa [157].

18Though it does increase ultimately its complexity.

187



Definition (Lotka-Volterra 3-Species Predator Prey Model): Let a be the nat-

ural growth rate of species x(t) (with R x→ R) in the absence of predator, d the one of

y(t) (with R y→ R) in the absence of z(t) (with R z→ R). We also have b representing

the negative predation effect of y(t) on a and e the one of z(t) on y(t). We also have g

which mirrors the efficiency of reproduction of z(t) in the presence of prey y(t). The

relationship between x(t), y(t) and z(t) is given by equation (7.5).





dx(t)
dt

= ax(t)− bx(t)y(t),
dy(t)
dt

= −cy(t) + dx(t)y(t)− ey(t)z(t),
dz(t)
dt

= −fz(t) + gy(t)z(t).

(7.5)

Remark Note that we assume that x(t) never dies of natural causes (if it’s too old

then it can’t run fast enough to outrun its y(t) predators) but this is not the case for

z(t) since it is an alpha predator and therefore needs some natural death rate which

is controlled by f .

This relatively simple system of three equations has been studied extensively [167]

for stability, for example via Lyapunov coefficient [175] and the eigenplane of the

Jacobian matrix [174]. There are different traditional ways to represent stability or

instability for these kind of equations, for example Figure 7.5 represents a 2D stable

representation and Figure 7.8 represents a particular 3D unstable representation. For

the latter case, we can notice that the oscillations between the three species increases

to the point, here not shown, where the amplitudes are so big that z goes extinct

and at which point x and y start oscillating, with however a constant amplitude.

We refer the motivated reader back to the original paper [167] for similar examples

with interesting (idiosyncratic) properties. One interesting point to notice is that

in cases of “relative best stability”, in which a = b = c = d = e = f = g = 1%

from Figure 7.5, we have oscillations which are stable through time with the highest

peek from the ultimate prey (x) coming first and the lowest peek of the ultimate

predator (z) coming last. This suggests that sophisticated working trading strategies

need enough prey like strategies in the same ecosystem to get them to be profitable.

One other interesting observation is that the total ecosystem population as depicted

in the thick black line from the same figure suggests that it itself oscillates which

may not necessarily be intuitive. Indeed one could have speculated that the loss of

a species directly benefits the other and that therefore the total population should

stay constant. This interesting observation suggests that the oscillations of a financial

market may likewise be subject to similar dynamics: a financial ecosystem may go

through periods in which it thrives followed by period in which it declines. The
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economy itself is somewhat a noisy version of Figure 7.8. The stunning similarities
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Figure 7.5: Stable 3-species Lotka-Volterra Simulation

of the competitive resource driven biological ecosystem along with some compelling

similarities in some of its cyclical behavior makes the Lotka-Volterra n-species food

chain equation an interesting candidate when it comes to studying the stability of the

financial market especially the electronic trading markets because of its systematic

rule based approach and non zero sum game like roots. However, fees and transaction

costs are obviously not taken into consideration in the biological system described.

7.4 Formalizing the Evolutionary Process

With the aim of providing intuition with respect to the sort of interaction that may

occur between strategies, we need to formalize the Evolutionary Process (EP), but

first, we go through few definitions.

Definition (Evolutionary Process): In the context of our study, the set of rules

that control the continuous change of an ecosystem and more specifically its agents

(e.g. strategies), will be arbitrarily called Evolutionary Process.

Definition (Iteration Types): We define two types of iterations. The first type

of iteration will be called Micro, corresponding to an infinitesimal increment in our

environment namely, an increment in which a strategy S analyses and in turn changes

the order book by placing an order itself. The second type of iteration will be called
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Macro, corresponding to a generational increment in our environment namely, a

certain equal number of Micro increment per strategy leading to a calculation of

profit and loss (P&L) and a survival process19 based on this P&L.

Definition (Strategy): A strategy will consist of an HFFF H, a rolling P&L P and

a common orderbook O as shown by equation (7.6).

S , {P ,H,O} . (7.6)

Definition (Alive/Survived Strategy): A strategy is defined as alive if it does

currently take action on the EP.

Definition (Dead Strategy): A strategy is defined as dead if it no longer takes

actions on the EP.

Definition (Born Strategy): A strategy is born if it is about to take action on the

EP for the first time.

Definition (Strategy Classification): We will label Nk the number of total alive

strategies, N e
k the number of trend following like strategies, Nm

k the number of multi-

linear regression like strategies, N r
k the number of xor like strategies and N o

k the

number of other unclassified strategies20. The relationship between these entities can

be summarized by equation (7.7).

Nk = N e
k +Nm

k +N r
k +N o

k . (7.7)

Remark One may ask why we have not chosen the first letters of each of the strate-

gies (“t” for trend following, “m” for multi-linear regression and “x” for XOR strat-

egy). The reason why this has been named this way is because as we will see in

Section 7.3, we wanted to hypothesize a parallel between the biological Predator-

Prey model. Namely we propose that N e
k behaves in mathematical biology like the

number of preys in a Lotka-Volterra (LV) three species equations [174], that Nm
k

behaves in mathematical biology like the number of mixed (both prey and preda-

tor) in the same system of equation and that N r
k behaves in mathematical biology

like the number of super predators as the third species of that system of equations.

The different possible permutations, constraints on the first letters being different for

each type of strategy and the association to the LV three species equation, made the

choice of e, m and r at first glance the most optimal in this qualitative optimization

by constraint problem.
19Explained next.
20This label will be the same in Section 7.3.
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7.4.1 Survival & Birth Processes

The survival, death & birth processes are a set of processes which impact the number

of live strategies Nk at any time k the following way. Let SNk = S(1), S(2), . . ., S(n),

S(n+p), . . ., S(Nk) be the strategies ranked with respect to their P&L from highest to

lowest, we will admit the following definitions:

Definition (Survivor Set): The Survivor set21 is the set of strategies with a pos-

itive P&L. Namely if Sa = S(1), S(2), . . ., S(s) with S(s) ≥ 0 and S(s+1) < 0. We

will subdivide this set by distinguishing the secondary survivors set which cardinality

a2 =
⌊
s
2

⌋
, survive without reproducing and the primary survivors set which cardinal-

ity a1 = s− a2, which survive and have one offspring with a “slightly different DNA”

in form of a conditional resampling of their NN format.

Definition (Birth Process): We denote by the Birth process, the first half of sur-

vived strategies. Namely, if a1 = b =
⌊
s
2

⌋
the strategies S1 . . .Sa1 will both survive

and reproduce and create a set of equal size but with a slightly different HFFF and

with cardinality b = a1.

Definition (Death Process): We denote by the Death process, the set of strategies

with a negative P&L. Namely if Sd = S(s+1), S(s+2), . . ., S(Nk) will disappear from the

market at Macro iteration k + 1.

Remark We can easily see that s = a1 + a2, a1 ≥ a2, a1 = b. Figure 7.6 illustrates

these few definitions.

7.4.2 Inheritance with Mutations

The intuition about the mutation process is that each birth is function of a successful

strategy (the positive P&L of parents S1 . . .Sa1) and should therefore resemble a great

deal to that single parent22 which produced it but be at the same time a bit different

to allow the ecosystem to evolve. We have seen in Section 6.5.1 that the DNA of our

strategies is essentially their HFFF H (which is itself a combination of weights). We

therefore concentrate on performing the re-sampling on the weights of the offspring.

Recall that the pdf of the beta distribution is given by

B(x, α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (7.8)

21Or alternatively alive process.
22So no crossover in this model.
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Figure 7.6: Illustration for the Death and Birth processes in our EP.

with Γ(n) = (n−1)!, 0 ≤ x ≤ 1, and α, β > 0, the shape parameters. This distribution

is interesting because it is defined in a closed interval [0, 1] and can therefore be

rescaled easily through a change of variable to [−1, 1], an interval which is a basic way

of formalizing a normalized importance of each node in the NN format decision making

of Figure 6.6. It also offers a broad range of interesting shapes allowing the possibility

to code a conditional resampling model and therefore make clever proximity changes

around the symbolic levels: −1, 0 and 1. This way we can prevent too large deviations

and rather select small incremental changes and intuitively follow the principles of

selection. We can see that the B(x, 1, 7) or B(1 − x, 1, 7) both concentrate a great

deal of the mass of the distribution towards 0 and 1 respectively. Likewise B(x, 3, 7)

and B(x, 5, 7) provide a more unbiased modification of the deviations since more

symmetrical.
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Definition (Mutation Sampling): Each HFFF is composed of a collection of branches

fromalized by equation (6.3). During a birth each of these branches is sampled ac-

cording to equation (7.9).

D(x̃) = B
( x̃+ 1

2
, α(x̃), β

)
1x̃≤− 1

5
+ B

(
1− x̃+ 1

2
, α(x̃), β

)
1x̃> 1

5
+ f(x̃)1|x̃|≤ 1

5
, (7.9)

where α(x̃) =





1, if 1 > |x̃| ≥ 3
4

3, if 3
4
> |x̃| ≥ 1

2

5, if 1
2
> |x̃| ≥ 1

5

, F (k) =





1
10
, if k ≤ −1

5
8
10
, if |k| < 1

5

1, if k ≥ 1
5

, x̃ ∈]−1, 1[ and β = 7.

Remark The function α(x̃) models the interval of condition and is arbitrarily chosen,

though constructed by noticing that the mode of the Beta distribution is given by
α−1

α+β−2
and also so as to make the intervals loosely equal.

7.5 Evolutionary Dynamics Simulation

7.5.1 Observations

Following Cedric Villani’s [145] comment on the relationship between theory and

simulation, more specifically around how simulations can give us good intuition about

the theory, we lay forward the results which helped us formalize the hypothesis that

we investigate latter on in the chapter more specifically when it comes to the kind

of interactions that may take place. These interactions will be formally addressed

through the concept of Path of Interaction that we will introduce in Subsection 7.6.

However in the meantime, in order to discuss the matter at the intuitive level only

we denote by “HFFF 1” Trend Following (TF), “HFFF 2” Multi-Linear Regression

(MLR) and “HFFF 3” XOR.

Remark Figure 7.7 has been included for illustration purpose only and not as a

supporting material. The strategies were conveniently classified in order to expose

the idea that there ought to be a direct correlation between NN density and likelihood

of being a predator. There is therefore a strong bias in the results (that we are the

first to stress here). These results cannot possible be taken as a strong supporting

evidence but rather as an illustration of what we are trying to test. They could almost

be seen as “philosophy”23 [70]. We describe next those illustrations.

23This is the wording used by Jean Philippe Bouchaud during the viva.
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Figure 7.7: Hypothesis of how an HFTE Simulation should perform.

We may hypothesize the following. First the market is bullish in the first part then

becomes bearish in the next part, while the market is bearish the TF type strategies,

first increases in frequencies then diminishes in the middle of the zones, at which point

the MLR type strategies increases but ultimately decreases when the XOR strategies

frequency increases.

Remark A great deal of simulation were performed to verify the hypothesis, Figure

7.7 represents one of them. However none was conclusive enough for us to present

them in a way that would be transparent. More specifically some classification issues24

and lack of consistency in the simulations results discouraged us to publish some of

these findings. However, in the interest of keeping the intuition alive, let us assume,

temporarily that the simulations were of better quality25.

24We have mentioned in chapter 6.3.
25We will eventually abandon this path and take a more granular approach in Section 7.6.
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7.5.2 Philosophical Interpretation

At the early stages of research, we hypothesized the following incomplete interpreta-

tion: there ought to be a direct correlation between NN density and invasion. Indeed,

TF strategies are what people commonly call self-fulfilling prophecies meaning that

they only work as long as everyone making up the competitive environment follow

the same trend. The biological mirror, as described from Section 7.3, would be an

ultimate prey which given an environment without any predator would never die and

actually grow exponentially. The XOR strategy is hypothesized as being a super

predator strategy (similar to the z parameter in Section 7.3) and feeds on the MLR

strategies. MLR is hypothesized as being both a predator and a prey strategy. It is

supposed to feed onto the TF strategies but is used as prey by the XOR strategies.

The way the MLR should dominate the TF strategy is due to the fact that it looks at

additional leading information on the orderbook (the volumes at the different depth

of the order book) so it should be leading in the trend whereas the TF should be

lagging on the trend. XOR strategies could in this situation only survive if enough

prey (MLRs) are present in the ecosystem otherwise they die. The way the XOR

strategy is assumed to dominate the MLR strategy is due to its ability to “hide its

cards” better and is able to better decipher spurious positions at higher depths of

the orderbook. The XOR strategy is hypothesises as unable to invade the TF strate-

gies on its own since the sophistication of its bait (the systematic strategy built to

bait the MLR) is too complex to “trick” the TF. An analogy could be made with a

professional poker player playing with a beginner whose moves are almost random.

Remark It has been speculated that the need for a bigger brain in the human species

is partly due to the need for human to elaborate deceitful strategies with their rivals

and cooperative strategies with their allies. It is therefore not entirely ridiculous to

associate increased neural network branching (to be roughly understood as increase

in cranial size) with increased strategy complexity. However, increased intelligence

does not necessarily equate to survival. A way to illustrate this is to observe the shark

population, which is considered like an apex predator in the sea but with a relatively

small brain that has not evolved for millennia. By analogy, we could speculate that

strategies with increased complexity may win in the short run but may not necessarily

prevail in the long run. We will tackle these questions more rigorously in Section 7.6

but wanted in the meantime to stress that the problem may be more complex and

less intuitive than what is may look like initially.
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7.5.3 Regulation

7.5.3.1 Optimal Control Theory

The Hamilton-Jacobi-Bellman (HJB) partial differential equation [176] was developed

in 1954 and is widely considered as a central theme of optimal control theory. Its

solution is the value function giving the minimum cost for a given dynamical system

and its associated cost function. Solved locally, the HJB is a necessary condition, but

when, over the entire state space, it is referred to as necessary and sufficient for an

optimum. Its method can be generalized to stochastic systems. Its discrete version is

referred to as the Bellman equation and its continuous version, the Hamilton-Jacobi

equation. Formally we consider the problem in deterministic optimal control over the

time period [0, T ] the equation (7.10):

V (x(0), 0) = min
u

{∫ T

0

C[x(t), u(t)] dt+D[x(T )]

}
, (7.10)

where C[., .] is the scalar cost rate function, D[., .] is the utility at the final state, x(t)

the system state vector with x(0) usually given, and finally u(t) where 0 ≤ t ≤ T is

called the control vector we aim at finding. The system of equations is also subject

to ẋ(t) = F [x(t), u(t)] where F [., .] is a deterministic vector describing the evolution

of the state vector over time.

7.5.3.2 Partial Differential equation Specification

The HJB partial differential equation is given by:

V̇ (x, t) + min
u
{∇V (x, t) · F (x, u) + C(x, u)} = 0, (7.11)

subject to the terminal condition V (x, T ) = D(x). The function V (x, t), commonly

known as the Bellman value function (our unknown scalar), represents the cost in-

curred from starting in x at time t and controlling the system optimally until T . The

function V (x(t), t) is the optimal cost-to-go function, then by Bellman’s principle

of optimality from time t to t+ dt, we have V (x(t), t) = minu {V (x(t+ dt), t+ dt)+∫ t+dt
t

C(x(s), u(s)) ds}. The Taylor expansion of the first term is V (x(t+dt), t+dt) =

V (x(t), t)+ V̇ (x(t), t) dt+∇V (x(t), t) · ẋ(t) dt+o(dt) where (o)(dt) denotes the higher

order terms of the Taylor expansion. Canceling V (x(t), t) on both sides and dividing

by dt, and taking the limit as dt approaches zero, we obtain the HJB equation. Its

resolutions is done backwards in time which can be extended to its stochastic ver-

sion. In this latter case we have min
u

E
{∫ T

0

C(t,Xt, ut) dt+D(XT )

}
, with this time
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(Xt)t∈[0,T ] being stochastic26 and (ut)t∈[0,T ] the control process. By first using Bellman

and then expanding V (Xt, t) with Ito’s rule, one finds the stochastic HJB equation

minu {AV (x, t) + C(t, x, u)} = 0 where A represents the stochastic differentiation

operator, and subject to the terminal condition V (x, T ) = D(x)27.

7.5.3.3 Algorithm Trading Systemic Risk

Given that this thesis proposes that the fluctuations of the markets are linked to

the frequency of the strategies composing the ecosystem of the market, we propose a

model which would take advantage of this assumptions to propose to build the first few

steps of a theory that would help high level regulations. The exercise would consist of

monitoring these strategies interactions and flagging the market when necessary. This

may sound a bit grand or overly ambitious but for the sake of opening up a discussion

or at least exposing the benefits of future research let us develop a bit the argument.

Suppose now that we label strategies of Figure 6.7, 6.9 and 6.13 by respectively x, y

and z and that we use equation (7.5). If we can somehow correctly classify and guess

what the frequency of x, y and z are in the ecosystem, then we can study whether or

not the ecosystem is stable [174]. Now going back to the actual mathematical study

of the stability of the financial market. Answering if a financial market composed of

3 strategies is stable would come to studying the Jacobian matrix J from equation

(7.12).

J(x, y, z) =



a− by −xb 0
yd −c+ dx− ez −ye
0 −zg −f + gy


 (7.12)

More specifically, by examining the eigenvalues of J(x, y, z) we can indirectly gain in-

formation about the future equilibrium of our financial system, an important element

at the regulatory level28. More specifically if all eigenvalues of J(x, y, z) have negative

real parts then our system is asymptotically stable. Figure 7.8 gives an illustration

of a situation in which one of the eigenvalues is negative. Many questions could be

raised here: how can the regulators gain information on the parameters composing

the system of equations (7.5)? Also, the market has surely more than 3 types of

strategies, how many exactly? Are these strategies easily classifiable in terms of prey,

predator and super predator or can you find more subtle instances? It is very likely

that trading desks especially in the high-frequency domain refuse to provide their

sets of strategies for the regulators to study the Jacobian matrix in order to take the

26and needing optimization.
27The randomness has disappeared.
28We assume for the sake of this example that we only have 3 strategies.
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Figure 7.8: Unstable 3-Species Lotka-Volterra Simulation

relevant actions29. However having the strategies on their own would not do much.

It is really the relationship of these strategies that need to be better understood. We

take this opportunity to recall the hypothesis we introduced in our last paper [4]:

Hypothesis: Diversity in financial strategies in the market lead to its instability.

7.6 Path of Interaction

Our first few simulations, despite not fulfilling the burden of proof, opened our eyes

up to issues associated to optimality, need for more scientific rigour and perhaps an

alternative way to fulfill this burden of proof. The concept of Path of Interaction that

we introduce next is an attempt at addressing this alternative methodology.

7.6.1 HFTE Game

7.6.1.1 Definitions

One way to control our simulation issues, is to perhaps take a step back in complexity

in order to gain momentum in constructing a theory with more rigor. With this in

29Instruct the trading desks to increase or decrease their notional so as to enforce a manual
intervention for the sake of the market’s stability.
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mind we have chosen to inspire ourselves from the scientific method used by Axelrod

[28, 29] extended by Nowak’s [30, 31], and to introduce a mathematical object, similar

in spirit to the PD matrix used as a battle ground (Figure 7.1) by the name of Path

of Interaction. In order to do this rigorously. Let us first provide a few definitions.

Definition (Dynamic Mini Order-Book): We denote by Dynamic Mini Order-

Book o, the sequence of length l of static snapshots of the order-book a2,a1Mb1,b2 of

asked, ai, and bid, bi, volumes where i corresponds to the depth of the order book

and M its mid price.

Remark In the context of our study we take l = 4.

Definition (Ranking Rule): A Ranking Rule are the set of directives that decides

the Birth, Death and Survival processes of any Strategy Ecosystem.

Definition (Environment): We call an Environment e of size i a set of evolving

strategies, S = sa, sb, . . . , si of HFFF spanning the one from Figure 6.6 with potential

to interact with each other one after the other via an order-book, a2,a1Mb1,b2 . This will

contain a “seed” consisting of different volumes at different depth that would need to

be clarified for each game.

Remark Note that the Ranking Rules we assume going forward are the one described

by Figure 7.6. The environment can then evolve according to a set of Ranking Rules.

Definition (HFTE Game): We call an HFTE Game the sequence of Environments

composed of 2 strategies, S = sa, sb, . . . , si of HFFF spanning the one from Figure

6.6 with a dynamic mini order-book and P&L.

Definition (Full Order-Book (FOB)): An OB is called full if and only if it has a

volume of 1 on all the depth of the OB.

Definition (Path of Interaction Table): We call a Path of Interaction Table an

HFTE Game decomposed in its most infinitesimal steps.

The top row of the table points to the strategies involved. The row below (2nd row

from the top) is the stage of the HFTE Game. The 3rd row corresponds to the

trading signal. The game starts in a state in which none of the two strategies has

a position (Signal = “N/A”) on the order book. Because each strategy needs some

form of information on the order book, we assume that there is a random seed on the
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order book. There are four possibilities of random seeds corresponding to whether

the price has been going up or down and whether the order book has increased its OI

or decreased it. These four situations are symbolized by the following set of symbols:

�, ↑↓, ↓↑ and �. We have chosen the case of � to illustrate our examples arbitrarily.

The 4th row corresponds to the order book state. The latter can be either full or not.

We will see that this latter point matters but for now let us illustrate this point with

an example.

Example In Table 7.2, we start with P1,1,1,1,1,1 meaning that at the current price

P , we have one order to sell at the first 6 depths of the order book. The 5th row

corresponds to the current price (last completed order) or the midprice if no order

was completed in the current iteration. The 6th row corresponds to the OI. If the buy

side of the order book has one of its orders matched then the OI decreases by 1 (−1

if the opposite occurs). The 7th row corresponds to the price change. If no order is

matched, then the price is approximated by the mid price. The last row corresponds

to the profit and loss. In order to illustrate the Path of Interaction we propose to

go through the details of a TF strategy interacting with another TF. Algorithm (8)

represents our simplified TF strategy and Table 7.2 represent the Path of Interaction

of two strategies following the systematic rules of algorithm (8). In this table,

Algorithm 8: Simplified TF Strategy

Input: s,∆O,∆P
Output: o
. Our simple TF Strategy copies last update’s trend while disregarding OI

if ∆P > 0 then
order← 1

else if ∆P < 0 then
order← −1

else
order← 0

return order

for simplicity30, we represent only one side of the order book: P1,1,1,1,1,1 (for display

purposes seeing that the price only takes one direction in the simulations). Since both

strategies follow the trend, and the order book is full, the price keeps increasing, their

respective P&L keeps increasing and the OI imbalance keeps decreasing31. Table 7.2

30The price dynamics goes in only one direction in this case.
31Note that during the viva of this thesis it was pointed out that the quality of the simulation

would be greatly enhanced by a market making strategy [94] which would incorporate market orders
to insure a minimum bid-ask spread. This is certain a valid point and would need investigation.
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Strategy seed � TF1 TF2 TF1 TF2 TF1 TF2

Iteration 0 1 2 3

Signal N/A +1 +1 +1 +1 +1 +1

OB P1,1,1,1,1,1
0P

1,1,1,1,1
0,0P

1,1,1,1
0,0,0P

1,1,1
0,0,0,0P

1,1
0,0,0,0,0P

1
0,0,0,0,0,0P

Mid 100 101 +102 103 104 105 106

∆OI +1 −1 −2 −3 −4 −5 −6

∆Price +1 +1 +1 +1 +1 +1 +1

P&L [0, 0] [1, 0] [2, 1] [3, 2]

Table 7.2: Path of Interaction for 2 TF Strategies with � Seeds and Full OB

can therefore be seen as a way to illustrate32 that the TF strategies interacting with

each other is “self fulfilling”, a terminology we introduce next.

We introduced, in Section 7.2.3, the concept of Invasion Flow Chart. We translate,

next the same method, for quantitative financial strategies. We go first through few

formal definitions.

Definition (Invasion): A strategy, s, is invasive with respect to an environment,

e when the P&L of s increases in the environment e and if the frequency of s in e

increases as a result. An invasion is always done in the context of an order-book

containing a seed (that needs to be clarified) and a selection process (e.g. Figure 7.6)

that may change from game to game.

Remark Note that the P&L alone does not make a strategy invasive but rather

the latter in conjunction with a genetic algorithm which would discriminate against

strategies with negative P&L and promote through reproduction the ones with a

positive P&L. With time the frequency of successful strategies would increase to the

point in which the ecosystem would the evolve. One of these algorithms was presented

in Figure 7.6. Also note that if a strategy A invades B in an ecosystem, e containing

However, the method presented in this chapter of the thesis is mainly a translation of Axelrod’s
computer tournament [29, 28, 30]. Indeed, as a friendly reminder, Axelrod himself did not propose
all the strategies from inception but rather constructed the platform on which, fellow scientist would
incorporate theirs.

32The formal proof may require more rigour.

201



a seed s1, B could still invade A in the context of another seed s2. The length of the

interaction is also critical. For instance A invades B in an ecosystem, e with s1 only

in the first x iterations but the invasion could be reversed if the iteration increases

(and the order-book therefore changes significantly).

Example For instance, if we assume that the more complex a network is, the more

likely it is to invade, we would expect to see an invasion flowchart like the one in

Figure 7.9. Indeed, if we assume that TF strategies bring some sort of innovation

from a random swarm and if we assume that the MLR sees more information than

the TF (and so on ...) then Figure 7.9 represents a flow chart that exhibits the idea

that complexity and invasion are linked. This chart also assumes that beyond XOR

strategies, the complexity would be such that it would equate to a random strategy or

would alternatively take a complex path which would lead to a “farmer” like strategy.

We will illustrate later on in this chapter that the hypothesis illustrated by Figure

7.9 is not necessarily verified.

MLR 

XOR … 

farm 

5 rand 

TF 

4 

3 

2 

1 6 

Figure 7.9: Illustration for a hypothetical Strategy Invasion Map [4, 3]

Definition (Self-Fulfilling): We call a strategy, s Self-Fulfilling when its frequency

in the environment increases (through a genetic algorithm for example) as a result of

the presence of other instances of the same strategy.

7.6.2 Strategy Tournament

7.6.2.1 Foreword

Before we discuss our Strategy Tournament, in order to avoid the classification issues

mentioned earlier in the thesis, we take their simplest forms. First, let us introduce

the simplified MLR strategy formalized in algorithm (9). The idea of this simplified

version is that Price and OB imbalance both contribute in defining the trading signal.

The last simplified strategy is a simplified XOR strategy formalized in algorithm (10).

A Path of Interaction tournament was implemented in the context of 15 possible
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Algorithm 9: Simplified MLR Strategies

Input: s,∆O,∆P
Output: o

. Simplified MLR Strategy follows the trend until basic OB imbalance
if ∆O + 2×∆P > 0 then

order← 1
else if ∆O + 2×∆P < 0 then

order← −1
else

order← 0
. Return order

Algorithm 10: Simplified XOR Strategies

Input: s,∆O,∆P
Output: o

. Defining simplified XOR Strategy
if (∆O > 0) & (∆P > 0) then

order← 1
else if (∆O > 0) & (∆P < 0) then

order← −1
else if (∆O < 0) & (∆P > 0) then

order← −1
else if (∆O < 0) & (∆P < 0) then

order← 1
else

order← 0
. Return order

games on 7 different timescales: [0, 2, 3, 5, 11, 23, 47]. The choice of these timescales

may be a little odd at first glance but the idea was to increase the timescale on average

by a factor of two while at the same time picking prime numbers. The idea of the

latter is related to an intuition that we had over potential cycles occurring in these

games. An we thought that if the timescales were to be chosen on common factors, it

would create a potential additional layer of complexity which would have prevented

us from seeing the bigger picture33.

Remark In order to use some conventions around strategy sequences for HFTE

games we have chosen the following notation
s1
↪−→ s2 and s2

s1
↪−→ s3 to mean, for the first

case, that strategy s1 changes first the OB, then s2 (and the sequence continues until

the end of the timescale) and, for the second case s3 impacts the OB after s2 (before,

again going back to s1). For example, TF ↪−→ TF means that the environment

33But this again was an intuitive approach.
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is composed of two TF strategies and MLR
TF
↪−→ XOR refers to an HFTE game

composed of a TF, MLR and XOR strategy which OB impact sequence is one which

mimics the intuitive order laid down by the ↪−→ symbol (TF, first, MLR, second and

XOR, third). These symbols are expended into their full form in Tables 7.3 and 7.4

but we thought it would be useful to have a text friendlier version for the analysis.

7.6.2.2 Results

Table 7.3 reports the results of these games for two strategies interacting and Table

7.4 represents the same for 3 strategies. We make several interesting observations.

Proposition 7.6.1 The TF strategy is self-fulfilling on a OB that is full.

Proof We have illustrated this point with Table 7.2. Though only on 4 iterations,

the proof can be expanded on longer timescales using recursion.

Remark The intuition we had [4] around the TF acting like a prey increasing expo-

nentially in frequency in the absence of predator is confirmed. The first connections

to the Lotka-Volterra 3-species predator/prey model is established. It is worthy to

note however that there is a benefit in starting first as the TF1 does better at the

end in this HFTE game. Also note that the Limit Order Book (LOB) is filled for

this example. The rational for filling the LOB is to have some snapshot of an order-

book that would not be biased (no order book imbalance34 is allowed at the game’s

inception). The alternative, an empty order book, would have been less interesting35.

Proposition 7.6.2 A strategy A can invade a strategy B but the latter can invade the

same strategy B if the seed or and the sequence in which these strategies are started

changes.

Example The MLR strategy invades the TF strategy on the longer times scales (in

column s2 of Table 7.3 we can see that for timesclares greater than 3 but lower than

47, the MLR strategy achieves a higher P&L) but when the MLR starts the HFTE

game (column s4 of Table 7.3), then the TF strategy invades the MLR strategy. The

same remark can be made when the XOR strategy take the MLR spot in the same

HFTE set up (column s3 and s7 of Table 7.3).

34Please see [126]in order to get acquainted with this specific terminology
35Though not uninteresting.
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Scenario TF

I��
TF

OCK TF

I��
MLR

OCK TF

I��
XOR

OCK MLR

I��
TF

OCK MLR

I��
MLR

OCK MLR

H~�
XOR

PCK XOR

I��
TF

OCK XOR

I��
MLR

OCK XOR

H~�
XOR

PCK

Round

Key

s1 s2 s3 s4 s5 s6 s7 s8 s9

P&L0 [ 0
0 ] [ 0

0 ] [ 0
0 ] [ 0

0 ] [ 0
0 ] [ 0

0 ] [ 0
0 ] [ 0

0 ] [ 0
0 ]

∆P0 0 0 0 0 0 0 0 0 0

P&L2 [ 0
0 ] [ 0

0 ] [ 0
0 ] [ 0

0 ] [ 0
0 ] [ 0

0 ] [ 0
0 ] [ 0

0 ] [ 0
0 ]

∆P2 0 0 0 0 0 0 0 0 0

P&L3 [ 3
2 ] [ 3

2 ] [ −1
2 ] [ 3

2 ] [ 3
2 ] [ −1

2 ] [ 3
2 ] [ 3

2 ] [ −1
2 ]

∆P3 3 3 −1 3 3 −1 3 3 −1

P&L5 [ 9
7 ] [ −9

8 ] [ −1
4 ] [ −1

10 ] [ 9
5 ] [ 4

5 ] [ 3
5 ] [ 3

9 ] [ 7
−2 ]

∆P5 6 −3 −3 5 −5 −4 5 −4 3

P&L11 [ 45
40 ] [ −39

21 ] [ −1
4 ] [ −50

78 ] [ 15
12 ] [ 14

7 ] [ −9
26 ] [ −16

21 ] [ 7
−2 ]

∆P11 15 11 −3 13 15 −6 11 11 3

P&L23 [ 198
187 ] [ −216

48 ] [ −1
4 ] [ −326

387 ] [ 39
38 ] [ 74

11 ] [ −87
122 ] [ −21

54 ] [ 7
−2 ]

∆P23 33 26 −3 28 36 −10 23 27 3

P&L47 [ 828
805 ] [ −703

354 ] [ −1
4 ] [ −1580

1707 ] [ 96
99 ] [ 290

19 ] [ −459
530 ] [ −27

54 ] [ 7
−2 ]

∆P47 69 −75 −3 58 78 −18 47 27 3

Table 7.3: P&L in Path of Interaction for 2 Strategies with � Seeds and Full OB

Remark Note that what we call “Round” in tables 7.3 and 7.4 corresponds to the

iteration of the game. For instance P&L23 corresponds to the cumulative profit each

strategy has made, competing in the environment up to the 23rd iteration.

Proposition 7.6.3 The Dominance relation is not transitive.

Example This comes to exposing that if a strategy A dominates a Strategy B and

Strategy B dominates Strategy C, this does not mean that Strategy A will dominate

Strategy C. A counterexample for this point is given by s2, s6 and s3 of Table 7.3.
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Scenario
MLR

M�

TF

) 18

XOR

sU^

XOR

M�

TF

) 18

MLR

sU^

TF

M�

MLR

# .4

XOR

yWb

XOR

M�

MLR

' 07

TF

yWb

TF

M�

XOR

# .4

MLR

yWb

MLR

M�

XOR

' 07

TF

yWb

Round

Key

s10 s11 s12 s13 s14 s15

P&L0

[
0
0
0

] [
0
0
0

] [
0
0
0

] [
0
0
0

] [
0
0
0

] [
0
0
0

]

∆P0 0 0 0 0 0 0

P&L2

[
0
0
0

] [
0
0
0

] [
0
0
0

] [
0
0
0

] [
0
0
0

] [
0
0
0

]

∆P2 0 0 0 0 0 0

P&L3

[
3
2
0

] [ −2
3
3

] [
3
2
0

] [ −1
2
0

] [ −1
−2
2

] [
3
2
0

]

∆P3 3 −2 3 −1 −1 3

P&L5

[
4
0
4

] [ −2
−8
0

] [
8
−5
7

] [
5
6
4

] [ −11
−3
20

] [ −3
7
−4

]

∆P5 4 3 −4 −5 −6 −3

P&L11

[ −26
60
−21

] [ −108
61
−36

] [
17
−7
−34

] [
14
−18
−37

] [
10
−26
25

] [ −48
57
−47

]

∆P11 17 −14 7 6 18 16

P&L23

[ −65
−13
119

] [ −164
131
−39

] [
57
−35
−198

] [
54
−62
−201

] [
128
−93
−74

] [
137
145
−96

]

∆P23 31 −32 15 14 45 −46

P&L47

[ −3127
2500
−231

] [ −720
250
−289

] [
233
−187
−910

] [
230
−246
−913

] [
187
−230
−588

] [
553
621
13

]

∆P47 −54 −54 31 30 97 −104

Table 7.4: P&L in Path of Interaction for 3 Strategies with � Seeds and Full OB

Proposition 7.6.4 Having a more complex strategy does not mean it will be invasive.

Example We can observe in column s7 of Table 7.3, that the TF strategy invades

the XOR strategy over the first 47 iterations even-though the XOR strategy involves

a hidden layer, on the contrary to the TF strategy that consist of only 1 input.
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Proposition 7.6.5 All strategies can make money even if the market goes down.

Example See s6 example in Table 7.3.

Proposition 7.6.6 Starting first is not always an advantage.

Example See s5 in Table 7.3 for the example (even with twin strategies).

7.6.2.3 Few Interesting Hypotheses

Finally we wanted to end this chapter by suggesting few hypotheses based on some

of our observations.

0 10 20 30 40
Iteration

100
75
50
25

0
25
50
75

100

P

2 Strategies Ecosystems: [s1, s2, , s9]
3 Strategies Ecosystems: [s10, s11, , s15]

Figure 7.10: Instability increases with an additional strategy.

Hypothesis: In the finite horizon we have looked at, we noticed that all strategies

in our ecosystems can increase their P&L at the same time but all cannot decrease

their P&L at the same time. This observation, again on a finite horizon may not be

true as t→∞.

We noticed this interesting fact with our relatively small sample of HFTE games but

have not been able to find a counter example yet nor been able to rigorously prove

it. The proof might be easier than it seems, using perhaps the pigeonhole principle

but we have not been able to formalize the proof or a sketch.
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Hypothesis: Similar physical laws drive morality36 and HFTE games.

We explain next this seemingly odd and unexpected terminology. In the spirit of

using simple rules at the agent level as a triggering point to complex interactions in

the ecosystem that can turn into laws, we thought that this second hypothesis would

also be inspiring. This latter proposed hypothesis might not be immediately obvious

but there seems to be interesting connection between the TF strategy in an HFTE

game and the TFT strategy in Axelrod’s [28, 28] computer tournament described in

Section 7.2.3. As a reminder the TFT strategy cooperates first and continues doing

so until it is deceited, upon which it deceits on the next move. However, the TFT has

the ability to forgive. This means that, if the opponent agent decides to cooperate

again then the TFT, starts cooperating on the next encounter. The TFT is therefore

considered a nice strategy [48] but adaptable at the same time [30]. So how does

that relate to the TF in finance? Both are successful strategies yet are very simple.

They both replicate the last agent’s move: so they are both “cooperative”37 but are

adaptable38.

Remark This comparison may not seem quite apropos at first or at least it may

not be intuitive. This may be related to the negative bias we have against the moral

aspects of Finance. These are due to many elements but one contributing factor is due

to some of the misconducts in HFT which are more related to unfair advantages in

technology or immoral actions [177, 178] taken in an unfair game based on asymmetric

information about the market. In our research technological advantages are not taken

into consideration.

Hypothesis: Diversity in financial strategies in the market lead to its instability.

Remark Finally we proposed a previously introduced hypothesis we wanted to raise

before concluding this chapter: we noticed, in Figure 7.10 that the 3 strategies ecosys-

tems exhibited more fluctuations than the 2 strategies ecosystems which tend to sup-

port the hypothesis than more diversity in an ecosystem of strategies induces more

instability39 to the market. It does however suggests it empirically but this example

does not constitute obviously a proof. Also, a bigger ecosystem allows for more time

36We refer here to some of the work associate the formal mathematical definition of morality [48],
more specifically in the context of cellular automaton and the iterative prisoners dilemma [29, 28, 30].

37Cooperative in evolutionary dynamics seem to translate into “trending” in QF.
38The TF can change his position on the market if the trend changes.
39This assertion could be challenged with a simulation which additional strategies (such as poten-

tially a market making strategy) would be designed in order to create this stability [94].

208



for a random walk to depart from its expected mean so to some extent the fact that the

3 strategies ecosystem has a higher variance is explained by that increased timescale

but the increased fluctuation seems to go beyond what is expected by the addition of

an additional step. It is also important to point that the stability and diversity debate

has had an interesting breakthrough recently [179]. More specifically, the stability of

the equilibria reached by ecosystems formed by a large number of species with strong

and heterogeneous interactions (therefore more realistic ecological niches) the system

displays multiple equilibria which are all marginally stable. Though this studies is

applied to biological niches, it is not difficult to imagine that a similar result could

be found in an algorithmic trading ecosystem. This would therefore contradict the

hypothesis we have put forward.

In this chapter we have built the humble start of a schemes involving the Bottom-

Up approach to algorithmic trading. We first attempted to reach that objective by

tackling the problem using a simple genetic algorithm methodology. Though intuitive

an interesting, we abandoned this approach because of a series of problem associated,

but not limited to, classification, lack of visibility and lack of optimality. We however,

took this opportunity to shown possible connections to other STEM fields and how

they could be brought in the world of QF through the regulatory door. To study the

problem with more visibility, rigour, and in order to gain momentum, we took a step

back in the scientific approach and formalized the HFTE game as well as the Path

of Interaction concepts. We have also given 15 different kinds of HFTE games split

on 7 different timescales and also presented few interesting observations about the

interesting complexity in the relationship of these strategies, even when simplified.

This study was done with the premise that we knew what strategies were involved

in the ecosystem and in which sequence they act upon this ecosystem. Though

simplistic, in the choice of the available strategies40, the current model give a good

overview of how the method could be enhanced by simply adding more strategies

including market makers. However, market participants are quite secretive in reality

when it comes to their financial strategies. The only observable data on the market

is essentially the price dynamics and the order book. We explore in the next chapter

how inference can be constructed in the Bottom-Up approach when the price dynamic

alone is available.

40The presence of market makers would make the results more interesting [94].
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Chapter 8

Stability of Financial Systems and
Multi-Target Tracking

In this section we take a look at another example in which ML can revolutionize

classic Mathematical Finance as it lays down the foundations for controlling systemic

risk in a challenging electronic trading environment where speed and secrecy are of

utmost importance. More specifically, in Section 8.1, we offer a literature review

of Multi-Target Tracking methodologies starting with the linear, and then moving

to non linear methods. In Section 8.2 we expand the study by connecting some of

the concepts in the previous chapter by constructing a particle filtering methodology

applied to the tracking of ecosystem of financial strategies.

8.1 Classic Methods in Multi-Target Tracking

Multi-Target Tracking (MTT), which deals with state space estimation of moving

targets, has applications in different fields [180, 181, 182], the most intuitive ones

being perhaps military related such as for radar and sonar design. Let us first review

some of the classic models associated to a single target.

8.1.1 Linear Methods

8.1.1.1 Kalman Filter

The Kalman Filter (KF) is a mathematical tool which provides the best estimation

(in a MSE sense) of some dynamical process, (xk), perturbed by noise and influenced

by a controlled process (uk). The estimation of (xk), is based upon observations,

(yk), which are function of these dynamics. A review can be found in [183] and the
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dynamics of (xk) are given by:

xk = Fkxk−1 +Bkuk + wk, (8.1)

where Fk is the state transition model which is applied to the previous state xk−1; Bk

is the control-input model which is applied to the vector uk; wk is the noise process,

which is assumed to be drawn from a zero mean multivariate normal distribution

with covariance matrix Qk, so wk ∼ N(0, Qk). At time k an observation of yk is made

according to equation (8.2).

yk = Hkxk + vk, (8.2)

where Hk is the observation model which maps the true state space into the observed

space. The noise, vk, induced by the observation is assumed to be zero mean Gaussian

white noise with vk ∼ N(0, Rk). We also assume that the noise vectors ({w1, . . . , wk} ,

Algorithm 11: Kalman Filter

Input: array of weights wN1
Output: array of weights wM1 resampled

. Predicted state
x̂k|k−1 ← Fkx̂k−1|k−1 +Bk−1uk−1

Pk|k−1 ← FkPk−1|k−1F
T
k +Qk−1

. Update state
Innovation (or residual)
ỹk ← yk −Hkx̂k|k−1

Covariance
Sk ← HkPk|k−1H

T
k +Rk

Optimal Kalman gain
Kk ← Pk|k−1H

T
k S
−1
k

Updated state estimate
x̂k|k ← x̂k|k−1 +Kkỹk
Updated estimate covariance
Pk|k ← (I −KkHk)Pk|k−1

. Return state
Return wM1

{v1 . . . vk} at each step are mutually independent1. The KF being a recursive esti-

mator, we only need the estimated state from the previous time step and the current

measurement to compute the estimate for the current state. x̂k will represent the

estimation of our state xk at time up to k. The state of our filter is represented

by two variables: x̂k|k, the estimate of the state at time k given observations up to

1That is, cov(vk, wk) = 0 for all k.
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and including time k; Pk|k, the error covariance matrix (a measure of the estimated

accuracy of the state estimate). The KF has two distinct phases: predict and update.

The predict phase uses the state estimate from the previous timestep to produce an

estimate of the state at the current timestep. In the update phase, measurement in-

formation at the current timestep is used to refine this prediction to arrive at a new,

more accurate state estimate, again for the current timestep. The formula for the

updated estimate covariance above is only valid for the optimal Kalman gain. Usage

of other gain values require a more complex formula. The KF methodology has been

summarized by algorithm (11).

Remark Please see original papers [184, 185] for the formal derivation of the model.

Although the KF presents obviously lots of benefits in tracking, its linear constraints

makes it not a the ideal choice for non linear applications.

8.1.1.2 Extended Kalman Filter

The EKF is essentially an approximation of the KF for “non-severely-non-linear”

models. In the EKF the state transition and observation models need not be linear

functions of the state but may instead be differentiable functions. The dynamics and

measurements of the model is presented in equation (8.3).

{
xk = f(xk−1, uk) + wk,

yk = h(xk) + vk.
(8.3)

where f(·) and h(·) are derivable functions and represent the dynamics of x and its

indirect observation respectively. The algorithm is very similar to the one described

in algorithm (11) but with couple of modifications highlighted in algorithm (12)2.

Remark The derivation of the model from algorithm (12) is very similar to the one of

algorithm (11) with couple of exceptions, first Fk and Hk approximations at the first

order of Fk and Hk, we obtain a truncation error which can be bounded and satisfies

the inequality known as Cauchy’s estimate: |Rn(x)| ≤Mn
rn+1

(n+1)!
, here (a− r, a+ r) is

the interval where the variable x is assumed to take its values and Mn is a positive real

constant such that |f (n+1)(x)| ≤Mn for all x ∈ (a−r, a+r). The value of Mn increases

as the curvature or non-linearity of f(·) is more pronounced. When |Rn(x)| increases

it is possible to improve our approximation at the cost of complexity by increasing by

2Note that here Fk = ∂f
∂x

∣∣∣∣
x̂k−1|k−1,uk

and Hk = ∂h
∂x

∣∣∣∣
x̂k|k−1

.
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one degree our Taylor approximation, i.e: Fk = ∂f
∂x

∣∣
f(x̂k−1|k−1,uk)

+ 1
2
∂2f
∂x2

∣∣∣
f(x̂k−1|k−1,uk)2

and Hk = ∂h
∂x

∣∣
f(x̂k|k−1)

+ 1
2
∂h
∂x

∣∣
f(x̂k|k−1)2 .

Algorithm 12: Extended Kalman Filter

Input: array of weights wN1
Output: array of weights wM1 resampled

. Predicted state
x̂k|k−1 ← f(x̂k−1|k−1, uk)
Pk|k−1 ← FkPk−1|k−1F

T
k +Qk−1

. Update state:
Innovation (or residual)
ỹk ← yk − h(x̂k|k−1)
Covariance
Sk ← HkPk|k−1H

T
k +Rk

Optimal Kalman gain
Kk ← Pk|k−1H

T
k S
−1
k

Updated state estimate
x̂k|k ← x̂k|k−1 +Kkỹk
Updated estimate covariance
Pk|k ← (I −KkHk)Pk|k−1

Remark Though the EKF tries to address some of the limitations of the KF by

relaxing some of the linearity constraints it still needs to assume that the underlying

function dynamics are both known and differentiable.

8.1.2 Non-Linear Methods

8.1.2.1 Importance Sampling

Importance sampling (IS) was first introduced in [186] and was further discussed in

several books including in [187]. The objective of importance sampling is to sample

the distribution in the region of importance in order to achieve computational effi-

ciency via lowering the variance of an estimator. The idea of importance sampling is

to choose a proposal distribution q(x) in place of the true, harder to sample proba-

bility distribution p(x). The main constraint is related to the support of q(x) which

is assumed to cover that of p(x).
∫
f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx,

f̂ =
1

Np

Np∑

i=1

W (x(i))f(x(i)).

(8.4a)

(8.4b)
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In equation (8.4a) we write the integration problem in discrete time with equation

(8.4b) the numerical approximation where Np, usually describes the number of in-

dependent samples drawn from q(x) to obtain a weighted sum to approximate f̂ ,

W
(
x(i)
)

=
p
(
x(i)
)

q (x(i))
,

W
(
x(i)
)
∝ p

(
x(i)
)
q
(
x(i)
)
,

(8.5a)

(8.5b)

and where W (x(i)) in equation (8.5a) is the Radon-Nikodym derivative of p(x) with

respect to q(x) also known in the engineering literature as the importance weights.

Equation (8.5b) suggests that if the normalizing factor for p(x) is not known, the

importance weights can only be evaluated up to a normalizing constant. To ensure

that
∑Np

i=1W (x(i)) = 1, we normalize the importance weights to obtain equation (8.6).

f̂ =

1
Np

∑Np
i=1 W (x(i))f(x(i))

1
Np

∑Np
i=1W (x(i))

=
1

Np

Np∑

i=1

W̃ (x(i))f(x(i)), (8.6)

where W̃ (x(i)) = W (x(i))∑Np
i=1 W (x(i))

are called the normalized importance weights. The

variance of importance sampler estimate [188] in equation (8.6) is given by

V arq[f̂ ] =
1

Np

V arq[f(x)W (x)]

=
1

Np

V arq[f(x)p(x)/q(x)]

=
1

Np

∫ [
f(x)p(x)

q(x)
− Ep[f(x)]

]2

q(x)dx

=
1

Np

∫ [
(
(f(x)p(x))2

q(x)
)− 2p(x)f(x)Ep[f(x)]

]
dx+

(Ep[f(x)])2

Np

=
1

Np

∫ [
(
(f(x)p(x))2

q(x)
)

]
dx− (Ep[f(x)])2

Np

The variance can be reduced when an appropriate q(x) is chosen to either match

the shape of p(x) so as to approximate the true variance; or to match the shape of

|f(x)|p(x) so as to further reduce the true variance of f̂ . To see this we know that

∂V arq[f̂ ]

∂q(x)
= − 1

Np

∫ [
(f(x)p(x))2

q(x)2

]
dx = − 1

Np

∫ [
(f(x)p(x))2

q(x)q(x)

]
dx

with q(x) having the constraint of being a probability measure that is
∫ +∞
−∞ q(x)dx = 1,

we find that q(x) must match the shape of p(x) or of |f(x)|p(x).
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8.1.3 Resampling Methods

Resampling methods are usually used to avoid the problem of weight degeneracy

in our algorithm. Avoiding situations where our trained probability measure tends

towards the Dirac distribution must be avoided because it does not give much in-

formation on all the possibilities of our state. There exists many different resam-

pling methods, Rejection Sampling, Sampling-Importance Resampling, Multinomial

Resampling, Residual Resampling, Stratified Sampling, and the performance of our

algorithm can be affected by the choice of our resampling method. The stratified

resampling proposed by Kitagawa [189] is optimal in terms of variance. Figure 8.1

gives an illustration of the Stratified Sampling and the corresponding algorithm is

described in algorithm (13). We see at the top of the Figure 8.1 the discrepancy

Algorithm 13: Resample

Input: array of weights wM1
Output: array of weights wM1 resampled

. Sample:
u0 ∼ U [0, 1/M ]

. Resample:
for m = 1 to N do

i(m) ←
⌊
(w

(m)
n − u(m−1)m)

⌋
+ 1

u(m) ← u(m) + i(m)

M
− w(m)

n

between the estimated pdf at time t with the true pdf and the corresponding CDF

of our estimated PDF. Random numbers from [0, 1] are drawn, depending on the

importance of these particles and are moved to more useful places as a result.

8.1.3.1 Sequential Monte Carlo Methods

Sequential Monte Carlo methods (SMC), also known as Particle Filters (PF) are sta-

tistical model estimation techniques based on simulation. They are the sequential

(or “on-line”) analogue of Markov Chain Monte Carlo (MCMC) methods and sim-

ilar to importance sampling methods. If they are elegantly designed they can be

much faster than MCMC. Because of their non linear quality they are often an al-

ternative to the Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF).

They however have the advantage of being able to approach the Bayesian optimal

estimate with sufficient samples. They are technically more accurate than the EKF

or UKF. The aims of the PF is to estimate the sequence of hidden parameters, xk
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Chap. 2 : Literature Review

2.1.4 Resampling Methods

Resampling methods are usually used to avoid the problem of weight degeneracy in our algorithm.

Avoiding situations where our trained probability measure tends towards the Dirac distribution

must be avoided because it really does not give much information on all the possibilities of our

state. There exists many different resampling methods, Rejection Sampling , Sampling-Importance

Resampling , Multinomial Resampling , Residual Resampling , Stratified Sampling, and the per-

formance of our algorithm can be affected by the choice of our resampling method. The stratified

resampling proposed by Kitagawa [9] is optimal in terms of variance. Figure 2.3 gives an illustration

of the Stratified Sampling and the corresponding algorithm is described in algorithm 13 . The aim

CDF F

UNp ∼ (
Np−1
Np

, 1]

U2 ∼ ( 1
Np
, 2
Np

]

(
Np−1
Np

, 1]

Xk

Xi
k

Xi
k

resampling

sampling

sampling

real pdf

estimated pdf at time k (before resample)

a particle

Xk

U1 ∼ (0, 1
Np

]

lucky useless particle stays at the same spot

estimated pdf at time k + 1 (after resample)

another seemingling useless particle is realocated as expected at a more useful place

Xk

moved here

(0, 1
Np

]

( 1
Np
, 2
Np

]

Figure 2.3: Resampling illustration

of figure 2.3 is to talk, we hope, louder than words. It illustrates the Stratified Sampling. We see

32

Figure 8.1: Stratified Sampling illustration

for k = 1, 2, 3, . . ., based on the observations yk. The estimates of xk are done via

the posterior distribution p(xk|y1, y2, . . . , yk). PF do not care about the full posterior

p(x1, x2, . . . , xk|y1, y2, . . . , yk) like it is the case for the MCMC or importance sam-

pling (IS) approach. Let us assume xk and the observations yk can be modeled in the

following way: xk|xk−1 ∼ pxk|xk−1
(x|xk−1) and with given initial distribution p(x1),

yk|xk ∼ py|x(y|xk). Equations (8.7a) and (8.7b) gives an example of such system.

xk = f(xk−1) + wk,

yk = h(xk) + vk.

(8.7a)

(8.7b)

It is also assumed that cov(wk, vk) = 0 or wk and vk mutually independent and i.i.d.

with known probability density functions. f(·) and h(·) are also assumed known

functions. Equations (8.7a) and (8.7b) are our state space equations. f(·) and h(·)
are linear functions, with wk and vk both Gaussian, the KF is the best tool to find the

exact sought distribution. If f(·) and h(·) are non linear then the Kalman filter (KF)
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is an approximation. PF are also approximations, but convergence can be improved

with additional particles. PF methods generate a set of samples that approximate the

filtering distribution p(xk|y1, . . . , yk). The expectations under the probability measure

is given by: ∫
f(xk)p(xk|y1, . . . , yk)dxk ≈

1

NP

NP∑

L=1

f
(
x

(L)
k

)
(8.8)

where NP denotes the number of samples. Sampling Importance Resampling (SIR) is

the most commonly used PF algorithm, which approximates the probability measure

p(xk|y1, . . . , yk) via a weighted set of NP particles (w
(L)
k , x

(L)
k ) : L = {1, . . . , NP}.

The importance weights w
(L)
k are approximations to the relative posterior probability

measure of the particles such that
∑P

L=1w
(L)
k = 1. SIR is a essentially a recursive

version of importance sampling. Like in IS, the expectation of a function f(·) can be

approximated by:

∫
f(xk)p(xk|y1, . . . , yk)dxk ≈

NP∑

L=1

w(L)f
(
x

(L)
k

)
(8.9)

The algorithm performance is dependent on the choice of the proposal distribution,

π(xk|x1:k−1, y1:k), where the optimal proposal distribution is π(xk|x0:k−1, y0:k):

π(xk|x1:k−1, y1:k) = p(xk|xk−1, yk). (8.10)

Because it is easier to draw samples and update the weight calculations the transition

prior, π(xk|x1:k−1, y1:k) = p(xk|xk−1), is often used as importance function. The tech-

nique of using transition prior as importance function is commonly known as Boot-

strap Filter and Condensation Algorithm. Figure 8.1 illustrates algorithm (14). Note

that on line 5 of the latter, ŵ
(L)
k , simplifies to w

(L)
k−1p(yk|x

(L)
k ), when π(x

(L)
k |x

(L)
1:k−1, y1:k)

= p(x
(L)
k |x

(L)
k−1).

8.1.4 Scenario Tracking Algorithm

8.1.4.1 Introduction

Recently, SMC methods [190, 191, 192], especially when it comes to the data asso-

ciation issue, have been developed. Particle Filters (PF) [193, 194], have recently

become a popular framework for MTT, because able to perform well even when the

data models are nonlinear and non-Gaussian, as opposed to linear methods used

by the classical methods like the KF/EKF [195]. Given the observations and the

previous target state, SMC can employ sequential importance sampling recursively
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Algorithm 14: Sequential Monte Carlo

Input: array of weights wNp , π(xk|x(L)
1:k−1, y1:k)

Output: array of weights wNp resampled
. Sample

for L = 1 to NP do

x
(L)
k ∼ π(xk|x(L)

1:k−1, y1:k)

for L = 1 to NP do

ŵ
(L)
k ← w

(L)
k−1

p(yk|x(L)
k )p(x

(L)
k |x

(L)
k−1)

π(x
(L)
k |x

(L)
1:k−1,y1:k)

for L = 1 to NP do

w
(L)
k ← ŵ

(L)
k∑P

J=1 ŵ
(J)
k

N̂eff ← 1∑P
L=1

(
w

(L)
k

)2

. Resample
draw NP particles from the current particle set with probabilities
proportional to their weights. Replace the current particle set with this new
one.

if N̂eff < Nthr then
for L = 1 to NP do

w
(L)
k ← 1/NP .

and update the posterior distribution of our target state. The Probability Hypoth-

esis Density (PHD) filter [196, 197, 198], which combines the Finite Set Statistics

(FISST), an extension of Bayesian analysis to incorporate comparisons between dif-

ferent dimensional state-spaces, and the SMC methods, was also proposed for joint

target detection and estimation [199]. The M-best feasible solutions is also a new

useful finding in SMC [199, 200, 201, 202, 203]. Articles [204, 205] were proposed

to cope with both the multitarget detection and tracking scenario but according to

[206] they are not robust if the environment becomes noisier and more hostile, such

as having a higher clutter density and a low probability of target detection. To cope

with these problems a hybrid approach and it extensions were implemented [206].

The aim of these methods is to stochastically estimate the number of targets and

therefore the multitarget state. The soft-gating approach described in [207] is an at-

tempt to address the complex measurement-to-target association problem. To solve

this issue of detection in the presence of spurious objects a new SMC algorithm is

presented in [208]. That method provided a solution to deal with both time-varying

number of targets, and measurement-to-target association issues. Currently, tracking
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for multiple targets faces a couple of major challenges that are yet to be answered

efficiently. We explore these issues in the next two subsections.

8.1.4.2 Time-Varying Number of Targets Problem

The first of these two main challenges is the modelling of the time-varying number

of targets in an environment high in clutter density and low in detection probability

(hostile environment). To some extend the PHD filter [209, 204, 205], based on

the FISST , has proved ability in dealing with this problem with unfortunately a

significant degradation of its performance when the environment is hostile [206].

8.1.4.3 Measurement-to-Target Association Problem

The second main challenge is the measurement-to-target association problem. Be-

cause there is an ambiguity between whether the observation consists of measure-

ments originating from a true target or a clutter point, it becomes essential to iden-

tify which one is which. The typical and popular approach to solve this issue is the

Joint Probabilistic Data Association (JPDA) [180, 210]. Its major drawback though

is that its tracks tend to coalesce when targets are closely spaced [211] or intertwined.

This problem has been, however, partially studied. Indeed the sensitivity of the track

coalescence may be reduced if we use a hypothesis pruning strategy [212, 213]. Unfor-

tunately the track swap problems still remain. Also performance of the EKF [195] is

known to be limited by the linearity of the data model on the contrary to SMC based

tracking algorithms developed by [214, 215, 216, 217]. This issue of data association

can also be sampled via Gibbs sampling [217].

Remark Note that other problems subsist. Some of these problems are related to

the ones we mentioned above and some others are different. The literature for MTT

is quite rich. For the sake of keeping the literature review to a reasonable length we

refer to other noticeable contributions [218, 219, 220, 216, 221, 222, 149, 223, 224,

225, 226, 227, 228, 229, 230, 231, 232, 233, 180, 210, 180, 234, 235, 236, 191, 237, 238,

239, 240, 241].

8.2 HFTE SMC Tracking Methodology

Now that we have done a comprehensive review of tracking methodologies we would

like to apply our findings to the HFTE formulated problem from Subsection 7.6.2.
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8.2.1 Direct Approach

The direct approach consists of tracking not only the number of alive strategies and

number of births but on top of that the HFFF of each of the live strategies, namely,

if each particle is associated to our state space θ then we can summarize our state

space by:

θ ,
{
N s
t , N

b
t , N

d
t ,∪

Na
t

i=1Si,∪
Na
t

i=1Hi,∪N
a
t

i=1Pi,O
}

(8.11)

with N s
t , the number of survived strategies, N b

t , the number of born strategies, Nd
t ,

the number of dead strategies and Na
t , the number of alive strategies3. As we can

see from equation (8.11), not only do we need to keep track of the alive strategies

through time but also of their type which may be overly ambitious at this stage. We

would rather apply a simpler approach and make instead more transparent progress.

8.2.2 Simplified Simulation

We present here an application of the results from Section 7.6 to our tracking method-

ology introduced in this Chapter. We assume the state space is limited to a set

of 15 scenarios spanned by up to 3 different types of strategy4 acting on the OB

in different sequences. To manage complexity we assume that there is no birth

or death processes involved in our scenarios. Algorithm (15) describes our simpli-

fied study in pseudo code. Note that the traditional resampling algorithm as de-

veloped by Doucet [242] has been substituted by the term W s
t−1 + λr in the line

wst → λe× Ls
W

+(1−λe−λr)×W s
t−1 +λr×1/15. We also added a small noise function

to the market observed prices to make observations more realistic. The results from

the series of simulations are presented in Figure 8.2. We observe that every scenario

had already clearly emerged by iteration 23 (second row from the bottom on all 15

scenarios). By iteration 47, the density is very clear, so much so that the only reason

it is not a Dirac function is due to the resampling methodology introduced in that

effect. Though simplistic, this specific method lays down the foundations on how this

specific problem should be tackled in a methodology point of view. Adding layers

of complexity (e.g., increase in the number of strategies, OB dynamics, births and

death) becomes more of a mathematical technicality rather than a conceptual one.

Remark This concludes the second part5 of the thesis in which we illustrated how

data-driven models can be fundamentally “opposed” to classic financial mathematics.

3Na
t = Ns

t +N b
t or Na

t = Na
t−1 +N b

t −Nd
t .

4Exact formalization has been given by Algorithms (8), (9) and (10).
5Part III.
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Algorithm 15: Particle Filter on Simplified HFTE Strategies State Space

Input: ∆P , I, wt, λe, λr
Output: wt
wt−1 ← wt, W ← 0

. Sample
for 0 ≤ s ≤ 15 do

Ls ← exp(−∆P −∆P(Hs
I ))

W = W + Ls
. Resample

for 0 ≤ s ≤ 15 do
wst ← λe × Ls

W
+ (1− λe − λr)×W s

t−1 + λr × 1/15

. return
return wt

Algorithm 16: Scenarios Hash Table Hs
I

Input: I
Output: array position
if I == 0 then

return 0
else if I == 2 then

return 1
else if I == 3 then

return 2
else if I == 5 then

return 3
else if I == 11 then

return 4
else if I == 23 then

return 5
else if I == 47 then

return 6
else

return ‘issue with iteration recognition’
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Figure 8.2: Particle Filter on market scenarios on milestones [2, 3, 5, 11, 23, 47] . Each
of the 6 rows of the 15 ecosystems corresponds to the probability of ecosystem Si at
milestone m
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Chapter 9

Conclusion

9.1 Covariance and Data Reassuming Models

9.1.1 Summary

The first part of the thesis was dedicated to illustrating how the triggering effect of

the multiple crises has brought us into an interesting era of Quantitative Finance.

More specifically, we showed that we are moving out a of a world in which mod-

els assumed data to one in which data is slowly but surely re-assuming the models.

More specifically we introduced the Cointelation model in order to expose how by

taking a more descriptive approach [11] of the markets instead of the mathematically

convenient Black Scholes Log-Normal diffusion model [37, 46], we may measure a cor-

relation of −1, where in fact the real long term correlation may be +1. We introduce

the concept of inferred correlation [10] which we explained, can be understood as the

more realistic estimation of the real risk associated to holding two Cointelated pairs.

We also showed how clustering can help us in the context of Cointelated pairs [5]. In

the context of portfolio optimization we saw a hybrid methodology between classic

Financial Mathematics and what people consider pure Machine Learning can help

the resolution of the problem while illustrating and example in which FM’s and ML’s

whole can outperform their individual sums. More specifically, we try to solve our

nonlinear partial differential equation of the end of Section 2.4.6 with a deep learning

algorithm1. In the spirit of exposing additional examples of classic models (which

assume data), we introduced an enhancement [12, 13] of the SVI, a classic Financial

Mathematics model. This enhancement, the IVP model [13, 6], was designed to ad-

just the SVI model based on data driven observations on the wings of the implied

1Using the DGM [23].

224



volatility surface as well as the incorporation of a liquidity overlay. Finally we pro-

posed simple enhancements of these traditional Financial Mathematics models using

clustering and illustrated our findings by introducing the concept of Responsible VaR

[7] model, a portmanteau neologism that aims at reconciling discordant risk measures.

9.1.2 Future Research

9.1.2.1 Cointelated Portfolio Performance measure

We have seen that there are few performance functions that can be used (SPT, Sharpe

Ratio, Utility Function) when calibrating cointelated pairs. We have decided to

choose two different performance measures in our methodology. More specifically,

even though the idea of a performance measure in the form of SR seems straightfor-

ward for half of the problem (the Markowitz part of the trading signal), the use of the

latter in the other half of the trading signal (the OU part) seems inadequate. This

made us question whether we could come up with a more robust methodology.

9.1.2.2 The n-Cointelated case

There are few extensions or improvements that can be performed on the optimization

process for cointelated pairs research. We can first ask ourselves the question of the

n-Cointelated case for which the trio has been specified by equation (9.1).

Definition (Three-asset Cointelation Model): Let (Ω, (Ft)(t≥0),P), be our prob-

ability space with (Ft)(t≥0) where P the historical probability measure under which

the discounted price, rS, is not necessarily a martingale. The three-asset Cointelation

model is given by
dSat = σSat dW

a
t ,

dSbt = θ(Sat − Sbt )dt+ σSat dW
b
t ,

dSct = θ(Sat − Sct )dt+ σSctdW
c
t .

(9.1)

One natural question is how to define this trio. For instance, would equation (9.1) be

more in-line with the pair from equation (2.5) or would

dSat = σSat dWt,
dSbt = θ(Sat − Sbt )dt+ σSat dW

b
t ,

dSct = θ(Sbt − Sct )dt+ σSctdW
c
t ,

(9.2)

be better (or equivalent)? This is subject of future research.
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9.1.2.3 Application to Cryptocurrencies

Following the above point, we propose to study the model using cryptocurrencies as

data and relate this exercise with the n-Cointelation case. We believe that Cryptocur-

rencies could be an interesting case study. The reasons why Cryptocurrencies came

to be is a disputed debate and we will instead refer to an external literature review

[243] and focus instead on the business opportunities that have arose from this new

market. Though small relative to other asset classes, the market cap is growing much

faster [243] (already at a $300 Billion Market) than the others. Cryptocurrencies offer

a source of orthogonal alpha at the low frequency domain and, many asset managers

want to have, as a result an overall2 exposure to them. As a result, there has been an

emergence of cryptocurrency indexes in the recent past with construction methodol-

ogy closely related to Risk Parity and SPT [243]. Given the spectacular volatility of

the cryptocurrency market, even though the point of the index is to reduce the overall

volatility, the position remains fundamentally long. The resulting volatile fees (both

management and performance) can be such that building a self-sufficient business in

which a steady income is expected to finance the basic operations can become very

challenging. However, using a beta neutral approach could be the solution and using

the cointelation model here could be an interesting application. The Altcoins them-

selves are perhaps cointelated with respect to each other and are overall cointelated

to Bitcoin. This is the hypothesis that we would like to study in the future. However

we need to wait until enough data is gathered to conduct this study.

9.1.2.4 Band-wise Gaussian mixture

We have used the Band-wise Gaussian mixture methodology in chapter 5. Is this

methodology optimal or can we find better? More specifically can we come up with

a methodology that would be more continuous in terms of its bands definition. Ideed

in Section 5, we have defined our fixed band so as to make the sample set of equal

size in each band defined by Oi
p = {x(d(n(i−1)+1)/pe), . . . , x(bn(i)/pc)}. It seems it would

not require much effort to rather make these bands dynamic in such a way that the

current point of investigation xc falls exactly in the middle of Oi
p. There are also some

questions around the boundary of definition that needs to be answered especially if

that latter new proposal is implemented.

2Without really looking at the fundamentals.
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9.1.2.5 Normalizing Options Contracts

In Section 3.2 we looked at the issues associated to Normalizing Options Contracts

into standardized pillars. In doing so we used interpolation and extrapolation tech-

niques. More specifically, to fill the sparse data we used some of the material associ-

ated to the IVS parametrization. Though these methodologies provide great approx-

imations, they however lack robustness when it comes to insuring arbitrage at the

portfolio level in between pillars (though the pillars themselves remain mutually non

arbitrageable). We have seen that there exist asymptotic results. More specifically

we discussed necessary but not sufficient theoretical extrapolation and interpolation

techniques that have created confusions in the literature. The initial idea has still

great potential which deserves continuing research in.

9.1.2.6 Particle Filter for Implied Volatility MTT

We have raised several limitation to our current model. First we have limited our

model to a span of stress tests in i different parameters3. This means that very com-

plex co-movements of three or more parameters are not taken into account. Though,

these do not matter for vanilla options, they may matter for more complex exotics.

More scenarios could be included.

9.1.2.7 Additional Liquidity issues for Implied Volatility

The IVP model was introduced in [13] with the aim of modelling the Bid Ask spread.

It generalized the gSVI. In fact the gSVI is a special case of IVP (one in which the

parameters of the liquidity component are set to superpose the mid price). Indeed

the IVP model makes the necessary adjustment on the wings to incorporate bid ask

spread on top of taking into account the position size. The downside transform defined

by equation (4.1a) can certainly be more tailored to asset classes and perhaps fine

tuned. Also, the parameters βo,τ , β+, τ and β−, τ model the idea that the further

away you are from the ATM, the bigger the Bid Ask spread (curvature adjustment).

However this change of variable could yield a Bid Ask spread of 0 ATM. This issue

was addressed by adding an ATM bid ask factor function min(aτ
2
, ατ ), where ατ is a

guess ATM Bid Ask half spread but adjusted if its value is such that it will be higher

that the lowest point of the implied volatility. However, this methodology is not the

most elegant and would certainly benefit from more clever a priori analysis.

3Where i = {(0), (a), (b), (ρ), (m), (σ), (β), (b, ρ)}.
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9.1.2.8 De-arbitraging the FX case

We exposed some of the asset class idiosyncratic hurdles of the de-arbitraging method-

ology in Section 3.5.2. More specifically we shown how the traditional de-arbing

methodology fails with the FX pillars. The latter pillars are misaligned (like a trape-

zoid instead of the rectangle: see Figure 3.5). This problem can be addressed with a

more convoluted optimization by constraint methodology. More specifically, the ex-

trapolated pillars would still need to be mutually arbitrage free and their interpolation

would still need to go through the observed points. This optimization by constraint

would however suffer from convergence issues because more degrees of freedom. We

will study this interesting problem in a future paper.

9.1.2.9 Harmonizing Stochastic & Local Volatility

We have seen that both the Heston and SVI models are popular in the industry and

converge asymptotically to each other [59]: see equation (9.3).

dSt =
√
vtStdW

1
t , S0 ∈ R∗+

dvt = κ(θ − vt)dt+ σv
1
2
t dW

2
t , v0 ∈ R∗+,

d
〈
W 1,W 2

〉
t

= ρdt,

v(k, t)→ a+ b[ρ(k −m) +
√

(k −m)2 + σ2].

(9.3a)

(9.3b)

(9.3c)

(9.3d)

The SVI was made obsolete at Bank of America for its inability to accurately model

the sub-linearity of the wings. At the same time the Heston model is known for its

inability to model the smile. This convergence is mathematically convenient for the

SVI but does not solve an economic and data driven fact (see Figure 4.7). Only

an implied correlation surface could reconcile the current models to the data. The

proposed stochastic volatility model that we propose as being able to converge towards

the IVP model is given by equation (9.4).

dSt =
√
vtStdW

1
t , S0 ∈ R∗+,

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t , v0 ∈ R∗+,

d
〈
W 1,W 2

〉
t

= ρ(t, St)dt,

ρ(t, St) = ρ+(t) + [ρ−(t)− ρ+(t)] [1− exp(−β(t)|St −K|)],
v(k, t)→ a+ b[ρ(z −m) +

√
(z −m)2 + σ2],

(9.4a)

(9.4b)

(9.4c)

(9.4d)

(9.4e)

where z = h(k) reflect a change of variable to control the sub-linearity of the wings.

The main differences as compared to the classic Heston equation model is that the

parameter ρ becomes stochastic and given by ρ(t, St).
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9.2 Bottom-Up Approach to Trading

9.2.1 Summary

We started this thesis by pointing to a puzzling observation from the newly born high

frequency commodities market which, because of its extreme youth and therefore im-

maturity makes it a great case study for a high-frequency market at inception and

therefore for our purpose. More specifically as we have seen with Figure 1.1, unusual

patterned oscillations occurred in the commodities market. These oscillations cannot

be explained by the TD assumption in Quantitative Finance. We have proposed in

this thesis to study these oscillations with the BU approach instead staying in line

with the recommendations of a modelling revolution [16] to occur post subprime cri-

sis. The latter theory was developed in 3 Sections. We first expressed, in chapter 6,

classic Financial Strategies in HFFF format and shown the incentive for going from a

simple perceptron, to shallow and finally deep learning. We also established connec-

tions to fields that are traditionally associated to mathematical biology, in chapter 7,

namely predator-prey models and evolutionary dynamics. This was done in order to

expand the mathematical tools that we believe have value in 21st century Quantita-

tive Finance. These helped us express the bottom-up approach at the infinitesimal

level. More specifically we developed the concept of Path of Interaction in an HFTE

Game and proposed 3 hypothesiss as a mean to inspire future researchers. Finally,

in chapter 8 we looked at how the financial market composition could be tracked

through time with MTT.

9.2.2 Current & Future Research

Our first few simulations opened issues associated to optimality and need for more

scientific rigor. We have classified these points in half a dozen issues listed below.

9.2.2.1 Classification Simplification

The direct initial simulation approach [4] was too challenging and the results perhaps

too convoluted to filter out the essence of the research. For this reason we proposed

to study the problem using fixed HFFFs, of Figures 6.7, 6.9 and 6.12. Though this

simplifies the problem, it also means that there is human intervention in the strategy

pool chosen. This latter intervention, though convenient is not ideal. Less human

interventions should take place going forward.
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9.2.2.2 The State Space can be improved

Following the previous point, choosing three types of strategies limits our state space

which makes our tracking methodology easier but not as realistic as we wish. Addi-

tional strategies must be incorporated and more HFTE games must be included in

our database of scenarios. This could be the work of many years. It could be partially

addressed by creating an online database in which interested scientists could deposit

their findings in object oriented format for simulation purposes. Note that this kind

of collaborations are already in place in cellular automatons [52].

9.2.2.3 Order-book Dynamics

Many of the markets are driven by different rules for the OB. We need to incorporate

these different rules in our HFTE games as the latter rules obviously impact the

outcome of the games.

9.2.2.4 Increased HFFF complexity does not equate to Invasion

It has been speculated that the need for a bigger brain in humans is partly due to

the need for humans to elaborate deceitful strategies with their rivals and cooper-

ative strategies with their allies. It is therefore not entirely ridiculous to associate

increased neural network branching (to be roughly understood as increase in cranial

size) with increased strategy complexity. However, increased intelligence does not

necessarily equate to survival as we can see in the shark population, considered like

an apex predator in the sea (but with a relatively small brain), has not evolved for

millennial. We are very much at the early stages of defining NN complexity and dom-

inance. A clear picture did not necessarily emerge from the first simulations though

an interesting comparison can be made with Axelrod’s computer tournament [29].

Indeed, Axelrod showed that it was not necessarily the most complicated strategies

that prevailed at the end4. The TF strategy shares some aspects of the TFT strategy

in the sense that they are both simple and adaptive. However, taking the argument

in reverse (“complexity pays off” instead of “simple adaptable strategies are best”),

can we think about a farming strategy? By this we mean: can we come up with a

strategy that would understand the state of the ecosystem and would take actions

based on that ecosystem, deliberately avoiding acquiring alpha on the ecosystem if it

4Please see TFT strategy in Section 7.2.1: it is a strategy that is simple in the way it adapts to
the other strategies.
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felt that it would be beneficial for the long term health of the financial ecosystem?

These are questions that we may figure out sooner than expected.

9.2.2.5 Birth & Death Processes

We need to incorporate a Birth and Death Process to our MTT to study more realistic

scenarios. To this end, we need to incorporate the OB in the likelihood function

instead of using it only in the price dynamics. This will undoubtedly make the

programming exercise more challenging but will, at the same time, bring more value

to the research in the long run.

9.2.2.6 Complex Food Webs

We have seen in Section 7.6.1.1 that we have taken l = 4 in our Path of Interaction

sequence. Would the Path of Interaction results change if we increase the sequence’s

length? In the context of the Path of Interaction study, is there a more rigorous way

to connect some of the Lotka-Volterra predator prey models to these interactions? It

seems intuitively more likely that the strategy ecosystem should rather be a complex

food web. Can we enhance the idea of the simple Lotka-Volterra predator prey model

to more complex food webs? More specifically what are the strategies that would

create a stable and unstable food web? The concept of Path of Interaction is meant

to be a bridge connecting the gap between strategy formalization to evolutionary

dynamics but this bridge in not entirely specified yet.

9.2.2.7 Diversity & Stability

One other legitimate question that we can ask ourselves is whether the HFFF is a

complex enough network to model most financial strategies? And if not all, does it

encompass enough strategies to convey something interesting and meaningful when

you make the strategies interact with each other. In this context our first chapter

and paper [4] ended with a hypothesis, currently an open problem, that is interesting

to mention in the context of future research:

Hypothesis: Diversity & the Financial Markets Diversity in financial strate-

gies in the market leads to its instability.

Note that this hypothesis can be perhaps indirectly studied, or at least intuitively, us-

ing some of the finding in mathematical biology (MB). More specifically a hypothesis

“diversity in ecosystem and the induced stability”5 exists in MB. However, we are still

5Though no consensus is reached there either.
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potentially a long way before being able to answer this question though interesting

take approaches have been taken at the human scale6 [244] as well as at the order

size level [245].

9.2.2.8 Profitable & Unprofitable Ecosystem Asymmetry

The second hypothesis that we introduced is as follows:

Hypothesis: Profitable & Unprofitable Ecosystem Asymmetry All strategies

in an ecosystem can make money at the same time but all cannot lose money at the

same time.

As we mentioned earlier we noticed this interesting fact with our relatively small

sample of HFTE games but have not been able to find a counter example yet nor

have been able to rigorously prove it. It would be relatively easy to incorporate

more simulations involving more strategies to see if we can find a counter example.

Alternatively, if the hypothesis can be proven then we recommend searching proof

around the pigeonhole.

9.2.2.9 Morality & HFTE Games

The last hypothesis we introduced is as follows:

Hypothesis: Morality & HFTE games Similar physical laws drive morality and

HFTE games.

We explained that the TF strategy in an HFTE game and the TFT strategy in

Axelrod’s [28, 28] computer tournament described in Section 7.2.3 seems to have

interesting similarities: they are both, simple, successful, cooperative but adaptive.

It would be worth spending more time thinking about a relationship that is quite

puzzling as the connections between the two applications Morality and Finance is

very odd but the similarities are definitively there and they both emerge through the

means of interacting agents.

9.2.2.10 Regularization & Regulation

In the spirit of some of the work we introduced with the Cointelation model in chapter

2.2, more specifically on proper market conduct, one important element of our current

research is the one associated to socially responsible and consumer finance. With this

6To be understood in opposition to faster high frequency robot scale.

232



in mind we developed the concept of unfortunate cost of pattern recognition: the

genetic disorder of the financial industry (UTOPE-ia) which we recently formally

introduced [9]. This concept revolves around the development of the UTOPE [9]

concept, which is a proposed methodology to build regulation taking as reference point

the cost of pattern recognition instead of the benefits of the latter. More specifically

we propose a regulation methodology that takes as a reference, not the problems

with the market itself, but rather the issues associated with a human, analyzing these

latter market’s issues. Though, we take a more qualitative approach, we expose how

the arrival of ML, and more specifically the understanding of the costs of pattern

recognition, may force us to adopt a 180 degree change in the way we approach

financial regulation. In fact, understanding over-fitting (e.g. Figure 9.1) can shed light

to our own human limitations and more specifically how the latter can be arguably

considered the virus of the financial industry.
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Figure 7: Generalisation: test set.

10

Figure 9.1: Under-fitting, just right and over-fitting examples [33].
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9.3 Closing Words

“The more efficient you are at doing the wrong thing, the wronger you become. It is

much better to do the right thing wronger than the wrong thing righter. If you do the

right thing wrong and correct it, you get better.”

– Russell L. Ackoff

We thought that this quote from Russell Ackoff would be an inspiring closing state-

ment as it relates to some of the content of this thesis. Indeed, we have chosen to

take two approaches in the scientific method.

In Part II, we have taken a more conservative approach and tried to build on the

last 100 years of Mathematical Finance. We did so by incorporating some of the

new Machine Learning methods for data science applications. We believe that these

methods have immediate engineering applications. Indeed, these man made systems

are a function and a reflection of an imperfect sequence of events which have been

handed to us by the previous generations and for which a practical solution is needed.

The proposed solutions need to take into consideration constraints that are as much

budgeting as they are social related.

In Part III, we have chosen instead to question the most fundamental assumption

of Quantitative Finance: the market is stochastic. In doing so, we choose to take the

bottom-up approach in the scientific method: simple deterministic rules at the mi-

croscopic7 level create the illusion of stochasticity at the macroscopic8 level. Though

the approach we have taken pushes us to take a significant step back in our study of

the market, we believe that it is in order to gain momentum for the future and in the

best interest of our societies to do so. This will help turn Quantitative Finance into

a field that follows a more traditional scientific method and will naturally solve many

other problems.

To that extend we know that all models are wrong, but some are useful9 and in

that spirit we have arguably done the right thing wronger in the second part of the

thesis10 but the wrong thing righter in the first part11.

7Systematic strategies interacting.
8The stock market.
9A quote that is generally attributed to George Box.

10Labelled Part III in the table of contents.
11Labelled Part II in the table of contents.
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DGM NN Architecture

We can see the bird’s-eye view of the DGM [23, 24] method in Figure 2and its details

in Figure 3. The details of this architecture can be found in [23, 24].

w1 · x+ b1

S1

x

D
G

M
Layer

D
G

M
Layer

D
G

M
Layer

SL+1 w · SL+1 + b y

σ

Figure 5.2: Bird’s-eye perspective of overall DGM architecture.

Within a DGM layer, the mini-batch inputs along with the output of the previous
layer are transformed through a series of operations that closely resemble those
in Highway Networks. Below, we present the architecture in the equations along
with a visual representation of a single DGM layer in Figure 5.3:

S1 = σ
(
w1 · x+ b1

)

Z` = σ
(
uz,` · x+ wz,` · S` + bz,`

)
` = 1, ..., L

G` = σ
(
ug,` · x+ wg,` · S` + bg,`

)
` = 1, ..., L

R` = σ
(
ur,` · x+ wr,` · S` + br,`

)
` = 1, ..., L

H` = σ
(
uh,` · x+ wh,` ·

(
S` �R`

)
+ bh,`

)
` = 1, ..., L

S`+1 =
(

1−G`
)
�H` + Z` � S` ` = 1, ..., L

f(t,x;θ) = w · SL+1 + b

where � denotes Hadamard (element-wise) multiplication, L is the total number
of layers, σ is an activation function and the u, w and b terms with various super-
scripts are the model parameters.

Similar to the intuition for LSTMs, each layer produces weights based on the last
layer, determining how much of the information gets passed to the next layer. In
Sirignano and Spiliopoulos (2018) the authors also argue that including repeated
element-wise multiplication of nonlinear functions helps capture “sharp turn” fea-
tures present in more complicated functions. Note that at every iteration the orig-
inal input enters into the calculations of every intermediate step, thus decreasing
the probability of vanishing gradients of the output function with respect to x.

Compared to a Multilayer Perceptron (MLP), the number of parameters in each
hidden layer of the DGM network is roughly eight times bigger than the same
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Figure 2: Bird’s-eye view of our DGM [23]
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Figure 5.3: Operations within a single DGM layer.

number in an usual dense layer. Since each DGM network layer has 8 weight ma-
trices and 4 bias vectors while the MLP network only has one weight matrix and
one bias vector (assuming the matrix/vector sizes are similar to each other). Thus,
the DGM architecture, unlike a deep MLP, is able to handle issues of vanishing gra-
dients, while being flexible enough to model complex functions.

Remark on Hessian implementation: second-order differential equations call for the
computation of second derivatives. In principle, given a deep neural network
f(t,x;θ), the computation of higher-order derivatives by automatic differentiation
is possible. However, given x ∈ Rn for n > 1, the computation of those derivatives
becomes computationally costly, due to the quadratic number of second derivative
terms and the memory-inefficient manner in which the algorithm computes this
quantity for larger mini-batches. For this reason, we implement a finite difference
method for computing the Hessian along the lines of the methods discussed in
Chapter 3. In particular, for each of the sample points x, we compute the value of
the neural net and its gradients at the points x + hej and x − hej , for each canon-
ical vector ej , where h is the step size, and estimate the Hessian by central finite
differences, resulting in a precision of order O(h2). The resulting matrix H is then
symmetrized by the transformation 0.5(H +HT ).
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Figure 3: Detailed view of our DGM [23]

Proof of Lemma 2.4.1

E[rp(t)] = wS(t)E[r(St)] + wSl(t)E[r(Yt)], (5)

where r(St) = ln
(

St
St−∆t

)
and r(Sl,t) = ln

(
Sl,t

Sl,t−∆t

)
are daily log returns of assets S

and Sl. Since St is a geometric Brownian motion, we have

E[r(St)] = (µ− σ2

2
)∆t− ln(St−∆t) (6)

where St−∆t is a known constant at time t − ∆t. The expectation of log return of

asset Sl is

E[r(Sl,t)] = E[ln(Sl,t)]− ln(Sl,t−∆t), (7)

236



where Sl,t−∆t is a known constant at time t−∆t. We use Taylor expansion to approx-

imate expected value and variance of logarithm of Sl,t and covariance of logarithm

Sl,t and logarithm St (see [246]):

E[ln(Sl,t)] ≈ ln (E[Sl,t])−
σ2[Sl,t]

2E[Sl,t]2
, (8)

σ2[ln(Sl,t)] ≈
σ2[Sl,t]

E[Sl,t]2
, (9)

σ[ln(Sl,t) ln(St)] ≈ ln

(
1 +

σ[StSl,t]

E[St]E[Sl,t]

)
. (10)

Now, we need to derive E[Sl,t]. We have a set of stochastic differential equations from

(2.5)

dSt = µStdt+ σStdWt,

dSl,t = θ[St − Sl,t]dt+ σlSl,tdZt,

d〈W,Z〉t = ρdt. (11)

We have

Sl,t = Sl,0 + θ

∫ t

0

(Ss − Sl,s)ds+ σl

∫ t

0

Sl,sdZs,

Taking expectation on both sides we have

E[Sl,t] = Sl,0 + θ

∫ t

0

E[Ss − Sl,s]ds.

Differentiating on both sides

dE[Sl,t]

dt
= θS0e

µt − θE[Sl,t].

Denoting E[Sl,t] = y(t) we have the ordinary differential equation (ODE):

y′ = −θy + θS0e
µt (12)

The solution is given by

y(t) = E[Sl,t] = aeµt + (Sl,0 − a)e−θt, (13)

where a = θS0

µ+θ
. In order to derive E[S2

l,t] we need to first compute E[StSl,t]. Applying

integration by parts (IBP) to (2.5) we have

d(StSl,t) = StdSl,t + Sl,tdSt + dStdSl,t

= θS2
t dt− θStSl,tdt+ σlStSl,tdWt + µStSl,tdt+ σStSl,tdZt + σσlρStSl,tdt.
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Thus we have:

StSl,t = S0Sl,0 + θ

∫ t

0

S2
sds+ σl

∫ t

0

SsSl,sdWs(µ− θ + σσlρ)

∫ t

0

SsSl,sds+ σ

∫ t

0

SsSl,sdZs.

Taking expectation and differentiating on both sides

dE[StSl,t]

dt
= θE[S2

t ] + (µ− θ + σσlρ)E[StSl,t].

Denoting E[StSl,t] = x(t) we have ODE

x′ = θE[S2
t ] + (µ+ σσlρ− θ)y. (14)

Since St is GBM, we have

E[S2
t ] = E[S2

0e
(2µ−σ2)t+2σWt ] = S2

0e
(2µ+σ2)t.

Thus (14) becomes

x′ = θS2
0e

(2µ+σ2)t + (µ− θ + σσlρ)y.

Using variation of parameters method we get the solution

x(t) = E[StSl,t] = be(2µ+σ2)t + (S0Sl,0 − b)e(µ−θ+σσlρ)t,

where b =
θS2

0

µ+σ2+θ−σσlρ . Now we are ready to compute E[S2
l,t]. By Itô’s lemma the

dynamics of S2
l,t is dS2

l,t = 2Sl,tdSl,t+(dSl,t)
2 = (σ2

l −2θ)S2
l,tdt+2θStSl,tdt+2σlS

2
l,tdZt.

Integrating on both sides

S2
l,t = S2

l,0 + (σ2
l − 2θ)

∫ t

0

S2
l,sds+ 2θ

∫ t

0

SsSl,sds+ 2σl

∫ t

0

S2
l,sdZs.

Taking expectation on both sides and and differentiating

dE[S2
l,t]

dt
= (σ2

l − 2θ)E[S2
l,t] + 2θE[StSl,t]

Defining E[S2
l,t] = z(t) and plugging in the value for E[StSl,t] form equation (15) we

have ODE

z′ = (σ2
l − θ)y + 2θbe(2µ+σ2)t + 2θ(S0Sl,0 − b)e(µ−θ+σσlρ)t.

Using variation of parameters we obtain the following solution

z(t) = E[S2
l,t] = ce(2µ+σ2)t + de(µ−θ+σσlρ)t + (S2

l,0 − c− d)e(σ2
l −2θ)t,
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with c = 2θb
2µ+σ2−σ2

l +2θ
and d =

2θ(S0Sl,0−b)
µ−σ2

l +θ+σσlρ
. Now we are ready to approximate

E[ln(Sl,t)]. From (8) we have

E[ln(Sl,t)] ≈ ln[E[Sl,t]]−
E[S2

l,t]

2E[Sl,t]2
+

1

2

= ln
(
aeµt − (Sl,0 − a)e−θt

)
+

1

2
− ce(2µ+σ2)t + de(µ−θ+σσlρ)t

2(aeµt − (Sl,0 − a)e−θt)2

+
(S2

l,0 − c− d)e(σ2
l −2θ)t

2(aeµt − (Sl,0 − a)e−θt)2

From (9) we have

V ar[ln(Sl,t)] ≈
E[S2

l,t]

E[Sl,t]2
− 1 =

ce(2µ+σ2)t + de(µ+σσlρ−θ)t

(aeµt − (Sl,0 − a)e−θt)2
+

(S2
l,0 − c− d)e(σ2

l −2θ)t

(aeµt − (Sl,0 − a)e−θt)2
− 1.

And from (10) we obtain the covariance of between two log-asset prices

Cov[ln(St) ln(Sl,t)] ≈ ln

(
E[StSl,t]

E[St]E[Sl,t]

)

≈ ln

(
be(µ+σ2)t + (S0Sl,0 − b)e(σσlρ−θ)t

aS0eµt + (Sl,0S0 − aS0)e−θt

)
.

With rS = ln
(
ST
S0

)
and rSl = ln(

Sl,t
Sl,0

) being the log returns of asset S and Sl over

[0, T ], the expected return of portfolio over [0, T ] is

E[rp(T )] = h1E[rS] + h2E[rSl ] + h3E[rB]

= h1

[(
µ− σ2

2

)
T

]
+ h2[ln

(
aeµT − (Sl,0 − a)e−θT

)
−

ce(2µ+σ2)T + de(µ−θ+σσlρ)T

2(aeµt − (Sl,0 − a)e−θT )2
+

(S2
l,0 − c− d)e(σ2

l −2θ)T

2(aeµt − (Sl,0 − a)e−θT )2
− ln(Sl,0) +

1

2
] + h3rT.

Now the variance of the portfolio return over [0, T ] is given by:

V ar(rp(T )) = h2
1σ

2
S + h2

2σ
2
Sl

+ 2h1h2σSSl

Expanding, we get V ar(rp(T )) = h2
2σ

2T + de(µ+σσlρ−θ)T

(aeµT−(Sl,0−a)e−θT )2 +
(S2
l,0−c−d)e(σ

2
l −2θ)T

(aeµT−(Sl,0−a)e−θT )2 −

1] + h2
1

[
ce(2µ+σ2)T

(aeµT−(Sl,0−a)e−θT )2 + 2h1h2

(
ln

(
be(µ+σ2)T+(S0Sl,0−b)e(σσlρ−θ)T
aS0eµT+(Sl,0S0−aS0)e−θT

))]
.
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Analytical solution for HJB equation Derivation

We are reducing a three dimension HJB equation below into a two dimensional Cauchy

problem by using separation anzats. For ease of notation let σ̃ = σ2− 2σσlρ+σ2
l and

rewrite (2.51):

Gt + sup
h1

{1

2
(h2

1σ̃v
2Gvv + σ̃z2Gzz + 2h1σ̃vzGvz) + (h1[µ− θ(z − 1)] + r)vGv +

(µ+ σ2
l − σσlρ− θ(z − 1))zGz} = 0. (15)

The first order condition for the maximization is

h∗1σ̃vGvv + σ̃zGvz + [µ− θ(z − 1)]Gv = 0 (16)

Note that the constants 1/2 and 2 are dismissed because absorbed by the other

parameters. Now assuming Gvv < 0 the first order condition is sufficient, yielding

h∗1 = − σ̃zGvz + [µ− θ(z − 1)]Gv

σ̃vGvv

. (17)

Plugging (17) back into (15) yields:

Gt +
1

2
{(σ̃zGvz + [µ− θ(z − 1)]Gv)

2

σ̃2v2G2
vv

σ̃v2Gvv + σ̃z2Gzz

−2
σ̃zGvz + [µ− θ(z − 1)]Gv

σ̃vGvv

σ̃vzGvz}

− σ̃zGvz + [µ− θ(z − 1)]Gv

σ̃vGvv

[µ− θ(z − 1)]vGv

+rvGv + [µ+ σ2
l − σσlρ− θ(z − 1)]zGz = 0. (18)

Multiplying both sides of equation by σ̃Gvv we get:

σ̃GtGvv +
1

2
(σ̃zGvz + [µ− θ(z − 1)]Gv)

2 −

(σ̃zGvz + [µ− θ(z − 1)]Gv)σ̃zGvz +
1

2
σ̃z2GzzGvv −

(σ̃zGvz + [µ− θ(z − 1)]Gv)[µ− θ(z − 1)]Gv +

σ̃rvGvGvv + σ̃[µ+ σ2
l − σσlρ− θ(z − 1)]zGzGvz = 0.

Expanding we have:

σ̃GtGvv +
1

2
σ̃2z2G2

vz +
1

2
[µ− θ(z − 1)]2G2

v +

σ̃z[µ− θ(z − 1)]GvGvz − σ̃2z2G2
vz −

σ̃z[µ− θ(z − 1)]GvGvz +
1

2
σ̃z2GzzGvv −

σ̃z[µ− θ(z − 1)]GvGvz − [µ− θ(z − 1)]2G2
v +

σ̃rvGvGvv + σ̃[µ+ σ2
l − σσlρ− θ(z − 1)]zGzGvz = 0
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Simplifying we get:

σ̃GtGvv −
1

2
σ̃2z2G2

vz −
1

2
[µ− θ(z − 1)]2G2

v +

1

2
σ̃z2GzzGvv − σ̃z[µ− θ(z − 1)]GvGvz + (19)

σ̃rvGvGvv + σ̃[µ+ σ2
l − σσlρ− θ(z − 1)]zGzGvz = 0.

At this stage we were able to turn our four varible PDE into three but we can get rid

of one more. To obtain the closed form solution, we consider the following separation

ansatz:

G(t, v, z) = f(t, z)vγ, (20)

with the terminal condition

f(T, z) = 1 ∀z. (21)

We have the following derivatives of (20):

Gt = ftv
γ, Gv = fvγ−1γ,Gz = fzv

γ, Gvv = fvγ−2γ(γ − 1), Gvz = fzv
γ−1γ,Gzz = vγfzz

Plugging them back into (20) and divide by v2(γ−1)γ:

σ̃ (γ − 1)fft −
1

2
σ̃2γz2f 2

z −
1

2
γ[µ− θ(z − 1)]2f +

1

2
σ̃(γ − 1)z2ffzz −

σ̃ γ[µ− θ(z − 1)]zffz + σ̃γ(γ − 1)rf 2 + σ̃(γ − 1)[µ+ σ2
l − σσlρ− θ(z − 1)]ffz = 0.

We now have our PDE with only two variables instead of four. The issue at this stage

is that this PDE does not have a closed for solution. This is a non standard PDE,

which is not high dimensional but is non linear which makes using finite difference

methods or any standard numerical methods difficult. For this reason we propose to

use the DGM to solve equation (22). Then optimal strategy is

h∗1 = − σ̃zGvz + [µ− θ(z − 1)]Gv

σ̃vGvv

= − σ̃z(fzv
γ−1γ)− [µ− θ(z − 1)](fvγ−1γ)

σ̃v(fvγ−2γ(γ − 1))

= − σ̃zfz − [µ− θ(z − 1)]f

σ̃f(γ − 1)

= − zfz
(γ − 1)f

− [µ− θ(z − 1)]

σ̃(γ − 1)
. (22)

Note: to calculate the optimal control we do not divide by second order derivative,

so the propagation of errors is avoided.
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(a) Simulation: low σ with low θ
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(b) Simulation: high σ with low θ
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(c) Simulation: low σ with high θ
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(d) Simulation: high σ with high θ

Figure 4: Four scenarios of σ and θ from high to low
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(a) Simulation: low µ with low ρ
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(b) Simulation: low µ with high ρ
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(c) Simulation: high µ with low ρ
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(d) Simulation: high µ with high ρ

Figure 5: Four scenarios of ρ and µ from high to low
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Convergence of Heston to natural SVI

Heston implied variance

Forde et al. proved12 that the implied volatility surface [247] behaves asymptotically

like equation (23).

σ2
∞(x) =





2
(

2V ∗(x)− x+
√
V ∗(x)2 − kV ∗(x)

)
, for x ∈ R\

[
−1
θ
, 1

θ̂

]
,

2
(

2V ∗(x)− x−
√
V ∗(x)2 − kV ∗(x)

)
, for x ∈

(
−1
θ
, 1

θ̂

)
.

(23)

with θ̂ := κθ/(κ− ρσ), and the function V ∗ : R 7→ R+ is defined by

V ∗(x) := p∗(x)x− V (p∗(x)), for all x ∈ R, (24)

where

V (p) :=
κθ

σ2
(κ− ρσp− d(p)) , for all p ∈ (p−, p+),

d(p) :=
√

(θ − ρσp)2 + σ2p(1− p2), for all p ∈ (p−, p+),

p∗(x) :=
σ − 2κρ+ (κθρ+ xσ)σl(x

2σ2 + 2xκθρσ + κ2θ2)−
1
2

2σρ̂2
, for all x ∈ R,

σl :=
√

4k2 + σ2 − 4κρσ,

p± :=
(
−2κρ+ σ ±

√
σ2 + 4κ2 − 4κρσ

)
/(2σρ̂2),

ρ̂ :=
√

1− ρ2

(25a)

(25b)

(25c)

(25d)

(25e)

(25f)

Remark Note that here the implied variance corresponds to European options with

maturity T and maturity-dependent strike K = S0 exp(xT ).

Heston to natural SVI

The material associated with this part of the proof has been taken from [100].

Lemma .0.1 (Heston to natural SVI) The natural SVI parametrization for im-

plied variance is given by equation13 (26)

σ2
SVI(x) =

w1

2

(
1 + w2ρx+

√
(w2x+ ρ)2 + (1− ρ2)

)
, ∀x ∈ R, (26)

12We refer here to Forde’s original paper [247] for this long and convoluted proof. We will assume
in that paper that the proof is correct.

13Note that here the ∆ parameter in equation (4.5), which appears in natural SVI formula in [100]
is set to be equal 0 in equation (26).
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where x corresponds to a time-scaled log-moneyness. With the choice of SVI param-

eters in terms of the Heston parameters are the following:

w1 :=
4κθ

σ2(1− ρ2)

(√
(2κ− ρσ)2 + σ2(1− ρ2)− (2κ− ρσ)

)
, and w2 :=

σ

κθ
. (27)

and under Assumption k − ρσ > 0 (27), σ2
SV I(x) = σ2

∞(x) for all x ∈ R.

Proof Denote ∆(x) :=
√
σ2x2 + 2κθρσx+ κ2θ2, where σl =

√
4k2 + σ2 − 4κρσ and

ρ̂ is defined by (25f). By plugging (27) into (26) the SVI implied variance formula is

of the following form

σ2
SV I(x) =

2

σ2ρ̂2
(σl − (2κ− ρσ)) (κθ + ρσx+ ∆(x)) , for allx ∈ R. (28)

In order to simplify the expression for σ2
∞ in (23), first, the expression for V ∗(x) in

23 is rewritten in the following form:

V ∗(x) =
A(x)∆(x) +B(x)σl

2σ2ρ̂2∆(x)
(29)

with

A(x) := xσ2−2xκρσ−2κ2θ+κθρσ, and B(x) := 2xσκθρ+x2σ2 +κ2θ2ρ2 +κ2θ2ρ̂2.

(30)

Since B(x) = ∆2(x) =⇒ V ∗(x) = (A(x) + ∆(x)σl)/(2σ
2ρ̂2). And

2V ∗(x)− x =
A(x) + ∆(x)σl − xσ2ρ̂2

σ2ρ̂2
=

∆(x)σl − (2κ− ρσ)(κθ + xρσ)

σ2ρ̂2
, (31)

where the factorization A(x)− xσ2ρ̂2 = −(2κ− ρσ)(κθ + xρσ) is used.

Now in (23) denote Φ(x) := V ∗(x)2 − xV ∗(x). We have

Φ(x) =

(
∆(x)σl
2σ2ρ̂2

)2

+ α(x)∆(x) + β(x), (32)

where

α(x) := −σl(2κ− ρσ)(κθ + xρσ)

2σ4ρ̂4
, and β(x) :=

1

4σ4ρ̂4

(
(2κ− ρσ)2(κθ + xρσ)2 − x2σ4ρ̂4

)
.

Using the following factorization:

∆2(x) = (κθ + xρσ)2 + x2σ2ρ̂2, and σ2
l = (2κ− ρσ)2 + σ2ρ̂2 (33)
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we can write β(x) = (4σ4ρ̂4)−1 ((2κ− ρσ)2∆2(x)− x2σ2ρ̂2σ2
l ) and hence

Φ(x) =
1

4σ4ρ̂4

([
(2κ− ρσ)2 + σ2ρ̂2

]
∆2(x) + α(x)∆(x) + (σ2

l − σ2ρ̂2)(∆2(x)− x2σ2ρ̂2)− x2σ4ρ̂4
)

=
1

4σ4ρ̂4

(
(2κ− ρσ)2∆2(x) + α(x)∆(x) + σ2

l (κθ + xρσ)2
)

=
1

4σ4ρ̂4
(σl(κθ + xρσ)− (2κ− ρσ)∆(x))2 , (34)

where a(x) := 4σ4ρ̂4α(x). By taking the square root of Φ(x) we have

σl(κθ + xρσ)− (2κ− ρσ)∆(x)

= (κθ + xρσ)
√

(2κ− ρσ)2 + σ2ρ̂2 − (2κ− ρσ)
√

(κθ + xρσ)2 + x2σ2ρ̂2

=
√
γ(x) + σ2ρ̂2(κθ + xρσ)2 −

√
γ(x) + x2σ2ρ̂2(2κ− ρσ)2,

where γ(x) := (2κ − ρσ)2(κθ + xρσ)2. Now, because γ(x) ≥ 0 for all x ∈ R, then

the sign of this expression is given by the difference ψ(x) := σ2ρ̂2(κθ + xρσ)2 −
x2σ2ρ̂2(2κ−ρσ)2. Note further that we have ψ(x) = κσ2ρ̂2(2x+θ)(2xρσ+κθ−2κx),

that this polynomial has exactly two real roots −θ/2 and θ̂/2, and that its second-

order coefficients reads −4κσ2ρ̂2(κ − ρσ) < 0 under assumption κ − ρσ > 0. So

plugging (31) and (34) into (23), we obtain (28) and the proposition follows.

Remark In their original paper [247], Forde, Jacquier and Mijatovic show that

σ̂2
t (x) = σ̂2

∞(x) + t−1 8σ4
∞(x)

4x2 − σ̂∞(x)
ln

(
A(x)

ABS(x, σ̂∞(x), 0)

)
+ o(t−1) (35)

with A(x) a complicated function which detailed specification can be found in the orig-

inal paper [247]. Using Forde, Jacquier and Mijatovic [247] notation σ̂2
t (x) = σ̂2

∞(x)+

ε(t, x), where ε(t, x) represents the error term t−1 8σ4
∞(x)

4x2−σ̂∞(x)
× ln

(
A(x)

ABS(x,σ̂∞(x),0)

)
+

o(t−1) then it is tempting to assume:

1. ε(t, x) behaves like the downside transform family introduced by equation (4.1a).

2. the 2 in σ̂2
t (x) can be replaced by 4p with 0 < p < 1

2
and assume the sub-linearity

would magically come out through a tedious derivation.

However none of these 2 tempting guess would work because the moments are now all

finite and there is no finite interval of study needed and the SVI and IVP equations

are slightly different. You have to derive the problem from scratch.
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Proof for right and left wing sub-linearity

The following two theorems are taken from [55].

We consider risk-neutral returns X with cummulative distribution function F , wit

F̄ = 1 − F and f for the probability density function of X. The class of regularly

varying functions at +∞ of index α is denoted by Rα.

Theorem .0.2 (Theorem (Right-Tail-Wing Formula)) Assume α > 0 and

∃ε > 0 : E
[
e(1+ε)X

]
<∞. (36)

Then (i) → (ii) → (iii) → (iv),

where

− ln f(k) ∈ Rα

− ln F̄ (k) ∈ Rα

− ln c(k) ∈ Rα

(37a)

(37b)

(37c)

and14

V (k)2/k ∼ ψ
[
−1− ln F̄ (k)/k

]
. (38)

If (37b) holds then − ln c(k) ∼ −k − ln F̄ and

V (k)2/k ∼ ψ
[
−1− ln F̄ (k)/k

]
, (39)

if (37a) holds, then − ln f ∼ − ln F̄ and

V 2(k)/k ∼ ψ [−1− ln f(k)/k] . (40)

Finally, if either − ln f(k)/k or − ln F̄ (k)/k or − ln c(k)/k goes to infinity as k →∞
then V 2(k) behaves sublinearly. More precisely,

V 2(k)/k ∼ 1

−2 ln f(k)/k
or

1

−2 ln F̄ (k)/k
(41)

Theorem .0.3 (Theorem (Left-Tail-Wing Formula)) Assume α > 0 and

∃ε > 0 : E
[
e−εX

]
<∞. (42)

Then (i) → (ii) → (iii) → (iv),

where

− ln f(−k) ∈ Rα

− lnF (−k) ∈ Rα

− ln p(−k) ∈ Rα

(43a)

(43b)

(43c)

14g(k) ∼ h(k) means g(k)/h(k)→ 1 as k →∞
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and

V (−k)2/k ∼ ψ [−1− ln p(−k)/k] . (44)

If (43b) holds then − ln p(k) ∼ k − lnF (−k) and

V (−k)2/k ∼ ψ [− lnF (−k)/k] , (45)

if (43a) holds, then the −logf(−k) ∼ − lnF (−k) and

V (k)2/k ∼ ψ [− ln f(−k)/k] . (46)

Finally, if either − ln f(−k)/k or − lnF (−k)/k or − ln p(−k)/k goes to infinity as

k →∞ then V 2(−k) behaves sublinearly. More precisely,

V 2(−k)/k ∼ 1

−2 ln f(−k)/k
or

1

−2 lnF (−k)/k
or

1

−2 ln p(−k)/k
. (47)

Acronyms (A-E)
AC Asset Class or Assumed Correlation
AFVS Arbitrage Free Volatility Surface
ALLC Always Cooperates
ALLD Always Deceits
ANN Artificial Neural Network
AOTSPST Average Of The Same Parameters Surrounding Tenors
Aug Augmenting
a.s Almost Surely
BD Big Data
BPS Basis Point
BS Black-Scholes
BU Bottom-Up
BVD Bias-Variance Dilemma
CDF Cumulative Distribution Function
C&IC Cointelation & Inferred Correlation
DAPD Data Analysis and Patterns in Data
DGM Deep Galerkin Method
DMUAA Decision Making under Uncertainty and Asset Allocation
EKF Extended Kalman Filter
EM Expectation Maximisation
EMRPMA Efficient Markets, Risk Premia and Market Anomalies
EP Evolutionary Process
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Acronyms (E-M)
ES Expected Shortfall or Economic sector
ET Electronic Trading
FIFO First In First Out
FISST Finite Set Statistics
gSVI generalised Stochastic Vol Inspired
GL Geographical Location
GSF Gaussian Sum Filter
GTFT Generous Tit For Tat
HF High Frequency
HFFF High Frequency Financial Funnel
HFT High Frequency Trading
HFTE High Frequency Trading Ecosystem
HMM Hidden Markov Model
Ii Input “i”
IC Inferred Correlation
i.i.d. Identically and Independently Distributed
IPPF Independent Partition Particle Filter
IS Importance Sampling
IVP Implied Volatility Parametrization
JMLS Jump Markov Linear Systems
JPDA Joint Probabilistic Data Association
JMS Jump Markov Systems
KF Kalman Filter
Lasso Least Absolute Shrinkage & Selection Operator
LSTM Long Short-Term Memory
LPSOTC Liquidity Profile And Size Of The Company
MACD Moving Average Convergence Divergence
MB Mathematical Biology
MC-JPDAF Monte Carlo Joint Probabilistic Data Association Filter
MCMC Markov Chain Monte Carlo
MDITP May Do If Time Permits
MG Minority Game
MHT Multiple Hypotheses Tracker
MLR Multi-Linear Regression
MMSE Minimum Mean Square Error
MSR Multi-Sigmoid Regression
MSMC Multi Sequential Monte Carlo
MSE Mean Square Error
MTT Multi Target Tracking
MVC Mean Variance Criterion
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Acronyms (N-Z)
NICtV Needs Internet Connection to View
NN Neural Network
NNSF Nearest Neighbour Standard Filter
O Output
OB Order-Book
OI Open Interest
OMC Order May Change
OMI Oxford-Man Institute of Quantitative Finance
OU Ornstein-Uhlenbeck
P&L Profit and Loss
PDF Probability Distribution Function
PDT Product Diffusion Types
PF Particle Filter
PHD Probability Hypothesis Density
PT Product Type
rand Random
Rev Revolutionizing
RIN Review If Necessary
SABR Stochastic Alpha Beta Rho
SFS Stability of Financial Systems
SIR Sampling Importance Resampling
SIVP Simplified IVP
SMC Sequential Monte Carlo
SMFM Single Molecule Fluorescence Microscopy
SR Stephen Roberts
SRCF Socially Responsible and Consumer Finance
SSPF Sequential Sampling Particle Filter
STEM Science Technology Engineering Mathematics
STRAT Strategy
SVI Stochastic Volatility Inspired
TBD track-before-detect
TD Top-Down
TF Trend Following
TFT Tit For Tat
TSD Tentative Submission Date
UKF Unscented Kalman Filter
UTOPE Unfortunate cosT Of Pattern rEcognition
VaR Value at Risk
w.r.t. with respect to
WSLS Win-Stay, Lose-Shift
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