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Successful Research Strategies

Research Interest vs Publication

Some dedicate their whole lives to one complicated problem with a rare
(but often nothing) outstanding outcome (Grigori Perelman).

Some other prefer adhering to the “publish or perish” model at the cost
of not producing the same quality research.

Terence Tao suggests to have one big problem to go back to when
inspired but adhere to (or at least do not neglect) the “publish or perish”
model most of the time.

Research Complexity vs Recognition

You can dedicate lots of energy on problems you find personally
stimulating but nobody cares about.

You can dedicate little energy on problems you do not find personally
very stimulating but others may find useful.

John Conway’s Game of Life happens to be the latter case (surprisingly).

Theory vs Simulation

A good theory should be able to be simulated.

A good simulation may change/iron out a theory.

Cedric Villani thinks that the process can go back and forth until the
picture becomes clearer.
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Memorable Events Influencing Research

Part I:

How does Morality Emerge in human behaviour → Axelrod [3, 4]:
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Part II:

Shocking work experience and the necessity to exude that
frustration with papers and vulgarization

Lack of Integrity (Apophenia, Anomaly Detection, Misleading
Statement and Actions)
Models with incredible rigour when unnecessary but with total
disregard to rigour when it becomes critical (e.g: systemic risk
associated to covariance).
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Context

Market Changing Financial Crisis: 10 year anniversary

The Subprime crisis triggers malaise [15, 20, 28, 21]: This
encourages Socially Responsible Finance.

Quantitative Finance was instructed to change [17]: From
models assuming data to data reassuming the models,

There is a wave associated to tying Classic Financial
Mathematics models towards more Data Driven problems:
rise of Machine Learning.

The Rise of Big Data

What is Big Data:
lots of anecdotal
claims about how big
is Big Data [9, 2, 16]
but the term refers
more to the concept
of “datafication”
(increase in size ≠

better confidence
interval but rather
change in
perspective).

The Flash Crashes
(eg: [29]) calls for a
modelling revolution
[5, 12, 6] (BU vs.
TD): the Brownian
motion assumption to
model markets is
increasingly difficult to
defend.
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Original Contribution: Part I (Opposition)

Exposing the benefits of bringing Mathematical Biology and
Evolutionary Dynamics into 21st century QF.

Turning classic QF strategies into NN format in order to prepare
for our strategy tournament,

Formalization of the HFTE rough tournament and exposing why
this is not a good approach,

Formalizing the path of interaction concept in the context of an
HFTE Game,

Performing a computer tournament with a set of simple fixed
classic strategies as well as proposing some interesting connection
to other seemingly unconnected concepts (Morality and
Complexity/Diversity debate),

Formalizing the methodology for a Particle Filter which aim is to
track ecosystems of strategies through time by looking at price
dynamics only as well as performing few simulations.
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Original Contribution: Part II (Apposition)

Detective work: exposing where ∣T∂kσ
2
(K ,T )∣ < 4 came from and

why it is a necessary but not sufficient condition because of wrong
data assumptions (moment explosion vs linearity),

Exposing the limitations of the SVI model (arbitrage constraint,
wings & liquidity),

Addressing these problems by constructing the IVP model,

Using proxying and de-abitraging (on the Mid or leveraging on
Liquidity) in order to reconstruct implied volatility scenarios,

Exposing the Financial Mathematics limiting assumptions in the
context of Markowitz especially when contrasted with real data,

Cointelation model construction and it’s mirror Inferred
Correlation approximation for data driven applications and Proper
Market Conduct,

Its Portfolio Optimization using several the Bandwise-Gaussian
mixture model as well as Deep Learning,

Reconciling discordant Risk: Anticipative Responsible VaR.
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Two simple questions for two simple definitions

We have tried to understand the financial
markets using the top down approach for
100 years with (very) partial success.
Can we look at it in a different angle?

Definition (Top-Down Vs Bottom-Up)

Top-Down (TD): Any stochastic
quantitative approach which assumes
that the market is random (or close to
random) but for which we can create
interesting dynamic strategies.

Bottom-Up (BU): Any deterministic
quantitative approach which assumes
that strategies interacting create the
dynamics of the market (new angle).

Can we use this new angle
to “solve” the market?
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The Scientific Method for “solving” the market
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Question: What do we mean by “solve”?

Answer: We want to look at market price processes and be able to
tell what systematic strategies were involved, what their P&L has
been and this at all times (including in the future): ecosystem details.

Scientific Method: A
good theory can be
simulated but simulations
can also help bring
intuition on what the
theory might be [34].
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Caveat: Is the idea mad,
ambitious or both?
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Predator/Prey models

We can make the hypotheses that the
economical cycles or oscillation in prices are
due to the same type of disruptions that can
occur in

biological ecosystems predator/prey
(PP) [35, 8] models (a, b, c, d , e, f and g are
rate of growth or predation). The relationship
between x(t), y(t) and z(t) is deterministic:

⎧⎪⎪⎪⎪⎪
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⎪⎪⎪⎪⎪⎩

dx(t)
dt

= ax(t) − bx(t)y(t)
dy(t)
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= −cy(t) + dx(t)y(t) − ey(t)z(t)
dz(t)
dt

= −fz(t) + gy(t)z(t)
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Answering if an ecosystem (or by extension
financial market) composed of 3 strategies is
stable would come to studying the Jacobian
matrix J [8]. If if all eigenvalues of J(x , y , z)
have negative real parts then our system is
asymptotically stable. Though simplistic, the
model can easily be expanded to more complex
ecological niches.
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Evolutionary Dynamics
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e) Example of Few Strategy Battles 

WSLS: CCCCCCDDDD … 

ALL C: CCCCCCCCCCC … 
Vs. 

WSLS: CCCCCCDDCC … 

WSLS: CCCCCCCDCC … 
Vs. 

WSLS: CDCDCDCDCD … 

ALLD : DDDDDDDDD … 
Vs. 

GTFT: CCCCDCCCCCC … 
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Vs. 

ALLC: CCCCCCCCCCC … 

ALLD: DDDDDDDDD  … 
Vs. 
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d) War & Peace Chart 

TFT:  CCCCCCDCCCC … 

GTFT: CCCCCCCCCC … 
Vs. 

GTFT:  CCCCCCDCCCC … 

ALLC:  CCCCCCCCCC … 
Vs. 

Axelrod’s [3, 4]
computer
tournament and
Nowak’s work on
Evolutionary
Dynamics (ED)
[30] on invasion
need to influence
21st century
Quantitative
Finance especially
the BU approach.

The methodology
in ED is interesting
because the
strategies are both
systematic &
interacting with
each other (like it
is the case in algo
trading).
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A first application in Economics: Minority Game

In the Minority Game [7], developped by
Challet, Marsili and Zhang, players need to
choose between two options (+1,−1). Those
who have selected the option chosen by the
minority “win”.

−1 −1 −1    −1
−1 −1 +1    −1
−1 +1 −1    +1  
−1 +1 +1    −1
+1 −1 −1    −1
+1 −1 +1    +1
+1 +1 −1    −1
+1 +1 +1    +1 

input output

+1
N

−1−1action +1

minority rule

m

...−1 +1 +1 −1 −1 +1 +1

+1

next winning group

feedback

Figure 1: Left: An example of an strategy form = 3. Right: Cartoon of the MG model for a given
time step: in this case the strategy maps the last three winning groups (m = 3) into the agent decision.
Solid thick lines mimic how the information flows in the system: theN agents take the lastm numbers
(−1,−1, +1 in this case) from the sequence of winning groups and performan action accordingly. The
N actions are transformed into the next winning group (+1 in this case) through the minority rule. This
information is shared with the agents for their own feedback[Eq. (2)] and becomes the next number in
the sequence of winning groups.

the prediction of a strategy is given by itsµ(t) ∈ {1, . . . , 2m} component, whereµ(t) is a number
whose binary representation correspond to the last winninggroups1. If we denote~I(t) the vector whose
components are zero excepting theµ(t) component which is one, then the prediction of strategy~r α

i is
given by~r α

i · ~I(t). For example, if the last three winning groups were−1, +1, +1 thenµ(t) = 4 and
~I(t) = (0, 0, 0, 1, 0, 0, 0). Thus, strategies are all possible2m-dimensional vectors with±1 components.

Adaptation comes in the way agents choose at each time step one of theirs strategies: they take
the strategy within their own set of strategies whose performance over time to predict the next winning
group is biggest. In order to do that each agenti assigns virtual pointspα

i (t) to his strategyα after each
time stept when they predicted correctly the winning group:

pα
i (t + 1) = pα

i (t) − ~r α
i · ~I(t) g[A(t)] (2)

whereα = 1, . . . , s andi = 1, . . . , N . However these points are only virtual points as they recordonly
agents’ strategies performance and serve only to rank strategies within each agent set. After timet agent
i takes the first strategy in his personal ranking which tells him what to do in the future. If we denote
agenti best strategy at timet in his ranking asβi(t) ∈ {1, . . . , s},2 then his action at timet is given by:

ai(t) = ~r
βi(t)
i · ~I(t). (3)

The fact that this personal ranking can change over time makes the agents adaptative: the ranking of
each agent’s strategies can change over time and thenβi(t) could be different at different times.

1In the binary representation ofµ(t) we make the correspondence−1 ↔ 0 and+1 ↔ 1. Thus, if the last winning groups
were−1,+1,+1 the binary representation ofµ(t) is 011 andµ(t) = 4.

2When two strategies have the highest number of points, the best strategy is chosen by coin tossing.

5

Criticism: Is this realistic for Economics?
Maybe, but not for algorithmic trading (eg:
TF strategy in a TF concentrated
ecosystem)?
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Figure 3: Volatility as a function of the control parameterα = 2m/N for s = 2 and different number of
agentsN = 101, 201, 301, 501, 701 (�, ♦, △, ⊳, ▽, respectively). Inset: Agent’s mean success rate as
function ofα.

values ofA(t) display a nontrivial shape and the fluctuations are important [9]. Moreover for small
values ofm the attendance display time periodic patterns which are lost for large values ofm.

4.1 Volatility

While the behavior of〈A(t)〉 is somehow trivial, fluctuations ofA(t) around its mean value given by
the varianceσ2 = 〈[A(t) − 〈A(t)〉]2〉 have a more interesting behavior (see figure 3). First note thatσ
is related to the typical size of the losing group, so the smaller σ, the more winners are in the game. The
varianceσ2 is usually known as the volatility or (the inverse of) globalefficiency. The behavior ofσ2

as a function of the parameters of the modelm, s andN shows a quite remarkable behavior [45, 53]:

• It was found by extensive simulations thatσ2/N is only a function ofα = 2m/N for each value
of s (see figure 3). This finding not only identifies the control parameter in this model,α, but
also paves the way for the application of tools of statistical mechanics in the thermodynamic limit
N → ∞. Since qualitative results are independent ofs ≥ 2 we take the simplest cases = 2 for
the rest of the chapter.

• For large values ofα, σ2/N approaches the value for the random choice gameσ2/N = 1, i.e.,
the game in which each agent randomly choosesai(t) = −1 or ai(t) = 1 independently and with
equal probability at each time step.

• At low values ofα, the average value ofσ2 is very large, actually, it scales likeσ2/N ∼ α−1

which means thatσ ∼ N and thus the size of the losing group is much larger thanN/2.

• At intermediate values ofα, the volatilityσ is less than the random case, and it attains a minimum
value atα ≃ 1/2. In this region, the size of the losing group is close toN/2 (which is the
minimum possible size for the losing group).

7

Physical Laws can emerge
from these simple rules. We
can observe that σ2

/N is only
a function of α = 2m/N
which considering the
complexity of the interactions
between the set of agents can
be quite remarkable.
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Solid thick lines mimic how the information flows in the system: theN agents take the lastm numbers
(−1,−1, +1 in this case) from the sequence of winning groups and performan action accordingly. The
N actions are transformed into the next winning group (+1 in this case) through the minority rule. This
information is shared with the agents for their own feedback[Eq. (2)] and becomes the next number in
the sequence of winning groups.

the prediction of a strategy is given by itsµ(t) ∈ {1, . . . , 2m} component, whereµ(t) is a number
whose binary representation correspond to the last winninggroups1. If we denote~I(t) the vector whose
components are zero excepting theµ(t) component which is one, then the prediction of strategy~r α

i is
given by~r α

i · ~I(t). For example, if the last three winning groups were−1, +1, +1 thenµ(t) = 4 and
~I(t) = (0, 0, 0, 1, 0, 0, 0). Thus, strategies are all possible2m-dimensional vectors with±1 components.

Adaptation comes in the way agents choose at each time step one of theirs strategies: they take
the strategy within their own set of strategies whose performance over time to predict the next winning
group is biggest. In order to do that each agenti assigns virtual pointspα

i (t) to his strategyα after each
time stept when they predicted correctly the winning group:

pα
i (t + 1) = pα

i (t) − ~r α
i · ~I(t) g[A(t)] (2)

whereα = 1, . . . , s andi = 1, . . . , N . However these points are only virtual points as they recordonly
agents’ strategies performance and serve only to rank strategies within each agent set. After timet agent
i takes the first strategy in his personal ranking which tells him what to do in the future. If we denote
agenti best strategy at timet in his ranking asβi(t) ∈ {1, . . . , s},2 then his action at timet is given by:

ai(t) = ~r
βi(t)
i · ~I(t). (3)

The fact that this personal ranking can change over time makes the agents adaptative: the ranking of
each agent’s strategies can change over time and thenβi(t) could be different at different times.

1In the binary representation ofµ(t) we make the correspondence−1 ↔ 0 and+1 ↔ 1. Thus, if the last winning groups
were−1,+1,+1 the binary representation ofµ(t) is 011 andµ(t) = 4.

2When two strategies have the highest number of points, the best strategy is chosen by coin tossing.
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Criticism: Is this realistic for Economics?
Maybe, but not for algorithmic trading (eg:
TF strategy in a TF concentrated
ecosystem)?
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Figure 3: Volatility as a function of the control parameterα = 2m/N for s = 2 and different number of
agentsN = 101, 201, 301, 501, 701 (�, ♦, △, ⊳, ▽, respectively). Inset: Agent’s mean success rate as
function ofα.

values ofA(t) display a nontrivial shape and the fluctuations are important [9]. Moreover for small
values ofm the attendance display time periodic patterns which are lost for large values ofm.

4.1 Volatility

While the behavior of〈A(t)〉 is somehow trivial, fluctuations ofA(t) around its mean value given by
the varianceσ2 = 〈[A(t) − 〈A(t)〉]2〉 have a more interesting behavior (see figure 3). First note thatσ
is related to the typical size of the losing group, so the smaller σ, the more winners are in the game. The
varianceσ2 is usually known as the volatility or (the inverse of) globalefficiency. The behavior ofσ2

as a function of the parameters of the modelm, s andN shows a quite remarkable behavior [45, 53]:

• It was found by extensive simulations thatσ2/N is only a function ofα = 2m/N for each value
of s (see figure 3). This finding not only identifies the control parameter in this model,α, but
also paves the way for the application of tools of statistical mechanics in the thermodynamic limit
N → ∞. Since qualitative results are independent ofs ≥ 2 we take the simplest cases = 2 for
the rest of the chapter.

• For large values ofα, σ2/N approaches the value for the random choice gameσ2/N = 1, i.e.,
the game in which each agent randomly choosesai(t) = −1 or ai(t) = 1 independently and with
equal probability at each time step.

• At low values ofα, the average value ofσ2 is very large, actually, it scales likeσ2/N ∼ α−1

which means thatσ ∼ N and thus the size of the losing group is much larger thanN/2.

• At intermediate values ofα, the volatilityσ is less than the random case, and it attains a minimum
value atα ≃ 1/2. In this region, the size of the losing group is close toN/2 (which is the
minimum possible size for the losing group).
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values ofm the attendance display time periodic patterns which are lost for large values ofm.
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• It was found by extensive simulations thatσ2/N is only a function ofα = 2m/N for each value
of s (see figure 3). This finding not only identifies the control parameter in this model,α, but
also paves the way for the application of tools of statistical mechanics in the thermodynamic limit
N → ∞. Since qualitative results are independent ofs ≥ 2 we take the simplest cases = 2 for
the rest of the chapter.

• For large values ofα, σ2/N approaches the value for the random choice gameσ2/N = 1, i.e.,
the game in which each agent randomly choosesai(t) = −1 or ai(t) = 1 independently and with
equal probability at each time step.

• At low values ofα, the average value ofσ2 is very large, actually, it scales likeσ2/N ∼ α−1

which means thatσ ∼ N and thus the size of the losing group is much larger thanN/2.

• At intermediate values ofα, the volatilityσ is less than the random case, and it attains a minimum
value atα ≃ 1/2. In this region, the size of the losing group is close toN/2 (which is the
minimum possible size for the losing group).
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Bringing these Ideas into Electronic Trading

As ML “translation” of ED and
PP models, we have
Generative Adversarial
Networks (GANs) [14],
introduced in 2014, usually
involve a system of two neural
networks competing in a
zero-sum game settings. This
process continues as long as
needed since the lack of data is
no longer a problem.

The communication tool is the
order book and the game is
not zero-sum game in our
research. The strategies are in
High Frequency Financial
Funnel (HFFF) format [23].
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High Frequency Financial Funnel & Classic Strategies

4 3 2 1 0 1 2 3 4 

4 3 2 1 0 1 2 3 4 

4 3 2 1 0 1 2 3 4 

4 3 2 1 0 1 2 3 4 

4 3 2 1 0 1 2 3 4 

HFFF can model financial strategies:

1 Trend Following (TF)

2 MACD

3 MLR

4 XOR

5 Lasso Regressions etc ...

Architecture Complexity and strategy
sophistication explains the incentive for
Deep Learning (DL).
Paradoxically we witness potential for
regularization as the network becomes
more complex.
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Genetic Algorithm & NN Complexity

NN depth & breadth
should contribute in
increasing the learning
potential.

The TF
(bottom) is less
complex than the MLR
(middle) which is less
complex than the XOR
(top) strategy.

Question: Can we
make an analogy to the
predator prey
ecosystem? Do we get
similar behaviour as the
Lotka-Volterra
equations [35, 19]?
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The Path of Interaction

Answer: not quite but there are few interesting links (exponential grow of the
smaller prey/self fulfilling strategies such as TF) but they are many issues
(classification, timescale etc...).

Strategy seed ⇈ TF1 TF2 TF1 TF2

Iteration 0 1 2

Signal N/A +1 +1 +1 +1

OB 0P
1,1,1,1

0,0P
1,1,1

0,0,0P
1,1

0,0,0,0P
1

0,0,0,0,0P

Last Price 100 101 102 103 104

∆OI +1 −1 −2 −3 −4

∆Price +1 +1 +1 +1 +1

P&L [0, 0] [1, 0] [2, 1]

The genetic algorithm presented in the previous slide creates complications
(classification issues). This pushed us to study the bottom-up approach using
concepts taken from evolutionary dynamics and created the the concept of Path
of Interaction: table of 7 rows documenting the interaction’s details (eg:
table above).
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Sequential Monte Carlo

Sequential Monte Carlo
(SMC) methods
[10, 11, 18], also know as
Particle Filter have
emerged as a fashionable
tool to track scenarios in
the last 15 years [31, 32].
They are the sequential
analogue of Markov Chain
Monte Carlo (MCMC)
methods and similar to
importance sampling
methods.

The aims of the PF is to
estimate the sequence of
hidden parameters (eg:
the frequencies of certain
types of strategies), based
on an indirect
observations (eg: the
fluctuations of the
market).

Chap. 2 : Literature Review

2.1.4 Resampling Methods

Resampling methods are usually used to avoid the problem of weight degeneracy in our algorithm.

Avoiding situations where our trained probability measure tends towards the Dirac distribution

must be avoided because it really does not give much information on all the possibilities of our

state. There exists many different resampling methods, Rejection Sampling , Sampling-Importance

Resampling , Multinomial Resampling , Residual Resampling , Stratified Sampling, and the per-

formance of our algorithm can be affected by the choice of our resampling method. The stratified

resampling proposed by Kitagawa [9] is optimal in terms of variance. Figure 2.3 gives an illustration

of the Stratified Sampling and the corresponding algorithm is described in algorithm 13 . The aim

CDF F

UNp ∼ (
Np−1
Np

, 1]

U2 ∼ ( 1
Np
, 2
Np

]

(
Np−1
Np

, 1]

Xk
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real pdf

estimated pdf at time k (before resample)
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U1 ∼ (0, 1
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]

lucky useless particle stays at the same spot

estimated pdf at time k + 1 (after resample)

another seemingling useless particle is realocated as expected at a more useful place

Xk

moved here

(0, 1
Np

]

( 1
Np
, 2
Np

]

Figure 2.3: Resampling illustration

of figure 2.3 is to talk, we hope, louder than words. It illustrates the Stratified Sampling. We see

32
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The random Brownian paths become deterministic

Each Brownian Path Lookalike is no longer stochastic but deterministic.

0 10 20 30 40
Iteration

100
75
50
25

0
25
50
75

100

P

2 Strategies Ecosystems: [s1, s2, , s9]
3 Strategies Ecosystems: [s10, s11, , s15]

Each deterministic path corresponds to a sequence of interaction of several
strategies for which the sequence and the P&Ls can be traced through our SMC
methods by looking at the market price only.
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PF assigns a probability for each ecosystem scenario

We have recorded 15 different scenarios (ecosystem history) for the sake of this
presentation, all of which are clearly detected after the 11th iteration [27].

#104
0 0.5 1 1.5 2 2.5

0

1

2

3

4

5

6

7

8

9

10

Base Prey Strat: xt (self fulfilling prophecies)
Trophic Leve2 Strat: y1

t  (dominates x t)
Trophic Leve3 Strat: y2

t  (dominates y1
t )

Apex Predator Strat: zt (dominates y2
t )

Market

Fig. 23: Simplified Stochastic 4-species Lotka-Volterra of Equation (31)

(a) Scenario s1 (b) Scenario s2 (c) Scenario s3 (d) Scenario s4 (e) Scenario s5

(f) Scenario s6 (g) Scenario s7 (h) Scenario s8 (i) Scenario s9 (j) Scenario s10

(k) Scenario s11 (l) Scenario s12 (m) Scenario s13 (n) Scenario s14 (o) Scenario s15

Fig. 24: Particle Filter on market scenarios on r2, 3, 5, 11, 23, 47s milestones

to build a realistic market simulators on which one can
test strategies. You are given a set of strategies ⌦ “
tS1, S2, . . . , Snu that can be replicated through the HFFF
that we have seen in Figure 7. You also assume that you
have a history oh P&L distribution for each element of ⌦.
This simulated market ought to be composed of an ecosystem
of all possible theoretical strategies which frequency is
unknown and which should react in such a way that the P&L
distribution of all strategies for which we have historical data
ought to perform in a similar manner.

2) Proposed Solution: We need to defined a particle filter
on the scenarios described in the problem formulation. In
doing so we need to both define a slightly different likelihood
function as well as a very different resampling solution.
We need to create a likelihood function for the particles
associated to the scenario being investigated. This likelihood
function should be itself function of the relative entropy
between the expected P&L distribution and the one realized
by the simulated market. The Kullback-Leibler divergence
[70], of equation (??) can be a simple enough measure for the

31
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Model Assuming Data

Definition (Correlation Model)

On a filtered probability space (Ω,F , (F)(t≥0),P) the
Correlation model is given by the set of two SDE’s:

dX(t) = µX(t)dt + σX(t)dW (t),

dY (t) = µY (t)dt + σY (t)dW̃ (t), (1)

d⟨W , W̃ ⟩t = ρdt, (2)

where µ ∈ R, σ > 0 are drift and diffusion coefficients of asset
price, W̃ (t) and W (t) are two correlated Brownian motions
with constant correlation coefficient ρ ∈ [−1,1].

Remark: few assumptions need to be fulfilled. Variance must
remain constant (homoscedasticity) and the returns
independent. If not instantaneous measured correlation is
misleading with respect to long term correlation:

Top Right Figure: ρ̂ = −1,

Middle Right Figure ρ̂ = 0,

Bottom Right Figure ρ̂ = +1.
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dY (t) = µY (t)dt + σY (t)dW̃ (t), (1)

d⟨W , W̃ ⟩t = ρdt, (2)

where µ ∈ R, σ > 0 are drift and diffusion coefficients of asset
price, W̃ (t) and W (t) are two correlated Brownian motions
with constant correlation coefficient ρ ∈ [−1,1].

Remark: few assumptions need to be fulfilled. Variance must
remain constant (homoscedasticity) and the returns
independent. If not instantaneous measured correlation is
misleading with respect to long term correlation:
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Bottom Right Figure ρ̂ = +1.

.

0 5 10 15 20 25 30 35 40 45 50
−25

−20

−15

−10

−5

0

5

10

15

20

25
Correlation is −1

Index

x 
an

d 
z

0 5 10 15 20 25 30 35 40 45 50
−30

−20

−10

0

10

20

30
Correlation is 0

Index

y 
an

d 
u

0 5 10 15 20 25 30 35 40 45 50
−30

−20

−10

0

10

20

30
Correlation is 1

Index

x 
an

d 
y

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 19 / 40



Model Assuming Data

Definition (Correlation Model)

On a filtered probability space (Ω,F , (F)(t≥0),P) the
Correlation model is given by the set of two SDE’s:

dX(t) = µX(t)dt + σX(t)dW (t),

dY (t) = µY (t)dt + σY (t)dW̃ (t), (1)

d⟨W , W̃ ⟩t = ρdt, (2)

where µ ∈ R, σ > 0 are drift and diffusion coefficients of asset
price, W̃ (t) and W (t) are two correlated Brownian motions
with constant correlation coefficient ρ ∈ [−1,1].

Remark: few assumptions need to be fulfilled. Variance must
remain constant (homoscedasticity) and the returns
independent. If not instantaneous measured correlation is
misleading with respect to long term correlation:

Top Right Figure: ρ̂ = −1,

Middle Right Figure ρ̂ = 0,

Bottom Right Figure ρ̂ = +1.

.

0 5 10 15 20 25 30 35 40 45 50
−25

−20

−15

−10

−5

0

5

10

15

20

25
Correlation is −1

Index

x 
an

d 
z

0 5 10 15 20 25 30 35 40 45 50
−30

−20

−10

0

10

20

30
Correlation is 0

Index

y 
an

d 
u

0 5 10 15 20 25 30 35 40 45 50
−30

−20

−10

0

10

20

30
Correlation is 1

Index

x 
an

d 
y

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 19 / 40



Data Disagrees with Assumptions

Data violates assumptions
of the classic model (2):

directly (this is not
new: the returns are
not iid and the
variance is not
constant),

or indirectly (Figure
on left hand side).
Implied correlation is
“marked”, the same
way implied volatility
is. The ratio of two
closely related
underliers exhibits
mean reversion in the
minds of the traders
risk managing these
products.
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Data Reassuming the Model

Definition (Cointelation Model)

On a filtered probability space (Ω,F , (F)(t≥0),P)
the Cointelation model is given by the SDE’s:

dX(t) = µX(t)dt + σX(t)dW (t),

dY (t) = κ (X(t) −Y (t))dt + ηY (t)dW̃ (t),

d⟨W , W̃ ⟩t = ρdt,

with µ ∈ R, σ > 0, η > 0 are drift and diffusion
coefficients of asset price X , κ - the rate of mean
reversion, W̃ (t) and W (t) are two correlated
Brownian motions with constant correlation
coefficient ρ ∈ [−1,1]. The process (X(t))t≥0 is
called the leading process, (Y (t))t≥0 the lagging
process.

Remark: We note that setting κ = 0 yields the
classic correlation model. Conversely, setting ρ = 0
yields the cointegration model.

Intuitive Definition: Cointelation is a
portmanteau neologism in finance,
designed to signify a hybrid method
between between cointegration and
correlation models (Data-Driven
adjustment to classic financial math
models: data “reassuming the
model”).
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Interesting Property: the Inferred Correlation

Definition (Inferred Correlation)

Considering, the dynamics of equation (3), the Inferred Correlation formula is given by (3).

ρ∗τ ≈ ρ + (1 − ρ) [1 − exp (−κλ(τ − 1))] (3)

where ρ∗τ = E[ sup
0<t≤τ

ρt], τ ∈ Z∗, θ ∈ [0,1] and λ constant.
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Remark: Cointelation model can hit the whole correlation spectrum depending on timescale.
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Application: Socially Responsible Finance

Socially Responsible & Consumer
Finance is a wave of quant finance
that gains momentum after each crisis
but quickly runs unfortunately out of
fuel:

Situation: Equity/Commodities
salesman trying to convince
clients who have a portfolio in
the Commodities/Equities asset
class to diversify by buying
salesman’s products.

Objective: show small
correlation to suggest
diversification benefits

Algorithm: Find the smallest
measured correlation as a
function of timescale.

Penalty: Violation of the
Misleading Statement & Action,
and Client Best Interest Rules.

Solution: Inferred Correlation.
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Portfolio Optimization

We consider the
portfolio of:

two stocks
Xt and Yt

with price
dynamics
following the
cointelation
model (3).

we would like
to leverage as
much as
possible on
methods
already in
place ...

... we can notice that we can decompose the
Cointelation model in two familiar models:

Markowitz Mean-Variance Analysis (ρ-centered
sub strategy):

Easy

Ornstein−Uhlenbeck “like” Stochastic Control
(κ-centered sub strategy):

Difficult

The optimization process involves a dynamics
switching strategy between both approaches

w∗
t = max

h(t)
[2τE(rp) − σ

2
(rp)]1{∣κ(

Xt−Yt
Yt

)∣≤µ}
+

sup
π(t)∈A(0,v0)

E [

1

γ
(V π

(T ))
γ
]1

{∣κ(
Xt−Yt
Yt

)∣>µ}

The red part does not have a closed for solution:
the pure Classic Financial Mathematics does
not have a solution.
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Portfolio Optimization: ML/FM Hybrid Method

The way to handle the red part part is to consider
the function G(t, v , s) such that G ∈ C1,2(Q), the
Hamilton-Jacobi-Bellman (HJB) equation
corresponding to stochastic control problem is

∂G

∂t
(t, v , s) + sup

π
L
πG(t, v , s) = 0, (4)

Through a series of educated guess (1st replacing
sup with π∗ then using the separation ansatz), we
turn an equation of 4 to one of 2 unknowns which
we can approximate using Deep Learning [1, 33]: it
works for the Merton non-linear PDE.
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Within a DGM layer, the mini-batch inputs along with the output of the previous
layer are transformed through a series of operations that closely resemble those
in Highway Networks. Below, we present the architecture in the equations along
with a visual representation of a single DGM layer in Figure 5.3:
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where � denotes Hadamard (element-wise) multiplication, L is the total number
of layers, σ is an activation function and the u, w and b terms with various super-
scripts are the model parameters.

Similar to the intuition for LSTMs, each layer produces weights based on the last
layer, determining how much of the information gets passed to the next layer. In
Sirignano and Spiliopoulos (2018) the authors also argue that including repeated
element-wise multiplication of nonlinear functions helps capture “sharp turn” fea-
tures present in more complicated functions. Note that at every iteration the orig-
inal input enters into the calculations of every intermediate step, thus decreasing
the probability of vanishing gradients of the output function with respect to x.

Compared to a Multilayer Perceptron (MLP), the number of parameters in each
hidden layer of the DGM network is roughly eight times bigger than the same
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Portfolio Optimization: Pure ML Approximation
We can use clustering in order to study the

P&L of n (eg: 4) strategies through time.

Strategy S++ in which we are long both
X and Y at time t within bands [ai ,bi ],
i ∈ N, and with P&L V ++

[ai ,bi ],t
.

Strategy S+− in which we are long X and
short Y at time t within [ai ,bi ], i ∈ N,
and with P&L V +−

[ai ,bi ],t
.

Strategy S−+ in which we are short X
and long Y at time t within [ai ,bi ],
i ∈ N, and with P&L V −+

[ai ,bi ],t
.

Strategy S−− in which we are short both
X and Y at time t within bands [ai ,bi ],
i ∈ N, and with P&L V −−

[ai ,bi ],t
.
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Figure 5: Comparative study of cointelated and correlated pairs through simulation of a very strong.
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between oil and BP every 12 days, we get around 0.37 whereas if we do it every 70 
days, we get a correlation of 0.56. How do we explain this discrepancy? The differ-
ence is due to the fact that in the long run, oil and BP have the same drift but in the 
short run, we get a weaker perceived relationship due to the numerous noises that 
can only impact one of these assets and not the other (for example, the very tem-
porary impact of the Gulf of Mexico accident on the spread between oil and BP in 
Figure 7). For the physical reasons just described, the relationship between oil and 
BP is a good candidate for the cointelation model. In fact, with the current financial 
mathematics literature this duality between differences in the short-term relation-
ship and the long-term relationship can only be explained by the cointelation model. 
Using the variance reduction technique [2, 5], one can estimate q  (in the last 5 years, 
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Portfolio Optimization: Pure ML Approximation
We can use clustering in order to study the

P&L of n (eg: 4) strategies through time.

Strategy S++ in which we are long both
X and Y at time t within bands [ai ,bi ],
i ∈ N, and with P&L V ++

[ai ,bi ],t
.

Strategy S+− in which we are long X and
short Y at time t within [ai ,bi ], i ∈ N,
and with P&L V +−

[ai ,bi ],t
.

Strategy S−+ in which we are short X
and long Y at time t within [ai ,bi ],
i ∈ N, and with P&L V −+

[ai ,bi ],t
.

Strategy S−− in which we are short both
X and Y at time t within bands [ai ,bi ],
i ∈ N, and with P&L V −−

[ai ,bi ],t
.
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between oil and BP every 12 days, we get around 0.37 whereas if we do it every 70 
days, we get a correlation of 0.56. How do we explain this discrepancy? The differ-
ence is due to the fact that in the long run, oil and BP have the same drift but in the 
short run, we get a weaker perceived relationship due to the numerous noises that 
can only impact one of these assets and not the other (for example, the very tem-
porary impact of the Gulf of Mexico accident on the spread between oil and BP in 
Figure 7). For the physical reasons just described, the relationship between oil and 
BP is a good candidate for the cointelation model. In fact, with the current financial 
mathematics literature this duality between differences in the short-term relation-
ship and the long-term relationship can only be explained by the cointelation model. 
Using the variance reduction technique [2, 5], one can estimate q  (in the last 5 years, 

-6 -4 -2 0 2 4 6

#104

0

2

4

Distribution in Z
3
+

-6 -4 -2 0 2 4 6

#104

0

2

4

Distribution in ]Z
<
,Z
3
+ [

-6 -4 -2 0 2 4 6

#104

0

2

4

Distribution in Z
<

-6 -4 -2 0 2 4 6

#104

0

2

4

Distribution in ]Z
3
- ,Z

<
[

-6 -4 -2 0 2 4 6

#104

0

2

4

Distribution in Z
3
-

-6 -4 -2 0 2 4 6

#104

0

5

10

Distribution in [Z
3
- ,Z

3
+ ]

Remark: We can have as many bands
(strategies) as we have weight proportions.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 26 / 40



Portfolio Optimization: Pure ML Approximation
We can use clustering in order to study the

P&L of n (eg: 4) strategies through time.

Strategy S++ in which we are long both
X and Y at time t within bands [ai ,bi ],
i ∈ N, and with P&L V ++

[ai ,bi ],t
.

Strategy S+− in which we are long X and
short Y at time t within [ai ,bi ], i ∈ N,
and with P&L V +−

[ai ,bi ],t
.

Strategy S−+ in which we are short X
and long Y at time t within [ai ,bi ],
i ∈ N, and with P&L V −+

[ai ,bi ],t
.

Strategy S−− in which we are short both
X and Y at time t within bands [ai ,bi ],
i ∈ N, and with P&L V −−

[ai ,bi ],t
.
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between oil and BP every 12 days, we get around 0.37 whereas if we do it every 70 
days, we get a correlation of 0.56. How do we explain this discrepancy? The differ-
ence is due to the fact that in the long run, oil and BP have the same drift but in the 
short run, we get a weaker perceived relationship due to the numerous noises that 
can only impact one of these assets and not the other (for example, the very tem-
porary impact of the Gulf of Mexico accident on the spread between oil and BP in 
Figure 7). For the physical reasons just described, the relationship between oil and 
BP is a good candidate for the cointelation model. In fact, with the current financial 
mathematics literature this duality between differences in the short-term relation-
ship and the long-term relationship can only be explained by the cointelation model. 
Using the variance reduction technique [2, 5], one can estimate q  (in the last 5 years, 
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Portfolio Optimization: Pure ML Approximation
We can use clustering in order to study the

P&L of n (eg: 4) strategies through time.

Strategy S++ in which we are long both
X and Y at time t within bands [ai ,bi ],
i ∈ N, and with P&L V ++

[ai ,bi ],t
.

Strategy S+− in which we are long X and
short Y at time t within [ai ,bi ], i ∈ N,
and with P&L V +−

[ai ,bi ],t
.

Strategy S−+ in which we are short X
and long Y at time t within [ai ,bi ],
i ∈ N, and with P&L V −+

[ai ,bi ],t
.

Strategy S−− in which we are short both
X and Y at time t within bands [ai ,bi ],
i ∈ N, and with P&L V −−

[ai ,bi ],t
.
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between oil and BP every 12 days, we get around 0.37 whereas if we do it every 70 
days, we get a correlation of 0.56. How do we explain this discrepancy? The differ-
ence is due to the fact that in the long run, oil and BP have the same drift but in the 
short run, we get a weaker perceived relationship due to the numerous noises that 
can only impact one of these assets and not the other (for example, the very tem-
porary impact of the Gulf of Mexico accident on the spread between oil and BP in 
Figure 7). For the physical reasons just described, the relationship between oil and 
BP is a good candidate for the cointelation model. In fact, with the current financial 
mathematics literature this duality between differences in the short-term relation-
ship and the long-term relationship can only be explained by the cointelation model. 
Using the variance reduction technique [2, 5], one can estimate q  (in the last 5 years, 
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Portfolio Optimization: Pure ML Approximation
We can use clustering in order to study the

P&L of n (eg: 4) strategies through time.

Strategy S++ in which we are long both
X and Y at time t within bands [ai ,bi ],
i ∈ N, and with P&L V ++

[ai ,bi ],t
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and with P&L V +−

[ai ,bi ],t
.

Strategy S−+ in which we are short X
and long Y at time t within [ai ,bi ],
i ∈ N, and with P&L V −+
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.

Strategy S−− in which we are short both
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between oil and BP every 12 days, we get around 0.37 whereas if we do it every 70 
days, we get a correlation of 0.56. How do we explain this discrepancy? The differ-
ence is due to the fact that in the long run, oil and BP have the same drift but in the 
short run, we get a weaker perceived relationship due to the numerous noises that 
can only impact one of these assets and not the other (for example, the very tem-
porary impact of the Gulf of Mexico accident on the spread between oil and BP in 
Figure 7). For the physical reasons just described, the relationship between oil and 
BP is a good candidate for the cointelation model. In fact, with the current financial 
mathematics literature this duality between differences in the short-term relation-
ship and the long-term relationship can only be explained by the cointelation model. 
Using the variance reduction technique [2, 5], one can estimate q  (in the last 5 years, 
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Anomaly Detection & Volatility Surface de-Arbitraging
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Normalizing the data coming from the markets
(left figure)

in rolling contract form into a
coherent fixed pillars implied volatility surface
(bottom right figure) presents challenges.
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Anomaly Detection & Volatility Surface de-Arbitraging

The classic arbitrage conditions (butterfly & calendar spread) have been
replaced with more elegant models (e.g. ∀K ,∀T , ∣T∂Kσ

2
(K ,T )∣ ≤ 4)

that were nevertheless not sufficient and the arrival of Big Data in the
wings exposed these limitations in the Financial Mathematics models.

Remark 3.2. By a careful study of the minima and the shapes of the two slices w(·, t1)
and w(·, t2), it is possible to determine a set of conditions on the parameters ensuring no
calendar spread arbitrage. However these conditions involve tedious combinations of the
parameters and will hence not match the computational simplicity of the lemma.

For a given slice, we now wish to determine conditions on the parameters of the raw
SVI formulation (3.1) such that butterfly arbitrage is excluded. By Lemma 2.1, this is
equivalent to showing (i) that the function g defined in (2.1) is always positive and (ii)
that call prices converge to zero as the strike tends to infinity. Sadly, the highly non-linear
behaviour of g makes it seemingly impossible to find general conditions on the parameters
that would eliminate butterfly arbitrage. We provide below an example where butterfly
arbitrage is violated. Notwithstanding our inability to find general conditions on the
parameters that would preclude arbitrage, in Section 4, we will introduce a new sub-class
of SVI volatility surface for which the absence of butterfly arbitrage is guaranteed for all
expiries.

Example 3.1. (From Axel Vogt on wilmott.com) Consider the raw SVI parameters:

(a, b,m, ρ, σ) = (−0.0410, 0.1331, 0.3586, 0.3060, 0.4153) , (3.8)

with t = 1. These parameters give rise to the total variance smile w and the function g
(defined in (2.1)) on Figure 1, where the negative density is clearly visible.
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Figure 1: Plots of the total variance smile w (left) and the function g defined in (2.1)
(right), using the parameters (3.8).

4 Surface SVI: A surface free of static arbitrage

We now introduce a class of SVI volatility surfaces—which we shall call SSVI (for ‘Surface
SVI’)—as an extension of the natural parameterization (3.2). For any maturity t ≥ 0,

10

Figure: Vogt’s total variance example verifying b(1 + ∣ρ∣) ≤ 4
T

(left figure: with the x axis being
the log-moneyness and the y axis being the implied variance) and the corresponding
∂2
K ,KBS (σ2(K ,T)) approximating the (supposed) always positive pdf (right figure: with the x

axis being the log-moneyness and the y axis being the non normalized pdf).
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The classic arbitrage conditions (butterfly & calendar spread) have been
replaced with more elegant models (e.g. ∀K ,∀T , ∣T∂Kσ
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calendar spread arbitrage. However these conditions involve tedious combinations of the
parameters and will hence not match the computational simplicity of the lemma.

For a given slice, we now wish to determine conditions on the parameters of the raw
SVI formulation (3.1) such that butterfly arbitrage is excluded. By Lemma 2.1, this is
equivalent to showing (i) that the function g defined in (2.1) is always positive and (ii)
that call prices converge to zero as the strike tends to infinity. Sadly, the highly non-linear
behaviour of g makes it seemingly impossible to find general conditions on the parameters
that would eliminate butterfly arbitrage. We provide below an example where butterfly
arbitrage is violated. Notwithstanding our inability to find general conditions on the
parameters that would preclude arbitrage, in Section 4, we will introduce a new sub-class
of SVI volatility surface for which the absence of butterfly arbitrage is guaranteed for all
expiries.

Example 3.1. (From Axel Vogt on wilmott.com) Consider the raw SVI parameters:

(a, b,m, ρ, σ) = (−0.0410, 0.1331, 0.3586, 0.3060, 0.4153) , (3.8)

with t = 1. These parameters give rise to the total variance smile w and the function g
(defined in (2.1)) on Figure 1, where the negative density is clearly visible.
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Figure 1: Plots of the total variance smile w (left) and the function g defined in (2.1)
(right), using the parameters (3.8).

4 Surface SVI: A surface free of static arbitrage

We now introduce a class of SVI volatility surfaces—which we shall call SSVI (for ‘Surface
SVI’)—as an extension of the natural parameterization (3.2). For any maturity t ≥ 0,

10

Figure: Vogt’s total variance example verifying b(1 + ∣ρ∣) ≤ 4
T

(left figure: with the x axis being
the log-moneyness and the y axis being the implied variance) and the corresponding
∂2
K ,KBS (σ2(K ,T)) approximating the (supposed) always positive pdf (right figure: with the x

axis being the log-moneyness and the y axis being the non normalized pdf).
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We also discuss
some of the idiosyncratic asset class
related differences that require
modifications in the optimization
process. Finally we discuss few trading
idea by simplifying the IVP model.
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Big Data Changing the Vanilla Options Landscape
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The rise of big data:

exposed the limitations of
both the wings (e.g. SVI)
and of the liquidity in the
options market,

the need for proxying when
the data is scarse.

the Heston (Stochastic
Volatility) model and the
local volatility model and the
need for harmonizing these
two concepts.

We saw in the Options market:

a step back in complexity
(from exotics to vanilla) but
with more coherent pricing

a step forward in liquidity
modelling

the need (in CCPs), to map
risk factors to economical
concepts.
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Big Data Changing the Vanilla Options Landscape

We define the Implied Volatility surface Parametrization (IVP) split with its
mid in equation (7) with the downside transform in equation (7b) enhancing
the SVI,

σ
2
IVP,o,τ (k) = aτ + bτ [ρτ (zo,τ −mτ ) +

√
(zo,τ −mτ )2 + σ2

τ ]

zo,τ =
k

β
1+4∣k−m∣
o,τ

(7a)

(7b)

and its liquidity parameters in equation (8). Parameters ψ represents the
Wings Curvature, α represents the ATM Spread. The latter two parameters
can be defined in terms of functions to accommodate the position size in
which case the market dept is controlled with the η parameters.

σ
2
IVP,+,τ (k) = aτ + bτ [ρτ (z+,τ −mτ ) +

√
(z+,τ −mτ )2 + σ2

τ ] +ατ (p)

z+,τ = zo,τ [1 +ψτ (p)]

σ
2
IVP,−,τ (k) = aτ + bτ [ρτ (z−,τ −mτ ) +

√
(z−,τ −mτ )2 + σ2

τ ] −ατ (p)

z−,τ = zo,τ [1 −ψτ (p)]

ατ (p) = α0,τ + (aτ −α0,τ )(1 − e
−ηατ p)

ψτ (p) = ψ0,τ + (1 −ψ0,τ )(1 − e
−ηψτ p)

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

Big Data exposed
the limitations of
the SVI in the
wings and the
subprime crisis of
2007 exposed the
need to
incorporate
liquidity directly
in the options
model.

The IVP
addresses these
two points as well
as allow for
additional
benefits:

Proxying

Backtesting
weaponry
on complex
strategies.
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Big Data, Proxying & Handling Dimensionality for Options
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ATM μ 

conditional density for 
the stressed scenarios 

2 3 4 5 1 

We show how clustering can help enhance MF and therefore the two fields
can be apposed instead of opposed in the context of modelling risk factors
(RF) which behave elements of mean reversion (Spread, Options RF). More
specifically we look at how we can free oneself with the assumptions of
SDEs to construct a general clustering methodology. This can allow us to
construct concepts like the Anticipative VaR (a leading regime change) as
opposed to Responsive VaR (a lagging regime change).

In the left figure,
we apply clustering
in order to classify
dynamic zones in
which the returns
act differently. For
example when the
underlier is
significantly above
its mean, the
forecasted
distribution is
normally
distributed with
however a negative
mean (vice versa
when the underlier
is below its
historical mean).
The distribution is
symmetric when at
the long term
mean.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 33 / 40



Clustering for Distribution & Regime Change Forecasting

 4.50  

 5.50  

 6.50  

 7.50  

 8.50  

 9.50  

 10.50  

 11.50  

 12.50  

0
9

/0
9

/2
0

0
5

 

0
9

/1
0

/2
0

0
5

 

0
9

/1
1

/2
0

0
5

 

0
9

/1
2

/2
0

0
5

 

0
9

/0
1

/2
0

0
6

 

0
9

/0
2

/2
0

0
6

 

0
9

/0
3

/2
0

0
6

 

0
9

/0
4

/2
0

0
6

 

0
9

/0
5

/2
0

0
6

 

0
9

/0
6

/2
0

0
6

 

0
9

/0
7

/2
0

0
6

 

0
9

/0
8

/2
0

0
6

 

0
9

/0
9

/2
0

0
6

 

0
9

/1
0

/2
0

0
6

 

0
9

/1
1

/2
0

0
6

 

0
9

/1
2

/2
0

0
6

 

0
9

/0
1

/2
0

0
7

 

0
9

/0
2

/2
0

0
7

 

0
9

/0
3

/2
0

0
7

 

0
9

/0
4

/2
0

0
7

 

0
9

/0
5

/2
0

0
7

 

0
9

/0
6

/2
0

0
7

 

0
9

/0
7

/2
0

0
7

 

0
9

/0
8

/2
0

0
7

 

0
9

/0
9

/2
0

0
7

 

0
9

/1
0

/2
0

0
7

 

0
9

/1
1

/2
0

0
7

 

0
9

/1
2

/2
0

0
7

 

0
9

/0
1

/2
0

0
8

 

0
9

/0
2

/2
0

0
8

 

0
9

/0
3

/2
0

0
8

 

0
9

/0
4

/2
0

0
8

 

0
9

/0
5

/2
0

0
8

 

0
9

/0
6

/2
0

0
8

 

0
9

/0
7

/2
0

0
8

 

ATM μ 

conditional density for 
the stressed scenarios 

2 3 4 5 1 

We show how clustering can help enhance MF and therefore the two fields
can be apposed instead of opposed in the context of modelling risk factors
(RF) which behave elements of mean reversion (Spread, Options RF). More
specifically we look at how we can free oneself with the assumptions of
SDEs to construct a general clustering methodology. This can allow us to
construct concepts like the Anticipative VaR (a leading regime change) as
opposed to Responsive VaR (a lagging regime change).

In the left figure,
we apply clustering
in order to classify
dynamic zones in
which the returns
act differently. For
example when the
underlier is
significantly above
its mean, the
forecasted
distribution is
normally
distributed with
however a negative
mean (vice versa
when the underlier
is below its
historical mean).
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symmetric when at
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In order to Reconcile discordant
instructions of our regulators to create
a risk measure which is responsive but
stable at the same time we propose
the Responsible VaR, a risk measure
responsive on the upside but stable on
the downside. We give a couple of
examples (figures on the left) of
complex portfolio (straddle) backtests
in which we modify the λ to control
the stability on the downside.

α = ∫
ν+t

−∞

pt(x)dx

ν̃
+

0 = ν+0

ν̃
+

t = max (ν+t , λν̃
+

t−1 + (1 − λ)ν+t )

1 −α = ∫
+∞

ν−t

pt(x)dx

ν̃
−

0 = ν−0

ν̃
−

t = min (ν−t , λν̃t−1 + (1 − λ)ν−t )

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 34 / 40



Clustering for Distribution & Regime Change Forecasting

 4.50  

 5.50  

 6.50  

 7.50  

 8.50  

 9.50  

 10.50  

 11.50  

 12.50  

0
9

/0
9

/2
0

0
5

 

0
9

/1
0

/2
0

0
5

 

0
9

/1
1

/2
0

0
5

 

0
9

/1
2

/2
0

0
5

 

0
9

/0
1

/2
0

0
6

 

0
9

/0
2

/2
0

0
6

 

0
9

/0
3

/2
0

0
6

 

0
9

/0
4

/2
0

0
6

 

0
9

/0
5

/2
0

0
6

 

0
9

/0
6

/2
0

0
6

 

0
9

/0
7

/2
0

0
6

 

0
9

/0
8

/2
0

0
6

 

0
9

/0
9

/2
0

0
6

 

0
9

/1
0

/2
0

0
6

 

0
9

/1
1

/2
0

0
6

 

0
9

/1
2

/2
0

0
6

 

0
9

/0
1

/2
0

0
7

 

0
9

/0
2

/2
0

0
7

 

0
9

/0
3

/2
0

0
7

 

0
9

/0
4

/2
0

0
7

 

0
9

/0
5

/2
0

0
7

 

0
9

/0
6

/2
0

0
7

 

0
9

/0
7

/2
0

0
7

 

0
9

/0
8

/2
0

0
7

 

0
9

/0
9

/2
0

0
7

 

0
9

/1
0

/2
0

0
7

 

0
9

/1
1

/2
0

0
7

 

0
9

/1
2

/2
0

0
7

 

0
9

/0
1

/2
0

0
8

 

0
9

/0
2

/2
0

0
8

 

0
9

/0
3

/2
0

0
8

 

0
9

/0
4

/2
0

0
8

 

0
9

/0
5

/2
0

0
8

 

0
9

/0
6

/2
0

0
8

 

0
9

/0
7

/2
0

0
8

 

ATM μ 

conditional density for the stressed scenarios 

2 3 4 5 1 

-3.50% 

-3.00% 

-2.50% 

-2.00% 

-1.50% 

-1.00% 

-0.50% 

0.00% 

0.50% 

1.00% 

1.50% 

2.00% 

2.50% 

3.00% 

0
5

/0
3

/2
0

0
8

 

0
5

/0
6

/2
0

0
8

 

0
5

/0
9

/2
0

0
8

 

0
5

/1
2

/2
0

0
8

 

0
5

/0
3

/2
0

0
9

 

0
5

/0
6

/2
0

0
9

 

0
5

/0
9

/2
0

0
9

 

0
5

/1
2

/2
0

0
9

 

0
5

/0
3

/2
0

1
0

 

0
5

/0
6

/2
0

1
0

 

0
5

/0
9

/2
0

1
0

 

0
5

/1
2

/2
0

1
0

 

0
5

/0
3

/2
0

1
1

 

0
5

/0
6

/2
0

1
1

 

0
5

/0
9

/2
0

1
1

 

0
5

/1
2

/2
0

1
1

 

0
5

/0
3

/2
0

1
2

 

0
5

/0
6

/2
0

1
2

 

0
5

/0
9

/2
0

1
2

 

0
5

/1
2

/2
0

1
2

 

0
5

/0
3

/2
0

1
3

 

0
5

/0
6

/2
0

1
3

 

0
5

/0
9

/2
0

1
3

 

0
5

/1
2

/2
0

1
3

 

0
5

/0
3

/2
0

1
4

 

0
5

/0
6

/2
0

1
4

 

0
5

/0
9

/2
0

1
4

 

Anticipative VaR 0.975 Anticipative Responsible VaR  (0.975, 0.999) 

Anticipative VaR 0.025 Anticipative Responsible VaR  (0.025, 0.999) 

Realised P&L 

-3.50% 

-3.00% 

-2.50% 

-2.00% 

-1.50% 

-1.00% 

-0.50% 

0.00% 

0.50% 

1.00% 

1.50% 

2.00% 

2.50% 

3.00% 

0
5

/0
3

/2
0

0
8

 

0
5

/0
6

/2
0

0
8

 

0
5

/0
9

/2
0

0
8

 

0
5

/1
2

/2
0

0
8

 

0
5

/0
3

/2
0

0
9

 

0
5

/0
6

/2
0

0
9

 

0
5

/0
9

/2
0

0
9

 

0
5

/1
2

/2
0

0
9

 

0
5

/0
3

/2
0

1
0

 

0
5

/0
6

/2
0

1
0

 

0
5

/0
9

/2
0

1
0

 

0
5

/1
2

/2
0

1
0

 

0
5

/0
3

/2
0

1
1

 

0
5

/0
6

/2
0

1
1

 

0
5

/0
9

/2
0

1
1

 

0
5

/1
2

/2
0

1
1

 

0
5

/0
3

/2
0

1
2

 

0
5

/0
6

/2
0

1
2

 

0
5

/0
9

/2
0

1
2

 

0
5

/1
2

/2
0

1
2

 

0
5

/0
3

/2
0

1
3

 

0
5

/0
6

/2
0

1
3

 

0
5

/0
9

/2
0

1
3

 

0
5

/1
2

/2
0

1
3

 

0
5

/0
3

/2
0

1
4

 

0
5

/0
6

/2
0

1
4

 

0
5

/0
9

/2
0

1
4

 

Anticipative VaR 0.975 Anticipative Responsible VaR  (0.975, 0.99) 

Anticipative VaR 0.025 Anticipative Responsible VaR  (0.025, 0.99) 

Realised P&L 

In order to Reconcile discordant
instructions of our regulators to create
a risk measure which is responsive but
stable at the same time we propose
the Responsible VaR, a risk measure
responsive on the upside but stable on
the downside. We give a couple of
examples (figures on the left) of
complex portfolio (straddle) backtests
in which we modify the λ to control
the stability on the downside.

α = ∫
ν+t

−∞

pt(x)dx

ν̃
+

0 = ν+0

ν̃
+

t = max (ν+t , λν̃
+

t−1 + (1 − λ)ν+t )

1 −α = ∫
+∞

ν−t

pt(x)dx

ν̃
−

0 = ν−0

ν̃
−

t = min (ν−t , λν̃t−1 + (1 − λ)ν−t )

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)
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Clustering for Distribution & Regime Change Forecasting
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Realised P&L 

In order to Reconcile discordant
instructions of our regulators to create
a risk measure which is responsive but
stable at the same time we propose
the Responsible VaR, a risk measure
responsive on the upside but stable on
the downside. We give a couple of
examples (figures on the left) of
complex portfolio (straddle) backtests
in which we modify the λ to control
the stability on the downside.

α = ∫
ν+t

−∞

pt(x)dx

ν̃
+

0 = ν+0

ν̃
+

t = max (ν+t , λν̃
+

t−1 + (1 − λ)ν+t )

1 −α = ∫
+∞

ν−t

pt(x)dx

ν̃
−

0 = ν−0

ν̃
−

t = min (ν−t , λν̃t−1 + (1 − λ)ν−t )

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)
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Realised P&L 

In order to Reconcile discordant
instructions of our regulators to create
a risk measure which is responsive but
stable at the same time we propose
the Responsible VaR, a risk measure
responsive on the upside but stable on
the downside. We give a couple of
examples (figures on the left) of
complex portfolio (straddle) backtests
in which we modify the λ to control
the stability on the downside.

α = ∫
ν+t

−∞

pt(x)dx

ν̃
+

0 = ν+0

ν̃
+

t = max (ν+t , λν̃
+

t−1 + (1 − λ)ν+t )

1 −α = ∫
+∞

ν−t

pt(x)dx

ν̃
−

0 = ν−0

ν̃
−

t = min (ν−t , λν̃t−1 + (1 − λ)ν−t )

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)
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Summary & Results: Part I (Opposition)

We pointed to a puzzling observation: Flash Crash. More specifically
as we have seen that during few the crash, fascinating patterned
oscillations occurred in the commodities market.

These oscillations
cannot be explained by the Top-Down assumption in Quantitative
Finance (e.g. the Brownian motion). We have proposed to study
these oscillations with the Bottom-Up approach instead.

We expressed, classic Financial Strategies in HFFF format and
shown the incentive for going from from a simple perceptron, to
shallow and finally deep learning.

We also established connections (though not complete) to fields that
are traditionally associated to mathematical biology, namely
predator-prey models and evolutionary dynamics.

This was done in order to express the bottom-up approach at the
infinitesimal level. More specifically we developed the concept of
Path of Interaction in an HFTE Game.

Finally we looked at tracking methods using MTT.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 35 / 40



Summary & Results: Part I (Opposition)

We pointed to a puzzling observation: Flash Crash. More specifically
as we have seen that during few the crash, fascinating patterned
oscillations occurred in the commodities market. These oscillations
cannot be explained by the Top-Down assumption in Quantitative
Finance (e.g. the Brownian motion). We have proposed to study
these oscillations with the Bottom-Up approach instead.

We expressed, classic Financial Strategies in HFFF format and
shown the incentive for going from from a simple perceptron, to
shallow and finally deep learning.

We also established connections (though not complete) to fields that
are traditionally associated to mathematical biology, namely
predator-prey models and evolutionary dynamics.

This was done in order to express the bottom-up approach at the
infinitesimal level. More specifically we developed the concept of
Path of Interaction in an HFTE Game.

Finally we looked at tracking methods using MTT.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 35 / 40



Summary & Results: Part I (Opposition)

We pointed to a puzzling observation: Flash Crash. More specifically
as we have seen that during few the crash, fascinating patterned
oscillations occurred in the commodities market. These oscillations
cannot be explained by the Top-Down assumption in Quantitative
Finance (e.g. the Brownian motion). We have proposed to study
these oscillations with the Bottom-Up approach instead.

We expressed, classic Financial Strategies in HFFF format and
shown the incentive for going from from a simple perceptron, to
shallow and finally deep learning.

We also established connections (though not complete) to fields that
are traditionally associated to mathematical biology, namely
predator-prey models and evolutionary dynamics.

This was done in order to express the bottom-up approach at the
infinitesimal level. More specifically we developed the concept of
Path of Interaction in an HFTE Game.

Finally we looked at tracking methods using MTT.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 35 / 40



Summary & Results: Part I (Opposition)

We pointed to a puzzling observation: Flash Crash. More specifically
as we have seen that during few the crash, fascinating patterned
oscillations occurred in the commodities market. These oscillations
cannot be explained by the Top-Down assumption in Quantitative
Finance (e.g. the Brownian motion). We have proposed to study
these oscillations with the Bottom-Up approach instead.

We expressed, classic Financial Strategies in HFFF format and
shown the incentive for going from from a simple perceptron, to
shallow and finally deep learning.

We also established connections (though not complete) to fields that
are traditionally associated to mathematical biology, namely
predator-prey models and evolutionary dynamics.

This was done in order to express the bottom-up approach at the
infinitesimal level. More specifically we developed the concept of
Path of Interaction in an HFTE Game.

Finally we looked at tracking methods using MTT.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 35 / 40



Summary & Results: Part I (Opposition)

We pointed to a puzzling observation: Flash Crash. More specifically
as we have seen that during few the crash, fascinating patterned
oscillations occurred in the commodities market. These oscillations
cannot be explained by the Top-Down assumption in Quantitative
Finance (e.g. the Brownian motion). We have proposed to study
these oscillations with the Bottom-Up approach instead.

We expressed, classic Financial Strategies in HFFF format and
shown the incentive for going from from a simple perceptron, to
shallow and finally deep learning.

We also established connections (though not complete) to fields that
are traditionally associated to mathematical biology, namely
predator-prey models and evolutionary dynamics.

This was done in order to express the bottom-up approach at the
infinitesimal level. More specifically we developed the concept of
Path of Interaction in an HFTE Game.

Finally we looked at tracking methods using MTT.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 35 / 40



Summary & Results: Part I (Opposition)

We pointed to a puzzling observation: Flash Crash. More specifically
as we have seen that during few the crash, fascinating patterned
oscillations occurred in the commodities market. These oscillations
cannot be explained by the Top-Down assumption in Quantitative
Finance (e.g. the Brownian motion). We have proposed to study
these oscillations with the Bottom-Up approach instead.

We expressed, classic Financial Strategies in HFFF format and
shown the incentive for going from from a simple perceptron, to
shallow and finally deep learning.

We also established connections (though not complete) to fields that
are traditionally associated to mathematical biology, namely
predator-prey models and evolutionary dynamics.

This was done in order to express the bottom-up approach at the
infinitesimal level. More specifically we developed the concept of
Path of Interaction in an HFTE Game.

Finally we looked at tracking methods using MTT.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 35 / 40



Future Research (Part I: Opposition)

Classification Simplification: the direct simulation approach of an
HFTE [23] creates situations in which two very different architectures
yield the exact same function.

Complex Food Webs: We need to bring the complexity of our state
space to the level of a complex food web. Additional strategies must
be incorporated and more HFTE games must be included in our
database of scenarios and we need to incorporate Birth & Death
Processes.

Order-Book Dynamics: Many of the markets are driven by different
rules for the OB.

Increased HFFF complexity does not equate to Invasion: A clear
picture did not necessarily emerge from the first simulations.

Diversity as it relates to Stability: In biology diversity in an
ecosystem leads to its instability [35, 8] but what about Finance?.

Is TF the most “moral” strategy? TF is similar to the TFT (it
replicates but adapts).

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 36 / 40



Future Research (Part I: Opposition)

Classification Simplification: the direct simulation approach of an
HFTE [23] creates situations in which two very different architectures
yield the exact same function.

Complex Food Webs: We need to bring the complexity of our state
space to the level of a complex food web. Additional strategies must
be incorporated and more HFTE games must be included in our
database of scenarios and we need to incorporate Birth & Death
Processes.

Order-Book Dynamics: Many of the markets are driven by different
rules for the OB.

Increased HFFF complexity does not equate to Invasion: A clear
picture did not necessarily emerge from the first simulations.

Diversity as it relates to Stability: In biology diversity in an
ecosystem leads to its instability [35, 8] but what about Finance?.

Is TF the most “moral” strategy? TF is similar to the TFT (it
replicates but adapts).

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 36 / 40



Future Research (Part I: Opposition)

Classification Simplification: the direct simulation approach of an
HFTE [23] creates situations in which two very different architectures
yield the exact same function.

Complex Food Webs: We need to bring the complexity of our state
space to the level of a complex food web. Additional strategies must
be incorporated and more HFTE games must be included in our
database of scenarios and we need to incorporate Birth & Death
Processes.

Order-Book Dynamics: Many of the markets are driven by different
rules for the OB.

Increased HFFF complexity does not equate to Invasion: A clear
picture did not necessarily emerge from the first simulations.

Diversity as it relates to Stability: In biology diversity in an
ecosystem leads to its instability [35, 8] but what about Finance?.

Is TF the most “moral” strategy? TF is similar to the TFT (it
replicates but adapts).

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 36 / 40



Future Research (Part I: Opposition)

Classification Simplification: the direct simulation approach of an
HFTE [23] creates situations in which two very different architectures
yield the exact same function.

Complex Food Webs: We need to bring the complexity of our state
space to the level of a complex food web. Additional strategies must
be incorporated and more HFTE games must be included in our
database of scenarios and we need to incorporate Birth & Death
Processes.

Order-Book Dynamics: Many of the markets are driven by different
rules for the OB.

Increased HFFF complexity does not equate to Invasion: A clear
picture did not necessarily emerge from the first simulations.

Diversity as it relates to Stability: In biology diversity in an
ecosystem leads to its instability [35, 8] but what about Finance?.

Is TF the most “moral” strategy? TF is similar to the TFT (it
replicates but adapts).

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 36 / 40



Future Research (Part I: Opposition)

Classification Simplification: the direct simulation approach of an
HFTE [23] creates situations in which two very different architectures
yield the exact same function.

Complex Food Webs: We need to bring the complexity of our state
space to the level of a complex food web. Additional strategies must
be incorporated and more HFTE games must be included in our
database of scenarios and we need to incorporate Birth & Death
Processes.

Order-Book Dynamics: Many of the markets are driven by different
rules for the OB.

Increased HFFF complexity does not equate to Invasion: A clear
picture did not necessarily emerge from the first simulations.

Diversity as it relates to Stability: In biology diversity in an
ecosystem leads to its instability [35, 8] but what about Finance?.

Is TF the most “moral” strategy? TF is similar to the TFT (it
replicates but adapts).

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 36 / 40



Future Research (Part I: Opposition)

Classification Simplification: the direct simulation approach of an
HFTE [23] creates situations in which two very different architectures
yield the exact same function.

Complex Food Webs: We need to bring the complexity of our state
space to the level of a complex food web. Additional strategies must
be incorporated and more HFTE games must be included in our
database of scenarios and we need to incorporate Birth & Death
Processes.

Order-Book Dynamics: Many of the markets are driven by different
rules for the OB.

Increased HFFF complexity does not equate to Invasion: A clear
picture did not necessarily emerge from the first simulations.

Diversity as it relates to Stability: In biology diversity in an
ecosystem leads to its instability [35, 8] but what about Finance?.

Is TF the most “moral” strategy? TF is similar to the TFT (it
replicates but adapts).

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 36 / 40



1 Introduction
Foreword
Historical Context
Original Contribution

2 A Bottom-up Approach to the Financial Markets
Useful material for Quant Finance from Mathematical Biology
Neural Network Architecture and Learning Potential
Dynamic of the Financial Market
Stability of Financial Systems and Multi-Target Tracking

3 Model Assuming Data vs Data Reassuming the Models
Cointelation, Inferred Correlation & Portfolio Optimization
Anomaly Detection & Volatility Surface de-Arbitraging
Big Data Changing the Vanilla Options Landscape
Clustering for Distribution & Regime Change Forecasting

4 Conclusion
A Bottom-Up Approach to the Financial Markets
Model Assuming Data vs Data Reassuming the Models

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 37 / 40



Summary & Results: Part II (Apposition)

Descriptive approach [28] of the market with the Cointelation
diffusion model helps us understand misleading risk measures and
introduced inferred correlation [21] as a conservative alternative.

We also showed how clustering can help us in the context of
portfolio optimization and risk management and more specifically
the concept of Anticipative Responsible VaR [25]

We have also shown how hybrid methodology between classic FM
and ML can outperform their individual sums. More specifically,
we try to solve our nonlinear partial differential equation with a deep
learning [33] to solve an SDE problem.

Pointed to errors in the FM literature when it comes to Implied
Volatility arbitrage modelling and introduced de-arbing method,

Enhanced the SVI [24, 22] with the IVP model [22, 26] designed to
adjust exposed data driven limitation of the latter (wings and
liquidity).
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Future Research (Part II: Apposition)

There are few extensions or improvements that can be performed on
the optimization process for cointelated pairs research. We can first
ask ourselves the question of the n-Cointelated case.

Testing of the IVP proxying methodology with quality data (eg:
does the ρS&P parameter compare well with the ρSS?).

Application of the above two (Cryptocurrency Option’s market
proxy; Bitcoin vs Altcoins) to the world of Cryptocurrency.

Current De-Arbitraging methodology is not robust in between
pillars (eg: Interpolation).

Particle Filter for Implied Volatility MTT: very complex
co-movements of 3 or more parameters are not taken into account.
Though, these do not matter for vanilla options, they may matter for
more complex exotics.

Additional Liquidity issues for Implied Volatility (the ATM Bid Ask
is asset class sensitive) which makes the model less universal.
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Future Research (Part II: Apposition)

Harmonizing Stochastic & Local Volatility: We have seen that
both the Heston and SVI models are popular in the industry and
converge asymptotically to each other [13]: see Equation (10). Are
their limitations linked?

dSt =
√
vtStdW

1
t , S0 ∈ R∗+

dvt = κ(θ − vt)dt + σv
1
2
t dW 2

t , v0 ∈ R∗+
d ⟨W 1,W 2⟩

t
= ρdt,

v(k, t) → a + b[ρ(k −m) +
√

(k −m)2 + σ2]

(10a)

(10b)

(10c)

(10d)

IVP and Assumed Correlation of Equation (11) the answer?

dSt =
√
vtStdW

1
t , S0 ∈ R∗+

dvt = κ(θ − vt)dt + σ
√
vtdW

2
t , v0 ∈ R∗+

d ⟨W 1,W 2⟩
t
= ρ(t,St)dt,

ρ(t,St) = ρ+(t) + [ρ−(t) − ρ+(t)] [1 − exp(−β(t)∣St −K ∣)]

v(k, t) → a + b[ρ(z −m) +
√

(z −m)2 + σ2]

(11a)

(11b)

(11c)

(11d)

(11e)
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Closing Statement with Q&A

“The more efficient you are at doing the
wrong thing, the wronger you become. If
you do the right thing wrong and correct it,
you get better.”

– Russell L. Ackoff

To that extend we know that all models are wrong, but some are
useful1 and in that spirit we have arguably done the right thing wronger2

in the 1st part of the thesis but the wrong thing righter in the 2nd part.

1a quote that is generally attributed to George Box
2to mean, less useful for practitioners.
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