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Successful Research Strategies

Research Interest vs Publication

@ Some dedicate their whole lives to one complicated problem with a rare
(but often nothing) outstanding outcome (Grigori Perelman).

@ Some other prefer adhering to the “publish or perish” model at the cost
of not producing the same quality research.

@ Terence Tao suggests to have one big problem to go back to when
inspired but adhere to (or at least do not neglect) the “publish or perish”
model most of the time.
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of not producing the same quality research.

@ Terence Tao suggests to have one big problem to go back to when
inspired but adhere to (or at least do not neglect) the “publish or perish”
model most of the time.

Research Complexity vs Recognition

@ You can dedicate lots of energy on problems you find personally
stimulating but nobody cares about.

@ You can dedicate little energy on problems you do not find personally
very stimulating but others may find useful.

@ John Conway's Game of Life happens to be the latter case (surprisingly).
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inspired but adhere to (or at least do not neglect) the “publish or perish”
model most of the time.

Research Complexity vs Recognition

@ You can dedicate lots of energy on problems you find personally
stimulating but nobody cares about.

@ You can dedicate little energy on problems you do not find personally
very stimulating but others may find useful.

@ John Conway's Game of Life happens to be the latter case (surprisingly).
Theory vs Simulation
@ A good theory should be able to be simulated.

@ A good simulation may change/iron out a theory.

@ Cedric Villani thinks that the process can go back and forth until the
picture becomes clearer.
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Memorable Events Influencing Research

@ How does Morality Emerge in human behaviour - Axelrod [3, 4]:
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Memorable Events Influencing Research

o How does Morality Emerge in human behaviour - Axelrod [3, 4]:

a) Prisoner’s b) TFT i c) Probabilistic d) War & | e) Example of
Dilemma | strategy Representation i PeaceChart Few Strategy Battles
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@ Shocking work experience and the necessity to exude that
frustration with papers and vulgarization

BMD (University of Oxford)
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@ Shocking work experience and the necessity to exude that
frustration with papers and vulgarization

o Lack of Integrity (Apophenia, Anomaly Detection, Misleading
Statement and Actions)
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@ Shocking work experience and the necessity to exude that
frustration with papers and vulgarization
o Lack of Integrity (Apophenia, Anomaly Detection, Misleading
Statement and Actions)
e Models with incredible rigour when unnecessary but with total
disregard to rigour when it becomes critical (e.g: systemic risk
associated to covariance).
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Context

Market Changing Financial Crisis: 10 year anniversary

@ The Subprime crisis triggers malaise [15, 20, 28, 21]: This
encourages Socially Responsible Finance.

@ Quantitative Finance was instructed to change [17]: From
models assuming data to data reassuming the models,

@ There is a wave associated to tying Classic Financial
Mathematics models towards more Data Driven problems:
rise of Machine Learning.
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Context

Market Changing Financial Crisis: 10 year anniversary

@ The Subprime crisis triggers malaise [15, 20, 28, 21]: This
encourages Socially Responsible Finance.

The Rise of Big Data

@ What is Big Data:
lots of anecdotal

@ Quantitative Finance was instructed to change [17]: From claims about how big

models assuming data to data reassuming the models, is Big Data [9, 2, 16]
@ There is a wave associated to tying Classic Financial but the term refers

Mathematics models towards more Data Driven problems: more to the concept

rise of Machine Learning. of “datafication”

(increase in size #
better confidence
interval but rather
change in
perspective).
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Context

Market Changing Financial Crisis: 10 year anniversary

@ The Subprime crisis triggers malaise [15, 20, 28, 21]: This
encourages Socially Responsible Finance.

The Rise of Big Data

@ What is Big Data:
lots of anecdotal

@ Quantitative Finance was instructed to change [17]: From claims about how big
models assuming data to data reassuming the models, is Big Data [9, 2, 16]

@ There is a wave associated to tying Classic Financial but the term refers
Mathematics models towards more Data Driven problems: more to the concept
rise of Machine Learning. of “datafication”

(increase in size #
better confidence
e interval but rather
change in
perspective).
@ The Flash Crashes
S : (eg: [29]) calls for a
i modelling revolution
I . [5, 12, 6] (BU vs.
g i TD): the Brownian
’ motion assumption to
\ model markets is
e increasingly difficult to
defend.
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Original Contribution: Part | (Opposition)

@ Exposing the benefits of bringing Mathematical Biology and
Evolutionary Dynamics into 21st century QF.
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@ Exposing the benefits of bringing Mathematical Biology and
Evolutionary Dynamics into 21st century QF.

@ Turning classic QF strategies into NN format in order to prepare
for our strategy tournament,

@ Formalization of the HFTE rough tournament and exposing why
this is not a good approach,

o Formalizing the path of interaction concept in the context of an
HFTE Game,

@ Performing a computer tournament with a set of simple fixed
classic strategies as well as proposing some interesting connection
to other seemingly unconnected concepts (Morality and
Complexity/Diversity debate),

@ Formalizing the methodology for a Particle Filter which aim is to
track ecosystems of strategies through time by looking at price
dynamics only as well as performing few simulations.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 5/40



Original Contribution: Part Il (Apposition)

o Detective work: exposing where | T0xo?(K, T)| < 4 came from and
why it is a necessary but not sufficient condition because of wrong
data assumptions (moment explosion vs linearity),
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Original Contribution: Part Il (Apposition)

o Detective work: exposing where | T0xo?(K, T)| < 4 came from and
why it is a necessary but not sufficient condition because of wrong
data assumptions (moment explosion vs linearity),

e Exposing the limitations of the SVI model (arbitrage constraint,
wings & liquidity),

@ Addressing these problems by constructing the IVP model,

e Using proxying and de-abitraging (on the Mid or leveraging on
Liquidity) in order to reconstruct implied volatility scenarios,

@ Exposing the Financial Mathematics limiting assumptions in the
context of Markowitz especially when contrasted with real data,

o Cointelation model construction and it's mirror Inferred
Correlation approximation for data driven applications and Proper
Market Conduct,

o lts Portfolio Optimization using several the Bandwise-Gaussian
mixture model as well as Deep Learning,

@ Reconciling discordant Risk: Anticipative Responsible VaR.
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Two simple questions for two simple definitions

Definition (Top-Down Vs Bottom-Up)

Louis ‘B
. Theory of $peculation
Top-Down (TD): Any stochastic

quantitative approach which assumes
that the market is random (or close to
random) but for which we can create
interesting dynamic strategies.

The Origins of Modern Finance

o’
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interesting dynamic strategies.
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Bottom-Up (BU): Any deterministic
quantitative approach which assumes

that strategies interacting create the
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Two simple questions for two simple definitions

We have tried to understand the financial
markets using the top down approach for
100 years with (very) partial success.
Can we look at it in a different angle?
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markets using the top down approach for
100 years with (very) partial success.
Can we look at it in a different angle?

Definition (Top-Down Vs Bottom-Up)

Loui

Theory of $peculation

Top-Down (TD): Any stochastic
quantitative approach which assumes
that the market is random (or close to
random) but for which we can create
interesting dynamic strategies.

The Origins of Modern Finance

Bottom-Up (BU): Any deterministic
quantitative approach which assumes
that strategies interacting create the Can we use this new angle
dynamics of the market (new angle). to “solve” the market?
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The Scientific Method for “solving” the market

Question: What do we mean by “solve”?
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The Scientific Method for “solving” the market

100
75
50

25
AP 0 4

—25 +

—75 4 —— 2 Strategies Ecosystems: [s1, S, ..., So
—1004 — 3 Strategies Ecosystems: [s19, S11, ..., S15] \

0 10 20 30 40
Iteration

Question: What do we mean by “solve”?
Answer: We want to look at market price processes and be able to

tell what systematic strategies were involved, what their P&L has
been and this at all times (including in the future): ecosystem details.
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The Scientific Method for “solving” the

Scientific Method: A
good theory can be

100 7 simulated but simulations
75 + can also help bring
50 - intuition on what the

theory might be [34].
25
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0 10 20 30 40
Iteration

Question: What do we mean by “solve”?
Answer: We want to look at market price processes and be able to Caveat: Is the idea mad,

tell what systematic strategies were involved, what their P&L has ambitious or both?
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Predator/Prey models

biological ecosystems predator/prey
(PP) [35, 8] models (a, b, ¢, d, e, f and g are
rate of growth or predation). The relationship
between x(t), y(t) and z(t) is deterministic:

() _ o0 (t) — bx

o) : a_C(?t) fdit()t};(t()t) —ey(t)z(t)
dzd(tt) Y g g

ED -~ (1) + gy(t)z(t)

0 500 1000 1500
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(PP) [35, 8] models (a, b, ¢, d, e, f and g are
rate of growth or predation). The relationship
between x(t), y(t) and z(t) is deterministic:

() _ o0 (t) — bx

o) : a_C(?t) fdit()t};(t()t) —ey(t)z(t)
dzd(tt) Y g g

ED -~ (1) + gy(t)z(t)
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Data-Driven Models & Math Finance

BMD (University of Oxford)

Answering if an ecosystem (or by extension
financial market) composed of 3 strategies is
stable would come to studying the Jacobian
matrix J [8]. If if all eigenvalues of J(x,y,z)
have negative real parts then our system is
asymptotically stable. Though simplistic, the
model can easily be expanded to more complex
ecological niches.

a-by -xb 0
J(x,y,z)=| yd —-c+dx—ez —ye
0 -zg -f+gy

rre
30 RAss
7
25 B
. ertb
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Evolutionary Dynamics

Axelrod’s [3, 4]
computer
tournament and
Nowak's work on
Evolutionary
Dynamics (ED)
[30] on invasion
need to influence
21st century
Quantitative
Finance especially
the BU approach.
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Evolutionary Dynamics
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Axelrod’s [3, 4]
computer
tournament and
Nowak's work on
Evolutionary
Dynamics (ED)
[30] on invasion
need to influence
21st century
Quantitative
Finance especially
the BU approach.

The methodology
in ED is interesting
because the
strategies are both
systematic &
interacting with
each other (like it
is the case in algo
trading).




A first application in Economics: Minority Game

In the Minority Game [7], developped by
Challet, Marsili and Zhang, players need to
choose between two options (+1,-1). Those
who have selected the option chosen by the
minority “win”.
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A first application in Economics: Minority Game

In the Minority Game [7], developped by
Challet, Marsili and Zhang, players need to
choose between two options (+1,-1). Those
who have selected the option chosen by the

minority “win”.
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A first application in Economics: Minority Game

In the Minority Game [7], developped by
Challet, Marsili and Zhang, players need to
choose between two options (+1,-1). Those
who have selected the option chosen by the

minority
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next winning grouj
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Physical Laws can emerge
from these simple rules. We
can observe that o2/N is only
a function of a =2m/N
which considering the
complexity of the interactions
between the set of agents can
be quite remarkable.
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A first application in Economics: Minority Game

In the Minority Game [7], developped by

10

Challet, Marsili and Zhang, players need to Fo5F A
. < 2 A
choose between two options (+1,-1). Those % Goal 1 1
10 o S A
who have selected the option chosen by the 2z S B T
" " N 2 10° 10 10" 10° 10" 1
minority “win" . o 8 o
m next winning grou| 10 W””’””””i 7777777 i ABPP|O
F
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-1-1-1 -1 w0’ 16’2 1(;'1 1‘0"m 1‘01 162
:i ;1 ti ;i feedback] a=20N
141+l b 2 O.N.© t o Physical Laws can emerge
+1-1-1 -1 t o from these simple rules. We
— action —=
Haa O Q} b that o2/ N is onl
1411 b can observe that o is only
*LHLHL H riorty e = 11 a function of a=2m/N

which considering the
complexity of the interactions
between the set of agents can
be quite remarkable.

Criticism: Is this realistic for Economics?
Maybe, but not for algorithmic trading (eg:
TF strategy in a TF concentrated
ecosystem)?
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Bringing these Ideas into Electronic Trading

@ As ML “translation” of ED and
PP models, we have
Generative Adversarial
Networks (GANSs) [14],
introduced in 2014, usually
involve a system of two neural
networks competing in a
zero-sum game settings. This
process continues as long as
needed since the lack of data is
no longer a problem.
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Bringing these Ideas into Electronic Trading

@ As ML “translation” of ED and
PP models, we have
Generative Adversarial
Networks (GANs) [14],
introduced in 2014, usually
involve a system of two neural
networks competing in a
zero-sum game settings. This
process continues as long as
needed since the lack of data is
no longer a problem.

The communication tool is the
order book and the game is
not zero-sum game in our
research. The strategies are in
High Frequency Financial
Funnel (HFFF) format [23].
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High Frequency Financial Funnel & Classic Strategies

HFFF can model financial strategies:
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HFFF can model financial strategies:
e Trend Following (TF)
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HFFF can model financial strategies:
@ Trend Following (TF)

@ macp
@ MR
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HFFF can model financial strategies:
@ Trend Following (TF)
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High Frequency Financial Funnel & Classic Strategies

HFFF can model financial strategies:
@ Trend Following (TF)

@ macp
@ MR
Q xor

e Lasso Regressions etc ...
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High Frequency Financial Funnel & Classic Strategies

HFFF can model financial strategies:
@ Trend Following (TF)
@ macp
@ MR
Q xor

e Lasso Regressions etc ...

Architecture Complexity and strategy
sophistication explains the incentive for
Deep Learning (DL).

Paradoxically we witness potential for
regularization as the network becomes
more complex.
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Genetic Algorithm & NN Complexity

NN depth & breadth
should contribute in
increasing the learning
potential. The TF
(bottom) is less
complex
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Genetic Algorithm & NN Complexity

NN depth & breadth
should contribute in
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Genetic Algorithm & NN Complexity

NN depth & breadth
should contribute in
increasing the learning
potential. The TF
(bottom) is less
complex than the MLR
(middle) which is less
complex than the XOR
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Genetic Algorithm & NN Complexity

NN depth & breadth

should contribute in
increasing the learning
potential. The TF
(bottom) is less
complex than the MLR
(middle) which is less
complex than the XOR

P&L

LR S R EL R,

(top) strategy.

Question: Can we
make an analogy to the
predator prey
ecosystem? Do we get
similar behaviour as the
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The Path of Interaction

Answer: not quite but there are few interesting links (exponential grow of the

smaller prey/self fulfilling strategies such as TF) but they are many issues
(classification, timescale etc...).
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The Path of Interaction

Answer: not quite but there are few interesting links (exponential grow of the
smaller prey/self fulfilling strategies such as TF) but they are many issues
(classification, timescale etc...).

The genetic algorithm presented in the previous slide creates complications
(classification issues). This pushed us to study the bottom-up approach using
concepts taken from evolutionary dynamics and created the the concept of Path
of Interaction: table of 7 rows documenting the interaction’s details (eg:
table above).
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Path of Interaction

Answer: not quite but there are few interesting links (exponential grow of the
smaller prey/self fulfilling strategies such as TF) but they are many issues
(classification, timescale etc...).

Strategy seed 1t TF1 TF2 TF1 TF2
Iteration 0 1 2
Signal N/A +1 +1 +1 +1
OB opt bt o,opl’l’1 o,o,opl’1 0,0,0,0Pl 0,0,0,0,0P
Last Price 100 101 102 103 104
AOI +1 -1 -2 -3 -4
APrice +1 +1 +1 +1 +1
P&L [0,0] [1,0] [2,1]

The genetic algorithm presented in the previous slide creates complications
(classification issues). This pushed us to study the bottom-up approach using
concepts taken from evolutionary dynamics and created the the concept of Path
of Interaction: table of 7 rows documenting the interaction’s details (eg:
table above).
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© A Bottom-up Approach to the Financial Markets
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© Model Assuming Data vs Data Reassuming the Models

@ Conclusion
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Sequential Mo

Sequential Monte Carlo
(SMC) methods

[10, 11, 18], also know as
Particle Filter have
emerged as a fashionable
tool to track scenarios in
the last 15 years [31, 32].
They are the sequential
analogue of Markov Chain
Monte Carlo (MCMC)
methods and similar to
importance sampling
methods.

estimated pdf at time k (before resample

real pdf

a particle

sampling

resampling

sampling

X

another seemingling useless particle is realocated as expected at a more useful place

lucky useless particle stays at the same spot

estimated pdf at time k + 1 (after resample)
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Sequential Monte Carlo
(SMC) methods
[10, 11, 18], also know as  estimated pdf at time k (hefore resample 4

Particle Filter have

real pdf

sampling

emerged as a fashionable 5 Xk
tool to track scenarios in - CDF )‘(i
the last 15 years [31, 32]. E |

They are the sequential
analogue of Markov Chain
Monte Carlo (MCMC)
methods and similar to

resampling

Xk
importance sampling
methods.
The aims of the PF is to sampling
estimate the sequence of
hidden parameters (eg: X

the frequencies of certain
types of strategies), based
on an indirect Iucky useless particle stays at the same spot
observations (eg: the
fluctuations of the
market).

another seemingling useless particle is realocated as expected at a more useful place

estimated pdf at time k + 1 (after resample)

BMD (University of Oxford) Data-Driven Models & Math Finance 19th, 2019 16 / 40



The random Brownian paths become deterministic
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The random Brownian paths become deterministic

Each Brownian Path Lookalike is no longer stochastic but deterministic.
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random Brownian paths become deterministic

Each Brownian Path Lookalike is no longer stochastic but deterministic.

100
75 A
50

25
AP g =

_25 -
_50 -
—75 4 —— 2 Strategies Ecosystems: [s1, S3, ..., So]

—100 4 — 3 Strategies Ecosystems: [Sy0, S11, ..., S15] \

0 10 20 30 40
Iteration

Each deterministic path corresponds to a sequence of interaction of several
strategies for which the sequence and the P&Ls can be traced through our SMC
methods by looking at the market price only.
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PF assigns a probability for each ecosystem scenario

We have recorded 15 different scenarios (ecosystem history) for the sake of this
presentation, all of which are clearly detected after the 11th iteration [27].
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© Introduction

© A Bottom-up Approach to the Financial Markets

© Model Assuming Data vs Data Reassuming the Models
o Cointelation, Inferred Correlation & Portfolio Optimization

@ Conclusion
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Model Assuming Data

Definition (Correlation Model)

On a filtered probability space (2, F, () (;»0),P) the
Correlation model is given by the set of two SDE'’s:

dX(t) = pX(t)dt + o X (£)dW(t),
dY (t) = pY(t)dt + oY (t)dW(t), (1)
d<Wa W)f = pdt, (2)

where e R, o > 0 are drift and diffusion coefficients of asset
price, W(t) and W(t) are two correlated Brownian motions
with constant correlation coefficient p € [-1,1].
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Model Assuming Data

Definition (Correlation Model)

On a filtered probability space (2, F, () (;»0),P) the
Correlation model is given by the set of two SDE'’s:

dX(t) = pX(t)dt + o X (£)dW(t),
dY (t) = pY(t)dt + oY (t)dW(t), (1)
d<Wa W)f = pdt, (2)

where e R, o > 0 are drift and diffusion coefficients of asset
price, W(t) and W(t) are two correlated Brownian motions
with constant correlation coefficient p € [-1,1].

Remark: few assumptions need to be fulfilled. Variance must
remain constant (homoscedasticity) and the returns
independent. If not instantaneous measured correlation is
misleading with respect to long term correlation:
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Model Assuming Data

Definition (Correlation Model) .

On a filtered probability space (2, F, () (;»0),P) the .

Correlation model is given by the set of two SDE'’s: °
dX(t) = pX(t)dt + o X(t)dW(t),
dY (t) = pY(t)dt + oY (t)dW(t), Q)| s
d(W, W); = pdt, (2)

where e R, o > 0 are drift and diffusion coefficients of asset
price, W(t) and W(t) are two correlated Brownian motions
with constant correlation coefficient p € [-1,1].

Remark: few assumptions need to be fulfilled. Variance must
remain constant (homoscedasticity) and the returns
independent. If not instantaneous measured correlation is
misleading with respect to long term correlation:

@ Top Right Figure: p=-1,
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Model Assuming Data

Definition (Correlation Model) .

On a filtered probability space (2, F, () (;»0),P) the .

Correlation model is given by the set of two SDE'’s: °
dX(t) = pX(t)dt + o X(t)dW(t),
dY (t) = pY(t)dt + oY (t)dW(t), Q)| s
d(W, W); = pdt, @ .

where e R, o > 0 are drift and diffusion coefficients of asset
price, W(t) and W(t) are two correlated Brownian motions
with constant correlation coefficient p € [-1,1]. -

Remark: few assumptions need to be fulfilled. Variance must e e W e e s W s w
remain constant (homoscedasticity) and the returns

independent. If not instantaneous measured correlation is

misleading with respect to long term correlation:

@ Top Right Figure: p=-1,
@ Middle Right Figure 5 =0,
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Model Assuming Data

Definition (Correlation Model)

On a filtered probability space (2, F, () (;»0),P) the
Correlation model is given by the set of two SDE'’s:

dX () = pX(t)dt + o X (t)dW(t),

dY (t) = pY(t)dt + oY (t)dW(t), (1)
d(W, W) = pdt, ()

where e R, o > 0 are drift and diffusion coefficients of asset
price, W(t) and W(t) are two correlated Brownian motions
with constant correlation coefficient p € [-1,1].

Remark: few assumptions need to be fulfilled. Variance must
remain constant (homoscedasticity) and the returns
independent. If not instantaneous measured correlation is
misleading with respect to long term correlation:

@ Top Right Figure: p=-1,
@ Middle Right Figure 5 =0,
@ Bottom Right Figure p = +1.
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Data Disagrees with Assumptions

Data violates assumptions
of the classic model (2):

@ directly (this is not
new: the returns are
not iid and the
variance is not
constant),
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Data Disagrees with Assumptions

Extrapolation of the marked correlation function of the ratio of the indexes SP500 and EUROstoxx

Data violates assumptions
of the classic model (2):

@ directly (this is not 28 |
new: the returns are Tl N 0%
not iid and the © o0 5Tl o ©
variance is not H 2er T Qg . 1
constant), é 5~

@ or indirectly (Figure ”‘; 24l T J
on left hand side). S o T
Implied correlation is 627 L
“marked”, the same § 220 N
way implied volatility H Y
is. The ratio of two B o ‘
closely related E r
underliers exhibits o )/
mean reversion in the 09@ S
minds of the traders 18 o e |
risk managing these oS -
products. s 8
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Data Reassuming the Model

Intuitive Definition: Cointelation is a
portmanteau neologism in finance,
designed to signify a hybrid method
between between cointegration and
correlation models (Data-Driven
adjustment to classic financial math
models: data “reassuming the
model”).

Cointelation
Model

Correlation Cointegration
Model Model
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Data Reassuming the Model

Definition (Cointelation Model)

On a filtered probability space (2, F, (F) tzO)’P)
the Cointelation model is given by the SD%’S:

dX(t) = uX(t)dt + o X (t)dW(t),
dY (t) = k (X(t) - Y(t)) dt+nY(t)dW(t),
d<W7 W)t = /Odtz

with p e R, o0 >0, n >0 are drift and diffusion
coefficients of asset price X, k - the rate of mean
reversion, W (t) and W/(t) are two correlated
Brownian motions with constant correlation
coefficient p € [-1,1]. The process (X(t))so0 is
called the leading process, (Y (t))t0 the lagging
process.

BMD (University of Oxford)
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Intuitive Definition: Cointelation is a
portmanteau neologism in finance,
designed to signify a hybrid method
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Data Reassuming the Model

Definition (Cointelation Model)

On a filtered probability space (2, F, (F) tzO)’P)
the Cointelation model is given by the SD%’S:

dX(t) = uX(t)dt + o X (t)dW(t),
dY (t) = k (X(t) - Y(t)) dt+nY(t)dW(t),
d<W7 W)t = /Odtz

with p e R, o0 >0, n >0 are drift and diffusion
coefficients of asset price X, k - the rate of mean
reversion, W (t) and W/(t) are two correlated
Brownian motions with constant correlation
coefficient p € [-1,1]. The process (X(t))so0 is
called the leading process, (Y (t))t0 the lagging
process.

Remark: We note that setting « = 0 yields the
classic correlation model. Conversely, setting p =0
yields the cointegration model.
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Interesting Property: the Inferred Correlation

price

measured correlation

[[—@— measured correlation and its linear interpolation |
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timescale
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Remark: Cointelation model can hit the whole correlation spectrum depending on timescale.
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Interesting Property: the Inferred Correlation

Definition (Inferred Correlation)

Considering, the dynamics of equation (3), the Inferred Correlation formula is given by (3).
pr~p+(1=p)[1-exp(=kX(T-1))] (3)

where p* = E[ sup pt], T €Z*, 0 €[0,1] and X constant.

o<t<t

price

measured correlation

[[—@— measured correlation and its linear interpolation |
Y 1 1 1 1 1 1 L L L

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
timescale

Remark: Cointelation model can hit the whole correlation spectrum depending on timescale.
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Application: Socially Responsible Finance

Socially Responsible & Consumer
Finance is a wave of quant finance
that gains momentum after each crisis
but quickly runs unfortunately out of
fuel:

@ Situation: Equity/Commodities
salesman trying to convince
clients who have a portfolio in
the Commodities/Equities asset
class to diversify by buying
salesman’s products.

@ Objective: show small

correlation to suggest
diversification benefits

BMD (University of Oxford) Data-Driven Models & Math Finance er 19th, 2019



Application: Socially Responsible Finance

Normalised plot of Oil and BP since April 2007
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Socially Responsible & Consumer
Finance is a wave of quant finance
that gains momentum after each crisis
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fuel:

Normalised returns
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@ Situation: Equity/Commodities
salesman trying to convince ol
clients who have a portfolio in
the Commodities/Equities asset 0 20 w0
class to diversify by buying
salesman’s products.

L
1000 1200 1400

@ Objective: show small
correlation to suggest
diversification benefits

@ Algorithm: Find the smallest
measured correlation as a
function of timescale.

Measured correlation

@ Penalty: Violation of the
Misleading Statement & Action,
and Client Best Interest Rules.

o n

max(p)
Elsupp]

Time horizon
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@ Situation: Equity/Commodities
salesman trying to convince ol
clients who have a portfolio in
the Commodities/Equities asset 0 20 w0
class to diversify by buying
salesman’s products.

L
1000 1200 1400

@ Objective: show small
correlation to suggest
diversification benefits

@ Algorithm: Find the smallest
measured correlation as a
function of timescale.

Measured correlation

@ Penalty: Violation of the
Misleading Statement & Action,
and Client Best Interest Rules.

o n

max(p)
Elsupp]

@ Solution: Inferred Correlation.
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Portfolio Optimization

We consider the
portfolio of:

e two stocks
X: and Y;
with price
dynamics
following the
cointelation
model (3).
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Portfolio Optimization

We consider the :
. we can notice that we can decompose the

portfolio of: Cointelation model in two familiar models:

o two stocks o Markowitz Mean-Variance Analysis (p-centered
Xt and Y; sub strategy): Easy
with price e Ornstein—Uhlenbeck "like" Stochastic Control
dynamics (k-centered sub strategy): Difficult
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Portfolio Optimization

We consider the

portfolio of: @ ... we can notice that we can decompose the

Cointelation model in two familiar models:

o two stocks o Markowitz Mean-Variance Analysis (p-centered

Xt and Y; sub strategy): Easy
with price e Ornstein—Uhlenbeck "like" Stochastic Control
dynamics (k-centered sub strategy): Difficult
following the @ The optimization process involves a dynamics
cointelation switching strategy between both approaches
model (3). )

e we would like We = T(i;([%E(rP) -0 (rp)]1{|n(x%/t)|$#} *
to leverage as 1

: sup | ~(VT(T)7 [y, o

much as 7(£)eA(0,v0) vy {|”‘( tht)|>H}
possible on
methods., The red part does not have a closed for solution:
already in the pure Classic Financial Mathematics does
place ... not have a solution.
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Portfolio Optimization: ML/FM Hybrid Meth

The way to handle the red part part is to consider
the function G(t,v,s) such that G ¢ C2(Q), the
Hamilton-Jacobi-Bellman (HJB) equation
corresponding to stochastic control problem is

G
aa—t(t7 v,s) +sup LT G(t,v,s) =0, (4)

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019



Portfolio Optimizati M Hybrid Met

The way to handle the red part part is to consider
the function G(t,v,s) such that G ¢ C2(Q), the
Hamilton-Jacobi-Bellman (HJB) equation
corresponding to stochastic control problem is

G
aa—t(t7 v,s) +sup LT G(t,v,s) =0, (4)

Through a series of educated guess (1st replacing
sup with 7* then using the separation ansatz), we
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Portfolio Optimization: ML/FM Hybrid Method

The way to handle the red part part is to consider
the function G(t,v,s) such that G ¢ C2(Q), the
Hamilton-Jacobi-Bellman (HJB) equation
corresponding to stochastic control problem is

G
aa—t(t7 v,s) +sup LT G(t,v,s) =0, (4)

Through a series of educated guess (1st replacing
sup with 7* then using the separation ansatz), we
turn an equation of 4 to one of 2 unknowns which
we can approximate using Deep Learning [1, 33]: it
works for the Merton non-linear PDE.
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Portfolio Optimization: ML/FM Hybrid Method

The way to handle the red part part is to consider
the function G(t,v,s) such that G ¢ C2(Q), the
Hamilton-Jacobi-Bellman (HJB) equation
corresponding to stochastic control problem is

G
aa—t(t7 v,s) +sup LT G(t,v,s) =0, (4)

Through a series of educated guess (1st replacing
sup with 7* then using the separation ansatz), we
turn an equation of 4 to one of 2 unknowns which
we can approximate using Deep Learning [1, 33]: it
works for the Merton non-linear PDE.

-0.50

-0.75

e NOq
wleTNOHq

e T NOq ]

!

e e = T

BMD (University of Oxford) Data-Driven Models & Math Finance



Portfolio Optimization: Pure ML Approximation

We can use clustering in order to study the
P&L of n (eg: 4) strategies through time.
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We can use clustering in order to study the
P&L of n (eg: 4) strategies through time.

@ Strategy S** in which we are long both
X and Y at time t within bands [a;, b;],

i €N, and with P&L V(5" .
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We can use clustering in order to study the
P&L of n (eg: 4) strategies through time.

@ Strategy S** in which we are long both
X and Y at time t within bands [a;, b;],

i €N, and with P&L V(5" .

@ Strategy ST~ in which we are long X and
short Y at time t within [a;, b;], i €N,

and with P&L V[::,b,-],t'
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Portfolio Optimization: Pure

We can use clustering in order to study the
P&L of n (eg: 4) strategies through time.

@ Strategy S** in which we are long both
X and Y at time t within bands [a;, b;],

i €N, and with P&L V(5" .

@ Strategy ST~ in which we are long X and
short Y at time t within [a;, b;], i €N,

and with P&L V[::,b,],t'

@ Strategy S~ in which we are short X
and long Y at time t within [a;, b;],
i €N, and with P&L V* .
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@ Strategy S™ in which we are short both
X and Y at time t within bands [a;, b;],

i €N, and with P&L V-, ..
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Remark: We can have as many bands
(strategies) as we have weight proportions.
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Anomaly Detection & Volatility Surface de-Arbitraging

Normalizing the data coming from the markets
. (left figure)
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Anomaly Detection & Volatility Surface de-Arbitraging

Normalizing the data coming from the markets
(left figure) in rolling contract form

Increased uncertainty about where the data point is
for which there is curtently no proposed methodology
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Anomaly Detection & Volatility Surface de-Arbitraging

most Ikely will be addressed by finea

Increased uncertainty about where the data point is
for which there is curtently no proposed methodology

BMD (University of Oxford)

Data-Driven

Normalizing the data coming from the markets
(left figure) in rolling contract form into a
coherent fixed pillars implied volatility surface
(bottom right figure) presents challenges.

implied volatiity ; o

log moneyness
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Anomaly Detection & Volatility Surface de-Arbitraging

The classic arbitrage conditions (butterfly & calendar spread) have been
replaced with more elegant models (e.g. VK,V T,|TOxo?(K, T)|<4)
that were nevertheless not sufficient and the arrival of Big Data in the
wings exposed these limitations in the Financial Mathematics models.
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The classic arbitrage conditions (butterfly & calendar spread) have been
replaced with more elegant models (e.g. VK,V T,|TOxo?(K, T)|<4)
that were nevertheless not sufficient and the arrival of Big Data in the
wings exposed these limitations in the Financial Mathematics models.
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Figure: Vogt's total variance example verifying b(1 + |p|) < % (left figure: with the x axis being
the log-moneyness and the y axis being the implied variance) and the corresponding

8}2<7KBS (az(K, T)) approximating the (supposed) always positive pdf (right figure: with the x
axis being the log-moneyness and the y axis being the non normalized pdf).
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Anomaly Detection & Volatility Surface de-Arbitraging

The work of this chapter revolves
around anomaly detection in the
context of the implied volatility
surface trying to use the classic
methods: butterfly arbitrage (or call
spread) in equation (5b) and calendar
spread arbitrage in equation (5¢) and
the more advanced methods such as
in equation (5e) (a necessary but not
sufficient condition).
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Anomaly Detection & Volatility Surface de-Arbitraging
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Call Prices Implied Volatility

solve: &¢(7,d) = argmin " > [C( 0 ¢(7,d)) - C(&¢(7,d 2

st ZE (et 0)- (0]
subject to: V7 and YK
C(K-n,00(K-A,7)) - C(K,o0(K, 7)) 20
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The work of this chapter revolves
around anomaly detection in the
context of the implied volatility
surface trying to use the classic
methods: butterfly arbitrage (or call
spread) in equation (5b) and calendar
spread arbitrage in equation (5¢) and
the more advanced methods such as
in equation (5e) (a necessary but not
sufficient condition).
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Increasing Strikes Increasing Strikes

The work of this chapter revolves
around anomaly detection in the
context of the implied volatility
surface trying to use the classic
nereasing | Methods: butterfly arbitrage (or call
Tenors Tenors spread) in equation (5b) and calendar
spread arbitrage in equation (5¢) and
‘ the more advanced methods such as
- C(} Then in equation (5e) (a necessary but not
i sufficient condition). We also discuss
Call Prices Implied Volatility some of the idiosyncratic asset class
related differences that require
modifications in the optimization

N . . 2 . Finally we discuss few tradin
ve: ¢(r,d) = C(oie(rd)) = C(5e(r, d))]” (5a) Process Y g
sobve: &1(7,9) = argmin L3 [C(oie(r D) - €(5er )] G2 O by simplifying the IVP model.
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Big Data Changing the Vanilla Options Landscape

" @ exposed the limitations of
0a}- both the wings (e.g. SVI)

and of the liquidity in the
0o options market,

SV fits poorly the
sublinearity of the

Implied Variance
°
g
]
T

0.06 = Incoherence of the wings B
fluctuations suggest the
volatilty was marked with
noise or more realistically
005 at slightly different times B
0.04 |-
We saw in the Options market:
0.03 . . . . | . . . . .
1 0.8 0.6 0.4 K [ 02 04 06 08 @ a step back in compIeXIty

0.2
In(F/K) . .
(from exotics to vanilla) but

with more coherent pricing
@ a step forward in liquidity
modelling
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noise or more realistically
005 at slightly different times

2 )
In(F/K)

dS; = /viS:dW}, Sp e RY

0.8

dvi = k(0 — vi)dt + o\ /vidW?, vy e R* (6b)

The rise of big data:

@ exposed the limitations of
both the wings (e.g. SVI)
and of the liquidity in the
options market,

@ the need for proxying when
the data is scarse.

@ the Heston (Stochastic
Volatility) model and the
local volatility model and the
need for harmonizing these
two concepts.

We saw in the Options market:

@ a step back in complexity
(from exotics to vanilla) but
with more coherent pricing

@ a step forward in liquidity
modelling

@ the need (in CCPs), to map
risk factors to economical
concepts.
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Big Data Changing the Vanilla Options Landscape

Big Data exposed
the limitations of
the SVI in the
wings and the
subprime crisis of
2007 exposed the
need to
incorporate
liquidity directly
in the options
model.
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Big Data Changing the Vanilla Options Landscape

We define the Implied Volatility surface Parametrization (IVP) split with its

mid in equation (7) with the downside transform in equation (7b) enhancing

the SVI, Big Data exposed

the limitations of

the SVI in the

wings and the

- k subprime crisis of
%o,7 = gL+ 4k 2007 exposed the
: need to

incorporate
liquidity directly
in the options
model. The IVP
addresses these
two points

2 2
Tivp,o,r (K) =ar +br I:/’T (20,7 =mz) +\/ (20,7 =m+)" + U%:I (7a)
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Big Data Changing the Vanilla Options Landscape

We define the Implied Volatility surface Parametrization (IVP) split with its
mid in equation (7) with the downside transform in equation (7b) enhancing
the SVI,

e (0= 37 47 [ (20, = mr) 41 (2o = mr ) 02
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and its liquidity parameters in equation (8). Parameters v represents the
Wings Curvature, « represents the ATM Spread. The latter two parameters
can be defined in terms of functions to accommodate the position size in
which case the market dept is controlled with the n parameters.
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Big Data exposed
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the SVI in the
wings and the
subprime crisis of
2007 exposed the
need to
incorporate
liquidity directly
in the options
model. The IVP
addresses these
two points
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Big Data exposed
the limitations of
the SVI in the
wings and the
subprime crisis of
2007 exposed the
need to
incorporate
liquidity directly
in the options
model. The IVP
addresses these
two points as well
as allow for
additional
benefits:

@ Proxying

@ Backtesting
weaponry
on complex
strategies.
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Big Data, Proxying & Handling Dimensionality for Options

Slice of the IVP on 1 arbitrary Tenor with
=0.1,b=0.1, p=0 =0, m=0, B =1, =0,

o T T T T T T T T T

044 3
§ oz 1
&
¥ oar 1
2 oast q
s
S oast
2 ref vol best Ask
2 ref vol best Bid
g0 ref vol mid

stressed vol best Ask
o3z stressed vol best Bid [|
) ) ) stressed vol mid
o

L L L
-08  -06 -04  -02

) 02 04 06 08 1
Moneyness

BMD (University of Oxfor Data-Driven Models & Math Finance



Big Data, Proxying & Handling Dimensionality for Options

Slice of the IVP on 1 arbitrary Tenor with
a=t 1,p=00=0, m=0, {21, =0,

044 3
§ oz 1
&
¥ oar 1
2 oast q
&
S o6l
2 ref vol best Ask
2 ref vol best Bid
g0 ref vol mid
stressed vol best Ask
o3z stressed vol best Bid [|
stressed vol mid
o I . . . . .
1 -8 -06 04 02 [ 02 04 06 08 1
Moneyness
on 1 arbirary Tenor vith
=0.1, p=00=0, m=0, B =1, =0, a,
b=0.01, Ap=0, Am=0, 80=0, A3 =0 AY=0, Au=0
o T T T T T T T T
044 e
3
% o2l |
&
% o4l 4
2
2 038 . B
8
> o6 ref vol best Ask
2 ref vol best Bid
g 034r ref vol mid
stressed vol best Ask
0321 stressed vol best Bid
stressed vol mid
o . . . . . . .
1 08 06 04 02 [ 02 04 06 08 1

Moneyness

BMD (Univer



Big Data, Proxying & Handling Dimensionality for Options

Slice of the IVP on 1 arbitrary Tenor with Sice of the IVP on 1 arbitrary Tenor with
=0.1,b=0.1, p=0 =0, m=0, B =1, =0, =01, b=0.1, p=0 0=0, m=0, B =1, =0, a,

and with 42=0.01, &b: Ao
o T T T T T T T T T o T T T T T T T T T
0.44PN\_ gl 046
§ oz I L)
@ @ a2
3 oar 103
= = 04p
2 oast q 2
& 5 038F
S o6l 3
2 ref vol best Ask 3 oas ref vol best Ask
2 ref vol best Bid 2 — ref vol best Bid
g o34r g ref vol mid
E ref vol mid E o34p
stressed vol best Ask > stressed vol best Ask
0321 stressed vol best Bid || 032F stressed vol best Bid
stressed vol mid stressed vol mid
o I . . . . . o I I . . . . .
1 -8 -06 04 02 [ 02 04 06 08 1 1 08 06 04 02 [ 02 04 06 08 1
Moneyness Moneyness
sfice of the IVP on 1 arbirary Tenor vith
=01, b=0.1, p=0 0=0, m=0, {21, =0, , =0
and with 42=0, Ab=0.01, Ap=0, A
o T T T T T T T T T
044 e
3
% o2l |
&
¥ oar -
2
2 038 B
8
> o6 ref vol best Ask
2 ref vol best Bid
g 034r ref vol mid
stressed vol best Ask
0321 stressed vol best Bid
stressed vol mid
o . . . . . . .
1 08 06 04 02 [ 02 04 06 08 1

Moneyness

Data-Driven Models & Math



Big Data, Proxying & Handling Dimensionality for Options

Slice of the IVP on 1 arbitrary Tenor with
=0.1,b=0.1, p=0 =0, m=0, B =1, =0,

Sice of the IVP on 1 arbitrary Tenor with
=01, b=0.1, p=00=0, m=0, B =1, Y=0. , :

1

and with 42=0.01, &b: Ao
o T T T T T T T T T o T T T T T T T T T
044 046 4
3 0aal g
§ oz § 044
@ @ a2 B
3 oar 3
2 = 04p 4
2 oast 2
& & 038F d
S o6l 3
2 ref vol best Ask 3 oas ref vol best Ask
g ref vol best Bid 2 ——ref vol best Bid
g o34r g ref vol mid
E ref vol mid E o34p
stressed vol best Ask stressed vol best Ask
0321 stressed vol best Bid 032F stressed vol best Bid
stressed vol mid stressed vol mid
o I . . . . . o I I . . . . .
1 -8 -06 04 02 [ 02 04 06 08 1 08 06 04 02 [ 02 04 06 08
Moneyness Moneyness
sfice of the IVP on 1 arbirary Tenor vith Sice giihe IVP on 1 abiary Tenor with
=01, b=0.1, p=0 0=0, m=0, {21, =0, , =0 =01, b=02, p=00=0, m=0, B.=1, y=0.1, a, =0
and with 42=0, Ab=0.01, Ap=( b
o T T T T T T T T T
0.aal ref vol best Ask
ref vol best Bid
3 <
% o2l g
& 12
¥ oap M
2 2 stressed vol mid
2 038 c
8 &
> o6 ref vol best Ask >
2 ref vol best Bid g
g 034r ref vol mid g
stressed vol best Ask
0321 stressed vol best Bid
stressed vol mid
o . . . . . . . . . . . ! . . . .
1 08 06 04 02 02 04 06 08 -1 08 06 04 02 [ 02 04 06 08 1
Moneyness Moneyness

Data-Driven Models & Math



© Introduction

© A Bottom-up Approach to the Financial Markets

© Model Assuming Data vs Data Reassuming the Models

@ Clustering for Distribution & Regime Change Forecasting
@ Conclusion

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 33 /40



Clustering for Distribution & Regime Change Forecasting

We show how clustering can help enhance MF and therefore the two fields
can be apposed instead of opposed in the context of modelling risk factors
(RF) which behave elements of mean reversion (Spread, Options RF). More
specifically we look at how we can free oneself with the assumptions of
SDEs to construct a general clustering methodology. This can allow us to
construct concepts like the Anticipative VaR (a leading regime change) as
opposed to Responsive VaR (a lagging regime change).
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We show how clustering can help enhance MF and therefore the two fields
can be apposed instead of opposed in the context of modelling risk factors
(RF) which behave elements of mean reversion (Spread, Options RF). More
specifically we look at how we can free oneself with the assumptions of
SDEs to construct a general clustering methodology. This can allow us to
construct concepts like the Anticipative VaR (a leading regime change) as
opposed to Responsive VaR (a lagging regime change).

In the left figure,
we apply clustering
in order to classify
dynamic zones in
which the returns
act differently. For
example when the
underlier is
significantly above
its mean, the
forecasted
distribution is
normally
distributed with
however a negative
mean (vice versa
when the underlier
is below its
historical mean).
The distribution is
symmetric when at
the long term
mean:
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Clustering for Distribution & Regime Change Forecasting

In order to Reconcile discordant
instructions of our regulators to create
a risk measure which is responsive but
stable at the same time we propose
the Responsible VaR, a risk measure
responsive on the upside but stable on
the downside. We give a couple of
examples (figures on the left) of
complex portfolio (straddle) backtests
in which we modify the A to control
the stability on the downside.
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Summary & Results: Part | (Opposition)

@ We pointed to a puzzling observation: Flash Crash. More specifically
as we have seen that during few the crash, fascinating patterned
oscillations occurred in the commodities market.
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Summary & Results: Part | (Opposition)

@ We pointed to a puzzling observation: Flash Crash. More specifically
as we have seen that during few the crash, fascinating patterned
oscillations occurred in the commodities market. These oscillations
cannot be explained by the Top-Down assumption in Quantitative
Finance (e.g. the Brownian motion). We have proposed to study
these oscillations with the Bottom-Up approach instead.

@ We expressed, classic Financial Strategies in HFFF format and
shown the incentive for going from from a simple perceptron, to
shallow and finally deep learning.

e We also established connections (though not complete) to fields that
are traditionally associated to mathematical biology, namely
predator-prey models and evolutionary dynamics.

@ This was done in order to express the bottom-up approach at the
infinitesimal level. More specifically we developed the concept of
Path of Interaction in an HFTE Game.

@ Finally we looked at tracking methods using MTT.
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Future Research (Part |: Opposition)

o Classification Simplification: the direct simulation approach of an
HFTE [23] creates situations in which two very different architectures
yield the exact same function.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 36 /40



Future Research (Part |: Opposition)

o Classification Simplification: the direct simulation approach of an
HFTE [23] creates situations in which two very different architectures
yield the exact same function.

@ Complex Food Webs: We need to bring the complexity of our state
space to the level of a complex food web. Additional strategies must
be incorporated and more HFTE games must be included in our
database of scenarios and we need to incorporate Birth & Death
Processes.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 36 /40



Future Research (Part |: Opposition)

o Classification Simplification: the direct simulation approach of an
HFTE [23] creates situations in which two very different architectures
yield the exact same function.

@ Complex Food Webs: We need to bring the complexity of our state
space to the level of a complex food web. Additional strategies must
be incorporated and more HFTE games must be included in our
database of scenarios and we need to incorporate Birth & Death
Processes.

@ Order-Book Dynamics: Many of the markets are driven by different
rules for the OB.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 36 /40



Future Research (Part |: Opposition)

o Classification Simplification: the direct simulation approach of an
HFTE [23] creates situations in which two very different architectures
yield the exact same function.

@ Complex Food Webs: We need to bring the complexity of our state
space to the level of a complex food web. Additional strategies must
be incorporated and more HFTE games must be included in our
database of scenarios and we need to incorporate Birth & Death
Processes.

@ Order-Book Dynamics: Many of the markets are driven by different
rules for the OB.

o Increased HFFF complexity does not equate to Invasion: A clear
picture did not necessarily emerge from the first simulations.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 36 /40



Future Research (Part |: Opposition)

o Classification Simplification: the direct simulation approach of an
HFTE [23] creates situations in which two very different architectures
yield the exact same function.

@ Complex Food Webs: We need to bring the complexity of our state
space to the level of a complex food web. Additional strategies must
be incorporated and more HFTE games must be included in our
database of scenarios and we need to incorporate Birth & Death
Processes.

@ Order-Book Dynamics: Many of the markets are driven by different
rules for the OB.

o Increased HFFF complexity does not equate to Invasion: A clear
picture did not necessarily emerge from the first simulations.

o Diversity as it relates to Stability: In biology diversity in an
ecosystem leads to its instability [35, 8] but what about Finance?.

BMD (University of Oxford) Data-Driven Models & Math Finance September 19th, 2019 36 /40



Future Research (Part |: Opposition)
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HFTE [23] creates situations in which two very different architectures
yield the exact same function.

@ Complex Food Webs: We need to bring the complexity of our state
space to the level of a complex food web. Additional strategies must
be incorporated and more HFTE games must be included in our
database of scenarios and we need to incorporate Birth & Death
Processes.

@ Order-Book Dynamics: Many of the markets are driven by different
rules for the OB.

o Increased HFFF complexity does not equate to Invasion: A clear
picture did not necessarily emerge from the first simulations.

o Diversity as it relates to Stability: In biology diversity in an
ecosystem leads to its instability [35, 8] but what about Finance?.

o Is TF the most “moral” strategy? TF is similar to the TFT (it
replicates but adapts).
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Summary & Results: Part Il (Apposition)

e Descriptive approach [28] of the market with the Cointelation
diffusion model helps us understand misleading risk measures and
introduced inferred correlation [21] as a conservative alternative.
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@ We also showed how clustering can help us in the context of
portfolio optimization and risk management and more specifically
the concept of Anticipative Responsible VaR [25]

@ We have also shown how hybrid methodology between classic FM
and ML can outperform their individual sums. More specifically,
we try to solve our nonlinear partial differential equation with a deep
learning [33] to solve an SDE problem.

@ Pointed to errors in the FM literature when it comes to Implied
Volatility arbitrage modelling and introduced de-arbing method,

e Enhanced the SVI [24, 22] with the IVP model [22, 26] designed to
adjust exposed data driven limitation of the latter (wings and
liquidity).
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Future Research (Part II: Apposition)

@ There are few extensions or improvements that can be performed on
the optimization process for cointelated pairs research. We can first
ask ourselves the question of the n-Cointelated case.
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@ There are few extensions or improvements that can be performed on
the optimization process for cointelated pairs research. We can first
ask ourselves the question of the n-Cointelated case.

e Testing of the IVP proxying methodology with quality data (eg:
does the psg p parameter compare well with the pss?).

e Application of the above two (Cryptocurrency Option's market
proxy; Bitcoin vs Altcoins) to the world of Cryptocurrency.

@ Current De-Arbitraging methodology is not robust in between
pillars (eg: Interpolation).

o Particle Filter for Implied Volatility MTT: very complex
co-movements of 3 or more parameters are not taken into account.
Though, these do not matter for vanilla options, they may matter for
more complex exotics.
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@ There are few extensions or improvements that can be performed on
the optimization process for cointelated pairs research. We can first
ask ourselves the question of the n-Cointelated case.

e Testing of the IVP proxying methodology with quality data (eg:
does the psg p parameter compare well with the pss?).

e Application of the above two (Cryptocurrency Option's market
proxy; Bitcoin vs Altcoins) to the world of Cryptocurrency.

@ Current De-Arbitraging methodology is not robust in between
pillars (eg: Interpolation).

o Particle Filter for Implied Volatility MTT: very complex
co-movements of 3 or more parameters are not taken into account.
Though, these do not matter for vanilla options, they may matter for
more complex exotics.

e Additional Liquidity issues for Implied Volatility (the ATM Bid Ask
is asset class sensitive) which makes the model less universal.
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Future Research (Part II: Apposition)

@ Harmonizing Stochastic & Local Volatility: We have seen that
both the Heston and SVI models are popular in the industry and
converge asymptotically to each other [13]: see Equation (10). Are
their limitations linked?

dS; = \/veSedW},  SpeRE (10a)
1

dve = k(0 - vi)dt + ovEdW?, v eR: (10b)

d (W' wW?) = pdt, (10c)

v(k,t) > a+ b[p(k - m) ++/(k—m)2+02] (10d)
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@ Harmonizing Stochastic & Local Volatility: We have seen that
both the Heston and SVI models are popular in the industry and
converge asymptotically to each other [13]: see Equation (10). Are
their limitations linked?

dS; = \/veSedW},  SpeRE (10a)
dve = k(0 — ve)dt + O’Vt% dW?, vy eR: (10b)
d (W' wW?) = pdt, (10c)
v(k,t) = a+b[p(k —m)++/(k-m)2+0o2] (10d)
e IVP and Assumed Correlation of Equation (11) the answer?
dS: = \/veS:dW}, Sy eR: (11a)
dvi = k(0 — vi)dt + o /vedW?, vy e R} (11b)
d (W', W?), = p(t,S;)dt, (11c)
p(t,5¢) = p+(£) + [p-(£) = p1 ()] [1 - exp(-B(1)[S: - K)] (11d)
v(k,t) > a+b[p(z-m)++/(z-m)2+02] (11e)
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Closing Statement with Q&A

— Russell L. Ackoff

13 quote that is generally attributed to George Box
2to mean, less useful for practitioners.
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Closing Statement with Q&A

“The more efficient you are at doing the
wrong thing, the wronger you become. If
you do the right thing wrong and correct it,

you get better.”
— Russell L. Ackoff

13 quote that is generally attributed to George Box
2to mean, less useful for practitioners.
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Closing Statement with Q&A

“The more efficient you are at doing the
wrong thing, the wronger you become. If
you do the right thing wrong and correct it,

you get better.”
— Russell L. Ackoff

To that extend we know that all models are wrong, but some are
useful' and in that spirit we have arguably done the right thing wronger?

in the 1st part of the thesis but the wrong thing righter in the 2nd part.

13 quote that is generally attributed to George Box
2to mean, less useful for practitioners.
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