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Abstract—In this paper we propose a new approach to
studying the financial markets. Instead of the traditional top-
down approach where a Brownian Motion is assumed as the
driving force behind the market and where dynamic strategies
are built as a result, we rather take the opposite point of view
(the bottom-up approach) by assuming that it is the interaction
of systematic strategies that induces the dynamics of the market.
We achieve this shift in perspective, by re-introducing the
High Frequency Trading Ecosystem (HFTE) model [86]. More
specifically we specify an approach in which agents interact
through a Neural Network structure designed to address the
complexity demands of most common financial strategies but
designed randomly at inception. This strategy ecosystem is
then studied through a simplified genetic algorithm. Taking
an approach in which simulation and hypothesis interact in
order to improve the theory, we explore areas that are usually
associated to fields orthogonal to Quantitative Finance such as
Evolutionary Dynamics & predator-prey models. We introduce
in that context concepts such as the Path of Interaction in
order to study our Ecosystem of strategies through time. Finally
a Particle Filter methodology is then proposed to track the
market ecosystem through time.

Keywords: High Frequency Trading Ecosystem (HFTE),
High Frequency Financial Funnel (HFFF), Multi-Target
Tracking (MTT), Stability of Financial Systems, Markov
Chain Monte Carlo (MCMC), Data Analysis and Patterns
in Data, Electronic Trading, Systemic Risk, High Frequency
Trading, Game Theory, Machine Learning, Predator Prey
Models, Sequential Monte Carlo, Particle Filter.

I. INTRODUCTION
A. The Rise of Big Data

1) Definition: The multiple industrial applications aris-
ing from the concurrent rise in information retrieval and
computer storage capabilities has opened up Big Data in a
spectacular fashion [21], [60], [71], [1], [34] and unique way
since the scope is both deep and far reaching. But what really
is Big Data? Though used sometimes loosely partly because
of a lack of formal definition, the interpretation that seems to
best describe Big Data is the one associated with large body
of information that we could not comprehend when used
only in smaller amounts [21]. This characterization seems to
indicate that the realm of the definition goes fundamentally
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beyond simply reducing the confidence interval of a param-
eter whose estimation would benefit from an increase of the
sample size. This latter intuition is the natural statistician
point of view. In fact the term “datafication” has recently
been introduced in order to replace the misleading term
that is Big Data in order to make sure readers research
the term instead of guess its meaning [21]. A good way to
illustrate this point would be for instance to examine Figure
new data at the high frequency domain which allow
us to explain the market from the Bottom-Up approac
rather than assume the Top-Dow Big Data suggests in
this situation that the point of reference of the mathematical
model should be entirely shifted top to bottom. Big Data
suggests real innovation as opposed to merely improvement
of the status quo. Though the part of the definition that infers
increase in size part is partly indicative of the definition, it
only tells half of the story, and in that sense “Innovative{zf]
Data” would have been a more intuitive term, though perhaps
arguably less marketing friendly. Taking its literal sense
though, we can legitimately ask how big is Big Data?

2) How Big is Big Data?: There exists many anecdotal
claims illustrating the size of Big Data. For instance its been
suggested that if we were to take as reference the time where
information was not stored digitally (for instance during the
third century BC), where it was believed that the Library
of Alexandria housed the sum of all human knowledge, then
today, there are arguably 320 times the number of inhabitants
worth of data available. More specifically if all this data was
placed on CDs and these latter CDs were stacked up, the
CDs would form five separate piles that would all reach
to the moon [21]. Another interesting fact reported is that
as much as 90% of current data was created in the last
couple of years [1]. Though these figures are often the most
cited by researchers there are legitimate questions around
the quality and the usefulness of the data being stored. For
instance Facebook likes which may have been bought or
censured constitute a source of data equal in value to perhaps
Geophysics data. There are also small disagreements with

'Which we delve more into latter on.

2e.g. strategies interacting explain the fluctuation of the market

3e.g. the market is assume to be a Brownian motion which itself allows
for dynamical strategies such as hedging for instance

4The idea that there is increase in the available data (the “Big” in Big
Data) is implied in the latter formulation but on top of that the intuition
that it also brings change is encompassed with this proposed terminology
as well.



respect to how fast Data is growing but it is estimated to
roughly double every three years [21], [71].

3) Scope: The Internet and Cloud Computing fast growth
have led to the exponential growth of data in most if not
all every industries. This hot topic attracted the attention
of all segments of the population going from government,
academia and the industry with far reaching opportunities
but also grand challenges such as data, computational and
system complexity with already proposed solutions [60]. No
matter how one looks at these figures the rise of Big Data
is real, its size and scope are changing our lives and our
civilization at a very rapid speed. The industry has many
applications of BD. The one we have chosen to explore is
the financial industry as it is at the heart of our economy,
comes under much scrutiny and can create systemic risk [50]
with far reaching impacts.

B. A Market Changing Financial Crisis

We can go as far back as few centuries for the construction
of the financial system with perhaps its first serious math-
ematization attempt occurring about a century ago [8] but
the event that is most relevant to this paper happened about
10 years ago with additional posterior signs which served to
remind us that the impact of this event was not over)|

1) The Subprime Crisis as a Triggering Effect: The
financial crisis of 2009, the resulting social uproar in the
general population induced ethical malaise in the scientific
community [61], [83], [90], [84] which changed the market
in many ways. More specifically, after the subprime crisis
governments strongly pushed the regulators to develop more
efficient risk monitoring systems® and review the current
modelling pillars so as to avoid similar crises in the future.

2) A Call for a Modelling Revolution: The new can-
didate sector under inspection quickly became the one of
algorithmic systematic trading which flash crash of May
6, 2010, in which the Dow Jones Industrial Average lost
almost 10% of its value in matter of minutes, exacerbated the
scrutiny. However, the current state of the art risk models,
are the ones inspired by the last subprime crisis and are
essentially models of networks in which each node can be
impacted by the connected nodes through contagion [50]
and is better suited to lower frequency models. Indeed, on
06/08/2011 a seemingly relatively unnoticed event occurred
on the natural gas commodities market. We say “relatively
unnoticed” simply because the monetary impact was limited
and finance is unfortunately an industry in which warning
signs are usually dismissed until it is too late. We can
see from Figure [I] that clearly something non-random is
occurring. This feeling is exacerbated by the strong intuition
that only interacting agents falling into some sort of quagmire
could yield such series of increasing oscillations followed by
a mini crash. Indeed, commodities has historically been seen
as a physical market, this in turn meaning that the prices are
driven by supply and demand of commodities which can be

Sfor example the multiple flash crashes.
SIn this context risk is viewed as a mixture or Market and Reputation.
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Fig. 1: Natural Gas flash crash of 06/08/2011 [99]

consumed, stored and/or produced. This particular point is a
unique feature compared to the other markets (Equities, FX,
or Rate). Also Figure 1| suggests that the common, though
perhaps a bit lazy view, that crashes occur through totally
unpredictable [131] events may not be true for algorithmic
trading. These few examples amongst others have led the
scientific community to encourage a revolutionary changes
possibly in the form of agent-based modelling [15], [35],
[16] in lieu of traditional financial mathematics models. It
is in this fundamental opposition of views that part of the
title of this paper must be understood. Indeed, traditional
financial mathematics programs focused on derivativesﬂ were
chastised and rethought [72]. This decline popularized Ma-
chine Learning (ML) and more specifically Gaussian pro-
cesses (GP) within them because they provided a flexible
non-parametric framework to which, one could incorporate
growing data. The latter academic scheme is already making
good progress [114] at modelling the options market for
example but it seems there are outstanding issues especially
when coherence as defined by arbitrage constraints is taken
into consideration. On the Risk side VaR must now take into
account the procyclicality of the market. Data suggests that a
big market move is likely to follow another big market move
[50], risk models must adapt quickly, incorporate Bayesian
statistics, adjust to the sudden increase of volatility of the
market and therefore be responsive. Paradoxically, in order
to eliminate the risk associated to liquidity shortage and
the resulting systemic risk, VaR should on top of being
Responsive remain as Stable as possible [105ﬂ

3) Exactitude vs Complexity: Convoluted financial prod-
ucts with high volatility or/and low liquidity and/or without
any societal need, other than as speculative tool, such as
exotic products were chastised [58] and many desks were
closed as a result. Indeed, the last crisis led to a modelling
revolution. Fueled by the lessons learnt from trading convo-
luted illiquid products based on wrong but mathematically
convenient assumptionﬂ we saw a concurrent:

7in which highest likelihood and mathematical convenience prevailed over
data supported by the market.

8We reconcile these discordant instructions later in the document.

9The correlation model assumption was misleading[90] when it came to
pricing complex subprime products.



« tactical step bac in the complexity of the products in
order to gain a more focused momentum for the future
Quantitative models,

« compulsory step forward in liquidity modelling since
the subprime crisis was arguably a liquidity activated
crisis.

The product class that took the niche of exotics became
simpler vanilla products, which hedging property has still
utilitarian valu more liquid, less volatile and therefore
more in-line with the role of derivatives at their inception.
Generally speaking liquidity modelling became of central
focus like never before especially through government led
initiatives [105] such as for example the Fundamental Review
of the Trading Book (FRTB). As the risk models increased in
sophistication, questions around coherence of scenarios also
became of central importance [88]. The Capital Requirement
of each financial institution is now linked to its VaR'2 and the
latter must be calculated with historical data. Finally P&L
associated to trading should be mapped to appropriate risk
factors.

4) From Financial Mathematics to Machine Learning:
Going all the way back to the early stages of the 20th century
and Louis Bachelier pillar contribution [8] to Mathematical
Finance, the world of Quantitative Finance has been gradu-
ally enhanced by the other STEM fields. Probability Theory,
Physics and Statistical Mechanics, among other fields, have
steadily but surely brought Quantitative Finance amongst
the most challenging STEM fields as its interdisciplinary
nature (Mathematics, Computer Science, Physics, Economics
& Finance) makes it increasingly difficult to master in full
giving rise to further granular specializatio Added to
these challenging historical enhancements, today the other
STEM ﬁelds{]z] are accelerating these changes by contributing
themselves to the complexity. More specifically Bayesian
Statistics, Signal Processing Statistics [89], Game Theory
[86] and above all Machine Learning [21] are increasingly
contributing to the interdisciplinary complexity. More specif-
ically, with the rise of Big Data [21] and Data Science [1]
and the aftermath of the financial crisis of 2009 as well as
the multiple Flash Crashes of the early 2010s, resulted in
social uproars in the general population and ethical malaises
in the scientific community [61], [83], [90], [84] which
triggered noticeable changes in Quantitative Finance. More
specifically, the latter was instructed to change to the point
where the highest authorities in Quantitative Finance have
been calling for a modelling revolution [15], [35], [16].

10Coming back to the basis of the derivatives markets which is to provide
insurance against big market moves as opposed to create these big market
moves.

For example a farmer would use a put options in order to hedge himself
against the prices of its crop going down few months before maturity.

2L ater corrected to Expected Shortfall, but this change is irrelevant in
the context of this paper as going from one to the other when one has the
simulated scenarios is relatively easy.

13We now have “Pricing Quants”, “Algorithmic Trading Quants”, “Risk
Methodology Quants”, “Structurers”, “Model Validation Quants”, “Quant

Developpers”, “Quantitative Traders” etc ...
14As we will see in part ??.

To some extend the Bottom-Up approach of agent based
modelling, an area of Machine Learning, as suggested by the
authorities, is in total opposition to the Top-Down approach
used by Financial Mathematics (as best symbolized by the
use of the Brownian Motion). Added to this antagonistic
change in the point of the markets models in algorithmic
trading, we have been witnessing an interesting re-balancing
shift between models and data. More specifically we are
moving from an approach in which models assumed data
towards one in which data is reassuming the models [90],
[84], [88], [85] and slowly making distinguished Financial
Mathematics models obsolete. To some extent the subprime
crisis can be seen as the triggering effect which has seen
the rise of Machine Learning and the coinciding decline of
traditional Financial Mathematics models within the world of
Quantitative Finance. However as we will see more in details
the opposition between these two fields can sometimes
be turned into an apposition. This wording needs to be
understood the following way: these two field can enhance
each other (appose) rather than oppose each other.

C. Problem Formulation

1) Agent-Based Intelligent System & Deep Learning:
We learn about the bottom-up vs the top-down approach in
introductory systems engineering classes at the undergradu-
ate level but by the time one gets into the most advanced
postgraduate financial mathematics classes, this essential be-
ginners scientific lesson for information processing strategy,
has long been forgotten and the models have become dogma.
Indeed at these more advance stages of ones education
it becomes much more important to be able to derive or
infer meaning via these believes rather than understand the
limitations of these core modelling assumptions and improve
the models from inception. In fact these beliefs are so much
anchored in our common academic psychs that wrong models
get Nobel Prize and lead to market crashes.

Remark The latter award, is sometimes abusively called
the “Nobel Prize in Economics”, the same way the Fields
Medal is sometimes called the “Nobel Prize in Mathematics”.
The Nobel Prize in Economics does not, in fact, exit. The
same way Alfred Nobel left Mathematics out of his will,
he also left Economics out of his will. This latter fact is
less known as the wording of the Economics Prize is much
closer to the wording of the other Nobel Prizes. The exact
wording of the Economics Prize is the “Nobel Memorial
Prize in Economic Sciences” which was awarded for the
BSM in 1973. The Prize was in fact launched by the Sveriges
Riksbank (Swedens Central Bank) in memory of Alfred
Nobel.

In fact the embarrassment of the repeated market crashes has
led the highest Quantitative Finance expertsE] to call for a
modelling revolution [15] in the shape and form of an agent-
based intelligent system point of view.

5see: Black-Scholes model and Long-Term Capital Management history.
16Jean-Philippe Bouchaud was awarded the very prestigious “Quant of
the Year” award the year this paper was written.



Remark Note that Quantitative Finance is often criticized as
being more a social science because many[’| of its theories
are wrong. This peculiarity is not exclusive to Quantitative
Finance. Indeed, other STEM fields share some of this
embarrassing fact. For example in Physics questions around
the gravitational force are still outstanding and Newton
theory only works within the confine of our planet and not
beyond. In biology the individual centered view of evolution,
though would explain a great deal of our surrounding was
ultimately gently put aside when the gene centered view of
evolution appeared. These two theories were at inception the
highest ever recorded academic impact of their respective
field and they were ultimately “incompletﬂ’.

In any case how is this relevant to the mentioned strategy
of information processing? The current modelling approach
in Quantitative Finance is the lazy, though convenient, top-
down approach and the one we are suggesting is the more
challenging bottom-up approach. Indeed the current mod-
elling format takes as view that financial underliers follow
a random walk like process and that the latter converges to-
wards the wiener process. Formally in the top-down approach
we assume that in the “limits” a change to some price process
S; to follow a log-normal diffusion process. Recall that the
log-normal assumption arises from the wiener process itself
resulting in the assumption of the random walk:

Definition (Wiener Process): W, has four main properties:
Wy =0 as. Vt >0, W4, — W;, are independent of W
where s < t, Wiy — Wy ~ N(0,u) and W; is continuous
in t.

Definition (Random Walk to Wiener Process): Let
£1,&s, ... beii.d. random variables with mean 0 and variance

1. For each n, we define W, (t) = \/> Z &, where
l<k< ’nt

€ [0, 1]. By the central limit theorem (and more rlgorously
Donsker theorem) lim,,_,o, W,,(¢t) — W,,(s) ~ N(0,t — s).

However this top-down approach with the assumption of the
increment being iid to make analysis more convenient as
opposed to more exact has been criticized both in the low
frequency domain [90] as well as in the higher frequency
domain (see analysis associate to Figure [T) so much so that
overlay. models [40] have been incorporated to the BS
model to account for the mis-pricing induced by the log-
normal assumptionf’}

Remark Note that the random walk assumption is still use-
ful if one takes the risk neutral approach, more specifically
in the pricing branch of Quantitative Finance. However, this
latter theory, in practice, often works as an approximation
which is often combined with a fat “sales” fees which is

17T am being a little politically correct here as I would rather replace
“many” by “all”.

181 have too much respect for these two contributions to really replace
the term “incomplete” with “wrong”.

19¢.¢. Dupire’s local volatility model [30], [31].

20This is the whole rational behind the implied volatility surface.

really there as sometimes an exorbitant add-on model which
makes you wonder about the risk neutral approach.

These later models where in turn challenged with the arrival
of Big Data which exposed new limitations [88] of these
overlay models but these latter models where in turn also
shown to be incomplete when the question of liquidity came
into play [85]. You may take two approaches in analyzing
the consistent failure of these models:

« ecither you accept that all these models are incomplete
because the core assumptions which we use to derive
them, are too far from reality and therefore waiting
for the next crash to improve with yet another overlay
model and this is an unacceptable approach,

« or you could chose to simply assume that this is the
natural course of the scientific method and building a
science on precarious grounds is an acceptable alterna-
tive because we cannot do anything better yet.

The repetitive market crashes and the subsequent punitive
sanctions taken by the regulators and their subsequent in-
structions to work with new models that directly contradict
these root mathematical assumption suggests that the
timing is now right to take a step back and reexamine the
bottom-up approach for more consistency in the future.

Remark An interesting analogy can be made with respect
to how the gene centered view of evolution (as opposed to
the individual centered view of evolution) completely re-
shuffled our understanding of natural selection and gave the
opportunity to explain altruism better. By analogy, we are
trying to communicate the idea that the change of prospective
from the market centered view (Top-Down) of the financial
systems is the wrong way to understand the fluctuation of
the market and that the strategy centered view (Bottom-Up)
of the financial system provides an opportunity to explain
the fluctuations of the market more effectively.

However, this bottom up approach at the intelligent agent
level presents a great deal of challenges. The first one to take
into account is to recall that small simple increments are the
basis of any viable complex biological system. For instance
what created the complexity of the eye in evolution was a
slow process which went from the simple photoreceptor to
the folded area (cavity) and ﬁnall a complex eye.

2) Adversary Model as a Key for Enhancement: 1t is
worthy to note that the creation of the eye was for survival
purposes and that it was developed in both predators and prey
as the interaction between them favored the enhancement on
the complexity of the eye. The key word here to note in
the scientific process is the one of interaction. This critical
element of the scientific process was perhaps best exposed by
Conway who also took this approach of simple rules leading
to complex systems in his Game of Life research [39], [20].

2IThe regulators have recently advised the banks that their model should
take into account the procyclicality of the markets [105], directly contra-
dicting the mathematical assumption around the returns being iid.

22We took a bit of jump here as there are many more steps including the
evolution of the cornea.



DeepMind’s AlphaGo was produced with a similar idea of
Adversary Model recently. A question naturally arises here.
How can we apply this methodology to Quantitative Finance
and more specifically market microstructure? What would
be a simple mathematical structure (in the form of a DNA)
that would both allow simple recognizable strategies to arise
from a random swarm of strategies with the environmental
pressure being the profit that they make and how can these
mathematical structures, through interaction with competing
strategies create fluctuations in the market as well as create
a pressure for these strategies to adapt and improve their
models? How can we make sure we do not incorporate the
idea of foresight in our design? Can we make a parallel
with other known biological systems such as ecosystems?
These tasks are perhaps overly ambitious but can we come
up with models and ideas that would inspire research in a
new direction? These questions will fall under the Financial
Mathematics & Machine Learning opposition part of the
document. We however propose to study the apposition case
through examples as well.

3) Stability of the Market and Multi-Target Tracking:
The electronic trading market is increasingly regarded as the
source of the next big market crash [86]. More specifically
the fact that this type of trading is characterized by inter-
acting algorithms, these potential crashes could come very
quickly and the fact that we have not a single, even archaic,
bottom-up model is frightening. It becomes of central impor-
tance to be able to decipher market movement as a result of
these interacting algorithms. However the specifications of
these algorithms are always hidden for proprietary reasons
which makes the task of the regulators seemingly impossible.
However, we can legitimately ask oneself this question. Can
we come up with a solution to this regulatory quagmire?
More specifically the construction of scenario based particle
filter may offer us a hope in at least laying down the
foundations of finding a new potential path towards handling
these problems. What are these first steps towards finding a
solution?

D. Agenda

We have divided this paper in 3 Sections. More specifically
in Section [l we express Agent-Based Intelligent Systems in
Neural Network format expressing the incentive of going
from Shallow to Deep Learning. This will then help us, in
Section [[TI} to study Ecosystems of strategies using tools in
Evolutionary Dynamics. Finally in Section |IV| we study the
Stability of Financial Systems using Multi-Target Tracking.

II. AGENT-BASED INTELLIGENT SYSTEM, FROM
SHALLOW TO DEEP LEARNING

Following Bouchauﬂ’ s call for a revolutionary change
in economics [15], taking a bottom-up approach via Agent-
Based Models, instead of the traditional top-down approach
as best symbolized (the Brownian Motion assumption in
Financial Mathematics). This section will expose an example

23Quant of the year 2017.

in which the traditional Financial Mathematics approach
can be revolutionized by tools from Machine Learning and
therefore provide an argument opposing these two fields
rather than apposing them. This Section will be organized
in several Sections. First we make the parallel with the
scientific method used in Conway’s Game of Life [39], [20]
in Section We will then delve into some formalization
of Electronic Trading in Section In Section we go
through a very brief literature review of Neural Networks
in order to introduce the rational of certain types of ar-
chitecture and their learning potential. In Section [[I-D]| we
will introduce the core DNA for our financial strategies and
expose how this structure can model many of the well known
financial strategies. Finally in Section [[I-G| in the context of
Electronic Trading, we will then reflect on the relationship
between architecture and meaning in order to explain the
incentive for Deep Learning (DL). We use in that occasion
the same methods used in adversarial algorithms in order to
expose how Deep Learning can naturally result from simpler
strategies in Shallow Learning.

A. The Financial Game of Life

In Sections and of this paper we will take a
methodological approach similar to the Game of Life, a well
known 4 rules cellular automaton published by Conway [39]
in the mid 70’ In this section we inspire ourselves of

a) Death “by loneliness”

oo

d) No change “otherwise”

b) Death “by overpopulation”

c) Reproduction

Fig. 2: Conway’s Game of Life rules illustrated
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Fig. 3: Snapshots of a simulation of Conway’s Game of Life

Conway’s scientific method but use it instead to the world of
High Frequency Trading (HFT) while adjusting some of the
idiosyncratic parts of the exercise. As a reminder, Conway’s

24Figure [2| provides the rules of the Automaton and Figure [3| represents
3 snapshot of one random simulation.



Game of Life assumes that complexity in an ecosyste
arises from simple rules. To illustrate this Simplicity-to-
Complexity path, in the Game of Life, the four simple rules
of Figure [2| can lead to many different families of complex
automatons. As a reminder, starting with random seeds and
after few iterations, the simulation leads to stable, oscillating
and moving forms. For stable form the concept of finan-
cial stability may be raised through a similar methodology.
For oscillating forms [/} intuitively the reader may guess that
the concept of financial cycles or HF oscillations (Figure [1)
may be induced through a similar methodology. Finally the
moving form may have different sizes and speed The
parallel to the world of quantitative financial strategies would
be the following. First interacting agents lead to market price
fluctuations. More specifically their interaction determines
the stability or instability of the marke@ Second, the market
will not necessarily follow the rules of a zero-sum gam
with, however random seeds. Third agents (e.g. strategies)
will follow a simple rule for their births and deaths.

B. Electronic Trading

1) Description: Traditional order book consists of a list
of orders that a trading venue such as an exchanges uses
to record the market participants’ interests in a particular
financial product. Typically a rule based algorithm records
these interests taking into account, the price & the volume
proposed (on either side of the Bid-Ask) as well as the time
in which that interest was recorded (in situations in which
interest at the same price is recorded by few different market
participants, a referee decides which would win the trade:
usually FIFO).

volume
a, w.+bg+bs+b,=b,

b, /’ e

best m best m(1 +0.01%)3 price
bid ask

Fig. 4: Order-book visual representation

25We take this opportunity to mention here that in this paper Ecosystem
and Market are interchangeable since the former is taken to an intuitive
image of the latter.

26For example the “Block”, the “Beehive”, the “Loaf”, the “Boat”.

2TFor example the “Blinker (2 period iteration)”, the “Toad” (2 period
iteration), the “Beacon” (2 period iteration), the “Pulsar” (3 period iteration),
the “Pentadecathlon” (15 period iteration).

Zfor example the “Glider” and the “Lightweight spaceship” (LWSS)

29This latter family is arguably conceptually not really providing a useful
comparison to our problem.

30Depending on what the market is made of in terms of the strategies
involved as well as the evolving order-book.

31Meaning that its evolution is determined by its initial state, requiring
no further input.

2) Variable Definition:

Definition (Order-Book): In terms of naming early these
different points of the order book we would label by a! and
bt the best ask & bid total volumes at time ¢. By extension
at, bt with i € {1,2,3,4} would correspond to total volume
at the relevant depths’ of the order book with the special case
where ¢ = 4 which then would represents the total volume at
the 4th depth level in addition to all the other market depths
superior in price (in the case of the Asked price and vice
versa for the bid price). We will call m; the mid price of the
best bid/ask at time ¢. The prices at the different levels, [ of
the order book will be arbitrarily chosen to be 1bp apart
as shown by Equation (I)). Figure [] represents our version
of the order book.

pi =1+ (=1 X Lgye + 1 % Ljeqr) x 0.001%]" (1)

Definition (Leading Indicators): We will label by {y;}7~
the price process of interest, ¢ € [0,n] its discretized 500ms
snapshots with ¢ = 0 being the most recent snapshot and
1 = n its most distant snapshot. Moreover we will assume
here that 500ms is enough time for the trading system
to take the data, reformat it, analyze it as well allow the
relevant strategy to take actionﬁ Similarly we will define
{j1,7j2,...7jp}}_; 1 the relevant, p leading indicators to
the price dynamic of interest.

Remark We will assume that the Leading Indicators for
the price process can only be taken from the order book
which is a reasonable assumption in the higher frequencies.
Some usually accepted leading indicator are the price of
the underlier itself and the accumulated volume at different
market depth of the order books (4 on the bid side and 4 on
the ask side for a total of 9 leading indicators with the price
process: see Figure [4] for visual representation).

C. Neural Net Architecture & Learning Potential

In the spirit of explaining the complex through simple
logical incremental steps, this particular subsection is ded-
icated to how increasing simple Artificial Neural Network
(ANN) architecture into more complex ones by adding
hidden layer can lead to complex learning potential like it
can be done with Deep Learning. More specifically, taking
this approach can allow us to slowly move towards Deep
Learning potential and allow us to unweaveFE] the black box
associated to the latter perplexing concept. With this in mind,
two well known, but important milestones in Machine Learn-
ing are worth reminding of. Especially for the beginners,
these two milestones can shed light on why the core building
blocks of our HFTE model is a certain way and also prepare
intuitively the reader for sections and[[I-G| First, Warren
McCulloch and Walter Pitts [110] introduced their threshold

32bps stands for Basis Points or in terms of Percentage 0.01%.

33Last assumption we will make is that no slippage or other man made
errors can bias our results.

34“Deep Learning” is arguably just a fancy word for a Perceptron with
many hidden layers.

35Note that the unweaving analysis goes forward instead of backward.



logic model in 1943 which is agreed to have guided the
research in network architecture as it relates to artificial
intelligence for more or less a decade. Second, Rosenblatt
[115], formally introduced the perceptron concept in 1962
though some early stage work had started in the 1950s. The
idea of the perceptron was one in which the inputs z; and
x9 as depicted from Figure |5| could act as separator and
therefore a direct equivalence could be made to the Multi-
Linear Regression (MLR) which we will elaborate more
in details is Section [IZE.2} One observed limitation of the
perceptron as described by Rosenblatt, in 1969, was that a
simple yet critical well known functions such as the XOR
function could not be modeled [98]. This resulted in a loss
of interest in the field until it was shown that a Feedforward
Artificial Neural Network (ANN) with two or more layers
could in fact model these functions (see Figure [6] for the
illustration). Added, to this we have the well known over-
fitting [128] problems when it comes to supervised learning
which, to some extend would like to simply keep adding
hidden layers when the learning potential has been absorbed.
This problem of learning potential to over-fitting has been
there since inception though regular progress is being made
in that domain without real breakthroug

Network Structure for LR LR function representation
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Fig. 5: Neural Network Modelling a Linear Regression

Network Structure for XOR XOR function representation
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Fig. 6: ANN with 1 Hidden Layer & the XOR Function

36the exact research was one in which the methodology acted as a 1,0
through a logistic activation function f(x) = H% as opposed to a linear
one. However that small distinction is not significant enough in the context
to delve too much into it but deserved a clarification in the footnotes.

3TWe refer here the reader to area of ML known as Regularization.

D. Intelligent Agents & Financial Strategies

In this subsection we will use some of the material
presented in the High Frequency Trading Ecosystem (HFTE)
[86] recently introduced, we will therefore summarize the
main points of the referred paper for that occasion.

E. The High Frequency Financial Funnel

The pillars associated to the construction of the HFTE
model has in its inspirational roots the idea that strategies
in the market interact and it is their interaction that creates
the fluctuations in the prices like it would be the case for
cellular automatons [39]. It also assumes that strategies can
invade others and therefore the study of the financial market
partially comes to studying a stochastic n-species predator
prey model. Another pillar is that the construction of each
of these strategies must have the same DNAPY} the financial
funnel (Figure [7). Finally the financial funnel can model
many of the classic financial strategies. For example it can
model Trend Following (TF) strategies, Moving Average
Convergence Divergence (MACD), Multi-Linear Regression
(MLR) or XOR like strategies like it can be seen by figures
[8l°] [10] and [T3] respectively.

These few historical rationals>)| are the main drivers which
have led us to propose the Funnel, introduced by Martin
Nowak [104], as the simplest possible network to model
(therefore which minimizes over-fitting) the key functions
for our application. The area of evolutionary graph theory is
quite rich. Many graphs provide interesting properties.

Definition (High Frequency Financial Funnel): We can
formalize the learning process from all of our strategies
using the HFFF of Figure [/| by providing a set H, as
described by Equation @) of weights corresponding to all
the possible weights of this particular figure.

i i
Yje[1,9]Ws j Yjel1,9]Ws, 5>

1 . 1
H 4 Uje[1,9]7ie[1,3]w§7i,j Uj5[179]715[173]w37i,j’ (2)
2 2
Yje[1,3]Ws ; Yjel1,3]Ws 5>
o o
Ws,je[1,9] W jel1,9]

with w’, w" and w®, respectively the weights associated to
the input, hidden and output layers. More formally let the
High Frequency Financial Funnel (HFFF) [86] to be a NN
of 9 inputs, 3 hidden layers and 1 output layer. Each node
connects to the next layer and to itself. Each connection to
itself will be label by wg and the others by w;. We will admit
that ws ~ U[—1,1] and that w, ~ U[0, 1] and therefore the
results from Equation (3)).

Wy ~ u[_lw:§; 1] (3)

Remark Note that in the context of this paper we have
chosen to work with Martin Nowak’s [104] funnel, which
modification is described in Figure [/} This NN structure
offers the advantage of linking some interesting bridges

38alternatively called HFFF or Neural Network.
3we will discuss more in details the Bias-Variance Dilemma in Section

lEs)
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Fig. 7: The High Frequency Financial Funnel (HFFF)

between the worlds of information theory, evolutionary dy-
namics and biology. Indeed in information theory it also
resembles the classic structure of a Neural Network and can
therefore easily accommodate the mapping of classic and less
classic financial strategies. In evolutionary dynamics, Moran
likes Processes can easily be formalized through similar
means. In biology the network structure is a potent amplifier
of selection [104].

Note also that the HFFF from Figure [7] can easily be trained
using a classic error back propagation algorithm like the one
described in algorithm (T)f*)

1) The EWMA NN: When we first started our research
we called this subsection the Trend Following HFFF but
through the simulation exercises and with increased research
experience we decided to rename this subsection EWMA
NN. However, in many of our simulation when we refer to
the TF strategies we really mean EWMA family. We will
explain this rational next. A very common trading strategy
is the trend following (TF). The idea of the TF is that if the
price has been going a certain way (e.g. up or down) in the
recent past, then it is more likely to follow the same trend
in the immediate future.

Definition (Trend Following): The mathematical formula-
tion of a TF can be diverse but in the context of this paper
we will be using an exponentially weighted moving average
(EWMA) formally described by Equation ().

Ci't = (1 — )\)Z't + )\ii'tfl, A\ E [0, ].:| (4)

Remark In this equation A represents the smoothness pa-
rameter with A\ € [0,1]. The lower the A, the more the
next move will be conditional to the immediately adjacent
previous move. Conversely, the higher the A, the more the
future move will be function to the long term trend. The
idea being that through a simple filtering process, the noise
is extracted from the signal which then return a clean time

4Owhere the activation function would be linear so as to make sure the
MLR strategy can be exactly replicated.

Algorithm 1: Backpropagation

Input: NN H with unoptimized weights
Output: NN # with optimized weights

1 for d in data do

2

3 Forwards Pass:

4 Starting from the input layer, do a forward pass
trough the network, computing the activities of the
neurons at each layer.

5

6 Backwards Pass

7 Compute the derivatives of the error function with
respect to the output layer activities for layer in
layers do

8 Compute the derivatives of the error function

with respect to the inputs of the upper layer
neurons Compute the derivatives of the error
function with respect to the weights between
the outer layer and the layer below Compute
the derivatives of the error function with
respect to the activities of the layer below

9 end

10 Updates the weights.
11 end

series Z; traders like to seldom use directly or sometimes
by using it with couple of other similar equations with a
different A and therefore defining a signal as a difference of
these various filtered time series.

Proposition The HFFF can model trend following strategies.

55 = 0 Vjen gy ; =0,
Ujels.01Ws,; = 0 Yjefo W, = 0 jelrapiefn3)Ws i = 0:
Ujel1,4],ie[1,3] Wy 5. Uje[6,9],i€[1,3]wg.,li,j = 0,
U je[6,9],ie[1,3]Ws i j» w§‘73 =0, w?@ =0 and wf’3 =0. =
The proof is visually illustrated by Figure [§] (the weight
equal to 0 have not been representeﬂ. We will address
the problem of rigorously formalizing mathematically what
constitutes a trend following in a subsequent paper. However
for now, in order to keep things intuitive, we will consider
a trend following strategy to have a NN DNA which would
look like the one from Figure[§] One of the current hurdles in
our research is our classification issue and the MACD strat-
egy is a good example as to why. Indeed the MACD strategy
which is technically associated to the EWMA family has an
economical meaning which can potentially be classified as
an economically antithetic strategy of TF which are in the
same EWMA family. This may be important for practitioners
as the MACD(12,26) has for instance gained a great deal of
momentum for algo traders as it can be seen on the various
search results on youtube or on practitioners websites such
as “investopedia”.

Proof: Simply set U je[1 4]

4INote that there is different ways to achieve the same numerical results
though with a different NN architecture.
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Fig. 8: The EWMA Strategy in HFFF format

Proposition The HFFF can model the MACD(12,26) strat-
egy.

Proof: The Moving Average Convergence/Divergence
(MACD) was designed to reveal changes in the direction and
duration of a trend. It essentially models difference between a
“fast” (S’tN 7Y EMA and another “slower” (StN #). For instance
the popular MACD(12,26), M'*?® is given by:

M =g gl (5)

s7 = {Sl’t - (®)
a-Si+(l—a)- S q,t>1

a = 2/(Ng+1) )

No = {Ny N} ={12,26} ()

Figure [ represents a generic MACD. If one is looking
specifically for a MACD(12,26), then the weights of the
hidden layers must be such that a;o = 2/13 and agg = 2/27
and the ones of the output layers must be a simple subtraction
to abide by the above definition. [ ]

2) Multi Linear Regression NN: The Multi Linear Regres-
sion (MLR) is another well known simple strategy traders
have been using in the industry.

Definition (Multi Linear Regression): Given a data set
{yi, ©i—11,- .., Ti—1,0}0, where n is the sample size, and
y; then our MLR is formalized by the Equation (9).

Yyi = Pixi_i1+ -+ Boxiie + & )
= x  B+e,i=1,...,n

where T' denotes the transpose, so that x ;3 is the inner
product between vectors x; and 3. The best unbiased esti-
mator of 3 is given by § = (xTx) 'xTy and sometimes
also referred to B9L5.

Proposition The HFFF can model multi linear regression
like strategies.

Fig. 9: MACD (difference of EWMAs) in HFFF format
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1 _ X2 . — —
Uje[ﬁ’g]’wg,j = O, Uje[ﬁyg]wsd = O, ’LU§71 = 0, ’LU§)3 = O,
wf,l =0, wfjg = 0. |

)
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Fig. 10: MLR strategy in HFFF format

Remark Do the activation functions matter when it comes
to modelling MLR strategies? The answer to this question
is obviously yes. The MLR is by definition a linear strategy
and not a sigmoid strategy, otherwise it would be called a
MSR. We will make 4 additional remarks. First, an MLR
can be illustrated by Figure [I0] (the weights equal to 0
have not been represented). Second, as we have explained
before, different NN architecture may lead more or less to
the same strategy. Figure [IT] is another example of a MLR.
Third we will address the problem of rigorously formalizing
mathematically what constitutes a MLR in the context of
the HFFF in a subsequent paper. However for now, in order



to keep things intuitive, we will consider a trend following
strategy to have a NN architecture which would look like the
one from Figure [T0] Finally, logistic or weighted MLR can
be modeled through the same HFFF of Figure [I0] by simply
changing respectively the activation function (from linear to
logistic) and the weights.

2 1 0 1 2

Fig. 11: Another MLR strategy in HFFF format

3) Regularized NN & Lasso Regression: The bias-
variance dilemma (BVD) is a technical term representing
the optimization by constraints problem which aims at si-
multaneously minimizing the error from erroneous assump-
tions (bias) in our learning algorithm or commonly called
“under-fitting” and the error from the out of sample analysis
(variance) or commonly called “over-fitting”. One of the
properties of DL is its dual ability to learn the most com-
plicated functions but also makes it prone for over-fitting. It
is therefore recommended that one applies conscious efforts
in studying carefully the associated benefits to complexity
ratio in the context of the BVD. Regularization is usually
the term employed for the methodology that aims at finding
the optimal model according to the BVD. The mathematical
formalization suggests that we calibrate a function f which
takes as input a potential infinite number of explanatory
variable x1,xs,...x, S0 as to minimize the distance to a
target y under some cost measure V' subject to a penalization,
or regularization ternﬁ R(f). Equation (I0) refers to this
generic Regularization.

n
min 3 V(f(zi), 3:) + AR(f) (10)
i=1
Within the family of Regularized methodologies the Lassﬂ
methodology is the most common one and usually associated
with the MLR we have seen in the previous paragraph . They
have been gaining momentum in the past few years as they

“2or regularizer

43Short for Least Absolute Shrinkage and Selection Operator.

represent the simplest ML technique which has the reputation
to work in systematic trading provided the strategy and the
input variables are sound.

Definition (Lasso Regression): Given a data set
{yi, i1, .., Ti—1,0}0, where n is the sample size, and
y; then our Lasso Regression is formalized by Equation

(T1).

Y

subject to 23:1 |5;| <t where ¢ is an input parameter that
determines the amount of regularisation desired.

Yi Bixi—1q + -+ Boxi—1,0 + €.

Proposition The HFFF can model Lasso regression like
strategies.

Proof: Simply set wfg,Q = (, make sure the regularizar-
ion is done exclusively on one of the remaining hidden layer
and finally make sure the remaining hidden layer calibrates
its weight the same way at the 3. Figure [12] gives an
illustration.

2 1 0 1 2

Fig. 12: Lasso regression strategy in HFFF format

Remark Figure [I2] and Figure [T4] look actually the same
but the weights and activation functions are actually very
different.

F. XOR Architecture

We recall here the truth table associated by the XOR
function in table [l Let’s look at the following known HF
rational, which will hopefully shed light on the reason why
we are discussing the XOR function.

Definition (Open Interest): If we define the Open Interest
(OI) as being the total volume left on the order book then
it is known that when the price and the OI are rising then
the market is bullish, when the Price is rising but the Open
Interest is Falling then the market is bearish, when the Price
is falling but the Open Interest is rising then the market is
bearish, and finally when the Price is falling and the Open



’ I ‘ I ‘ O ‘ Price (/1) | Open Interest (I3) | Signal (O) ‘

1 1 0 Rising Rising Buy
1 0 1 Rising Falling Sell
1 1 Falling Rising Sell
0 0 Falling Falling Buy

TABLE I: Relationship Between Open Interest, Price & XOR

Interest is falling then the market is bullish. These 4 market
situations can be summarized by table [I}

Proposition The HFFF can model XOR like strategies.

Proof: Simply set U je[1 qjws ; = % uj€[1’4]u;}’j =0,

(2 _— X2 — — —
U{Le[&g]’wg,jh— 0, uje[&g]ws)j = 0, Wz = 0, Wg 3 = 0,
wygy =0, wyg=0. [

Remark We will make the following 2 observations. First
the preceding proof is visually illustrated by Figure [T3] (the
weights equal to O have not been represented). Second The
XOR HFFF can be designed in various ways. We will address
the problem of rigorously formalizing mathematically what
constitutes an XOR in a subsequent paper. However for now,
in order to keep things intuitive, we will consider an XOR
strategy to have a NN architecture which would look like
the one from Figure [13] Figure [T4] represents an equivalent
alternative example of an XOR strategy.

Fig. 13: XOR strategy in HFFF format

G. Network HFFF & Deep Learning Thoughts

Deep learning has been gaining a great deal of momentum,
as a subbranch of Machine Learning for very good reasons.
For instance Deep-Mind was created in 2011 and subse-
quently bought by Google in 2014 for 400M [18]. It was
made famous for building an Al algorithm, AlphaGo, which
outperformed the best Go master in the world. Though, an
event in which a Machine Learning algorithm would beat

"""""" 4 L3 2 1 0 1 2 3

Fig. 14: Another XOR strategy in HFFF format

a master was not an original featur the complexity of
the game and the number of possible moves made the Deep-
Mind director speculate that the algorithm worked intuitively
rather than using a pure logic based approach like it was done
with chess and Deep Blue. This extraordinary feature was
achieved through an initial deep neural network architecture
in which an initial data is used for training purposed and
the algorithm, once the data exhausted, would play older
version of itself and gets incrementally better this way. The
ultimate goal behind this self learning A.l. is to create
a general purpose Algorithm. The scientific methodology
behind the construction of the game of GO is one we wish
to apply to our HFFFs and create a dynamical ecosystem.
For instance increasingly advanced strategies compete with
each other and we eventually get an interesting portfolio of
strategies as well as their co-evolution. However, the HFFF
itself potentially suffers from similar kind of limitations
that prevented the XOR function to be learnt without 1
hidden layer (see Figure [6] and [5] as well as paragraph
[O). A legitimate question can be asked on whether a single
hidden layer is enough. The answer to this question is in
fact negative as Convolutional Neural Network (CNN) have
shown more potential extracting trading signal compared to
shallow learning [133]} Some other studies reveal universal
features of price formation [127] but lack a study on simpler
benchmarks. For instance in [127] a logistic regression is
used for a benchmark. It would have been interesting to
see some more complex benchmark@ We have arbitrarily
taken as hypothesis the HFFF to be good enough to model
few critical strategies in the domain of QF and above all
proceeding this way is important in unweaving the black

“The computer “Deep Blue” beat Kasparov in May 1997 [4].

4T am however personally skeptical on the results of these published
studies but I do accept the potential of CNN in trading.

4bstarting with a shallow NN and increasing in complexity in order to
understand whether the universal features learnt are because the NN is deep
or is it because it has a hidden layer.



box associated DL. With this in mind it is interesting to
notice that the TF strategy has been designed to dominate
a random swarm of strategies. In turn the MLR strategy
has been designed to dominate the TF with the key point
being that the MLR strategy capitalizes on areas of the
orderbook the TF strategy does not have the DNA for
(to perceive information of the OI). Similarly the XOR
strategy seem to dominate the MLR by splitting the OI
surface in additional zones that the MLR cannot understand
(lacking the necessary hidden layer). Figure illustrates
these observations. In some way you could extrapolate this

®-0—-0-0—-0—0

Fig. 15: Illustration for intuitive strategy invasion

“invasion” to “increased network complexity” tendencies to
a system that could potentially converge towards a deep
learning infrastructures. It is however true that the likelihood
of overfitting increases as one adds hidden layers but we have
also seen with Shallow Learning that adding hidden layers
can also allow us to do regularization which removes the last
hurdle argument against DL.

III. EVOLUTIONARY DYNAMICS & STRATEGY
ECOSYSTEM

In the context of the bottom-up approach for algorithmic
trading in which we discussed the strategy DNA in Section
we here formalize the interaction rules at the ecosystem
level. More specifically, we go from the premise that a good
theory can be simulated but that a simulation can also help
bring intuition on what the theory might be, and these two
research tools can go back and forth until the theory is
ironed out [135]. More specifically we have organized this
Section the latter way, assuming that our strategies follow
the HFFF model described by Figure [/] We first let the
random states of the latter HFFF strategies interact through
the primitive strategies swarm via the market order-book. We
show, in Section that although not necessarily optimal,
the simulation provides however, a great deal of intuition that
help us come up with a more polished theory in Section [III-
with the concept of Path of Interactiof"} In doing so we
will first do a very brief review of relevant inference and
dynamical models in Section Game Theory in Section
ITI-B| and Theoretical Biology in Section

A. Review of Markov Chain Monte Carlo Models

In this section we go over a brief overview of classic
Inference and Dynamical models focusing on Markov Chain
Monte Carlo (MCMC). MCMC algorithms [96] sample from
a probability distribution based on a Markov chain that has
a desired equilibrium distribution, the quality of the sample
improving at each additional iteration.

“TDefined formally later in this Section

1) Metropolis-Hastings Algorithm: The Metropolis-
Hastings algorithm is a MCMC method that aims at
obtaining a sequence of random samples from a probability
distribution for which direct sampling is difficult [97]
because of high dimensions. We will see in the next few
algorithm examples that the methodology is now classified
as useful for low dimensional problems. At each iteration
24, the proposal next point z’ is sampled through a proposed
distribution g(z'|z;). We then calculate:

P(z')

o witha; = 5 = is the the probability ratio between the
proposed sampfe and the previous sample,
9(@lz) " the ratio of the proposal density in

o and ag =
both directigén
and set a = max(ajaz,1), we then accept x4 = 2’ if
r ~ U[0,1] = a which essentially means that if a = 1,
accept is always true otherwise you accept with a probability
ajas. The algorithm works best if the proposal distribution
is similar to the real distribution. Note that the seed is slowly
forgotten as the number of iterations increases.

2) Hamiltonian Monte Carlo: Hamiltonian Monte Carlo
[29], sometimes also referred tﬂ as hybrid Monte Carlo
is an MCMC method for obtaining a sequence of random
samples from a probability distribution for which direct
sampling is difficult. It serves to address the limitations
of the Metropolis-Hastings algorithm by adding few more
parameters that aim is to reduce the correlation between
successive samples using a Hamiltonian evolution process
and also by targeting states with a higher acceptance rate.

3) Gibbs Sampling: Perhaps one of the simplest MCMC
algorithms, the Gibbs Sampling (GS), in pseudo-code in
algorithm [2] It was first introduced in Geman & Geman
[42] in the context of an application to image processing.
Later it was discussed in the context of missing data
problems [132]. The benefice of the Gibbs algorithm for
Bayesian analysis was demonstrated in Tanner and Wong
[132]. To define the Gibbs sampling algorithm, let the set
of full conditional distributions be: (1|2, ..., ,),
ey 7T(’(,bd|’l,b1,’¢2,...,¢d,17’l/1d+1,...7’¢1p), ey
w(Yp|th1,...,¢p_1). One cycle of the GS, described
in algorithm 2| is completed by sampling {v;},_, from
the mentioned distributions, in sequence and refreshing the
conditioning variables. When d is set to 2 we obtain the two
block Gibbs sampler described by Tanner & Wong [132]. If
we take general conditions, the chain generated by the GS
converges to the target density as the number of iterations
goes towards infinity. The main drawback with this method
however is its relative computational heavy aspect because
of the burn-in period.

4) Ordered Over-relaxation: Over-relaxation is usually a
term associated with a Gibbs Sampler but in the context
of this subsection we discuss Ordered Over-relaxation. The
methodology aims at addressing the slowness associated in
performing a random walk with inappropriately selected step
sizes. The latter problem was addressed by incorporating a

48equal to 1 is the proposal density is symmetric
“though more in the past.



Algorithm 2: Gibbs Sampling
Input: Specify an initial value

b0 = (30,
Output: {3V @) .. D}
1
2 Sample:
sfor j=1,2,...,M do

4 Generate ¢§j+1) from 7 (1/)1|¢éj), éj), ce, Z(,j))
5 Generate ’l/)éj ™ from
™ (¢2|¢§J+1)7 :(3]))' a'(pl(??))
6 | :
7 Generate w((i”l) from
7T(¢d|¢1a 111’27 <o 7¢d717¢d+13 ceey ¢p)
s |
9 Generate w;jﬂ) from 7 (1/:p|1/;§j+1), . 71111(7]3'11))
10
11 | Return the values: {2 .. ()}
12 end

momentum parameter which consist of sampling n random
variables (20 is considered a good [82] number for n), sorting
them from biggest to smallest, looking where x; ranks, say
at p’s position, amongst the n variables and the picking
n — p for the subsequent sample z, ;. This form of optimal
“momentum” parameter design is a central pillar of research
in MCMC [100].

5) Slice Sampling: Slice sampling is one of the remark-
ably simple methodologies [100] of MCMC which can be
considered as a mix of Gibbs sampling, Metropolis-Hastings
and rejection sampling methods. It assumes that the target
density P*(z) can be evaluated at any point = but is more
robust compared to the Metropolis-Hastings especially when
if comes to step size. Like rejection sampling it draws
samples from the volume under the curve. The idea of the
algorithm is that it switches vertical and horizontal uniform
sampling by starting horizontally, then vertically performing
“slices” based on the current vertical position. MacKay made
good contributions in its visual [82] representation.

6) Multiple-try Metropolis: One way to address the curse
of dimensionality is the Multiple-try Metropolis which can
be though of as a enhancement of the Metropolis-Hastings
algorithm. The former allows multiple trials at each point
instead of one by the latter. By increasing both the step size
and the acceptance rate, the algorithm helps the convergence
rate of the sampling trajectory [79]. The curse of dimension-
ality is another central area of research for MCMCs [100].

7) Reversible-Jump: Another variant of the Metropolis-
Hastings, and perhaps most promising methodology when
it comes to our application is the Reversible-jump MCMC
(RI-MCMC) developed by Green [48]. One key factor or
RJ-MCMC is that it is designed to address changes of
dimensionality issues. We face a dual type issues around

change of dimensionality. The first being the frequency
of each strategy in an ecosystem and the second element
being the HFFF which branching structure and size
changes as a function of the strategyF_Ul More formally.
Let us define n,, € N,, = {1,2,...,I}, as our model
indicator and M Uflmledm the parameter space
whose number of dimensions d,, is function of model
N, (with our model indicators not needing to be finite).
The stationary distribution is the joint posterior distribution
of (M, N,,) that takes the values (m,n,,). The proposal
m' can be constructed with a mapping g1 of m and
u, where v is drawn from a random component U with
density ¢ on R%m='. The move to state (m’,n’,)) can
thus be formulated as (m’,n!)) (g1mms (M, u),n! ).
Function g (m,u) (m/,u’), with
(m/,u") (g1mme (M, ), g2mmy (m,w)) must be one
to one and differentiable, and have a non-zero support:
supp(gmm/) # @, in order to enforce the existence of
the inverse function gr_nin, = gm'm, that is differentiable.
Consequently (m,u) and (m’,u’) must have the same
dimension, which is enforced if the dimension criterion
dm + dmpmy dpy + dpym is verified (dy., is the
dimension of w). This criterion is commonly referred to
as dimension matching. Note that if R%» < R%w then
the dimensional matching condition can be reduced
to dm + A Ay, with (m,u) Gmrm (M).
The acceptance probability is given by a(m,m’)
Pont Pyt frpr (M) 99mm/(m’U)) >,

) ‘det (
Pmm!9mm/’ (mvu)pm.fvn(.m) 3(m,u) )
where p,, fm, the posterior probability is given by

¢ p(y|m, n )p(m|nm )p(n.y, ) with ¢ being the normalizing
constant. Many problems in data analysis require the
unsupervised partitioning. Roberts, Holmes and Denison
[113] re-considered the issue of data partitioning from an
information-theoretic viewpoint and shown that minimization
of partition entropy may be used to evaluate the most
probable set of data generators which can be employed
using a RJI-MCMC.

—

min (1

B. Game Theory Review

In this Section we present relevant concepts from the world
of Game Theory.

1) Prisoner’s Dilemma: The prisoner’s dilemma (PD) is
a well known standard example of a game. The way it is
usually explained is in the context of a situation involving 2
prisoners who have organized illegal actions for which they
have been caught by a third party (the police) who however
needs confessions from either of the prisoners in order to
abide by the complex legal proceedings. The prosecutor
wants to close the case and send someone in prison (at least
one of the two suspects) so he offers a deal involving a
confession against a more lenient judgment. Both captives
are offered this deal independently and away from each other.
If the criminals both cooperate (C), nobody goes to prison
but they each get a heavy fine. If one denounceﬂ (D) the

S0See in section III and Figures 6, 9, 10 and 11.
SlSometimes also referred in the literature as “Deceits”.



other, then he will be free without any fine, but the one
being denounced has to go to prison and get a fine. If they
each denounce each other they go to prison without a fine.
Broadly speaking that little story can be formalized into a
2 by 2 matrixFE] with CC, CD, DC and DD with respective
payoffs (2,2), (0,3), (3,0) and (1,1). Although the prisoners
should clearly cooperate here, given that they do not know
what the other is going to do, by expectation (with equal
probability for a C and a D) any of the two users should
denounce the other given that the expectation of the payoff
for denouncing is 2 as opposed to a 1 for a cooperation. This
is the reason why this game theory concept is referred to as
a “dilemma”.

2) Axelrod’s Computer Tournament: However this opti-
mal strategy in a ‘“single interation” presented in Section
I1I-B.1| changes when the game becomes iterative. This
concept was formalized by Robert Axelrod [6], [7]. Indeed,
he designed a computer tournament aiming at understanding
what makes a strategy optimal in the context of an ecosystem
in an iterative format. In that occasion he invited few Math-
ematicians, Computer Scientists, Economists and Political
Scientists to code a strategy they believed could win such
tournament with the constraints of a PD rules in which it is
not known when the tournament will stoﬂ Many strategies
were thrown into this ecosystem in this form of computer
tournament. The range of strategies went from being being
very simplistic like “Always Deceit” (ADf_I] to many other
more complicated strategies which generic representation can
be looked at in Figure [I6b). Surprisingly the Tit For Tat
(TFT) strategy came at the top of this tournament. The TFT
is considered in the literature to be a nice strategy, meaning
that it is never the first to deceit (its first move is by design
to be a C), but it is also a strategy that is able to retaliate
in situation in which it was previously deceived. Finally, it
is a strategy that is able to forgive: meaning that if it sees
that the adversary algorithm has decided to cooperate after
a deceit, then he switches back to a C.

3) Evolutionary Dynamics: Martin Nowak [104] en-
hanced some of Axelrod’s work by introducing new
strategies and further developing the concepts of inva-
sion/dominanceﬁ] within a competitive strategic ecosystem.
For instance we can see from Figure[T6{d) that some strategies
invade others but these latter strategies can be in turn invaded
by other ones which in turn can be invaded by the very first
strategy mentioned and induce cyclef_gl Indeed an ecosystem
composed of a set of unbiased random strategies (that would
randomly C or D) would invite the invasion of an ALLD (al-

S2Figure .

S3e.g. it is by expectation best to deceit if one plays the PD only once.
By iteration he should always deceit on the last move, but knowing this, the
adversary should also deceit. Using this logic each player should deceit on
the next to the last move and the same logic kicks in and very quickly one
is led to arrive to the conclusion that he/she should deceit from the very
first move.

S4or its mirror: the AC “Always Cooperate” (AC) strategy.

55by extension when applied to finance some strategies may dominate
and invade others.

560one may extrapolate that economical cycles may be influenced by
similar kind of processes.

ways defect) kind. In turn the frequency of ALLD would take
the ecosystem which would invite the TFT strategy which
would benefit from the mutual cooperation within the same
proximity. This process continues in a similar fashion. Figure
[I6[) exposes how some of these strategies may interact with
each other. The following additional information may help
in refreshing what some of these acronyms mean: The main

’ Acronym ‘ Strategy Description

TFT Tit for Tat C first then replicate

GTFT Generous Tit for Tat | Less grudge prone than TFT
WSLS Win-Stay, Lose-Shift | Outperforms TFT [104], [126]
ALLC Always Cooperates Self explanatory

ALLD Always Deceits Self explanatory

rand Random Strategy Cor D with p = %

TABLE II: Evolutionary Dynamics Related Strategies

takeaway from this parallel was to expose how the rise and
fall of strategies can easily be engineered through simple
systematic rules based on an ecosystem and how complexity
can be induced from simple rules. Figure summarizes
some of the main take aways from Axelrod [6], [7] and
Nowak’s [104], [126] work.

C. Theoretical Biology Review

It was discussed in the 1960s [49] that complexity in an
ecosystem insures its stability or to keep the same jargon
“communities not being sufficiently complex to damp out
oscillations” [33], [56] have a higher likelihood of vanishing.
It is however widely accepted, in the context of ecosys-
tem simulation, that complexity should always arise from
simplicity [94], [20]. The diversity-stability debate has in
fact been ongoing since the 1950s [95] with no consensus
being ever reached. It was initially believed that nature was
infinitely complex and therefore more diverse ecosystem
should insure more stability [95], [81], [32]. This asser-
tion was however ultimately challenged through rigorous
mathematical specification [94], [139], [108] in the 1970s
and 1980s by using Lotka-Volterra’s Predator/Prey model
initially published in the 1920’s [137], [80] with similar
“non-intuitive” results. More recently the work has been
extended to small ecosystems of three-species food chain
[19]. The intuitive 3 species example we have chosen to
discuss is the one containing Sharks (chosen to be the z
parameter), Tunas (chosen to be the y parameter) and Small
Fishes (chosen to be the z parameter), the idea being that
tunas eat small fishes which in turn are eaten by sharks.
Without loss of generality sharks are assumed to die of
natural causes and their decomposing bodies go on to feed
the small fishes along with other infinite supply of food for
the small fishes. The set of differential equations has been
summarized in Equation (T2)).

Definition (Lotka-Volterra 3-Species Predator Prey):
Let a be the natural growth rate of species x(t) (with
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WSLS: CDDDDDDDD ...

INITg (0,1) ALL C: ccceeececcc ...
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ALLD : DDDDDDDDD ...

ey (1,1/3)

Lam (1,0) ALLC: CCCCCCCCCCC ..

ALLD: DDDDDDDDD ...

Fig. 16: Some classic Game theory representations [104].

R % R) in the absence of predator, d the one of y(t) (with
R % R) in the absence of z(t) (with R 5 R). We also have
b representing the negative predation effect of y(¢) on a and
e the one of z(t) on y(t). We also have g which mirrors the
efficiency of reproduction of z(t) in the presence of prey
y(t). The relationship between x(t), y(t) and z(t) is given
by Equation ((12)).

()~ qu(t) — br(t)y(t)
dz—g’) = —cy(t) + dz(t)y(t) — ey(t)z(t) (12)
EO )+ gy(t)2(0)

Remark Note that we assume that 2:(¢) never dies of natural
causes (if it’s too old then it can’t run fast enough to outrun
predator y(t)) but this is not the case for z(t) since it is an
alpha predator and therefore needs some natural death rate
which is controlled by f.

This relatively simple system of three equations has been
studied extensively [95] for stability, for example via Lya-
punov coefficient [76] and the eigenplane of the Jacobian
matrix [19]. There are different traditional ways to represent
stability or instability for these kind of equation, for example
Figure [17] represents a 2D stable representation and Figure
[I9) represents a particular 3D unstable representation. For the
latter case, we can notice that the oscillations between the
3 species increases to the point, here not shown, where the
amplitudes are so big that z goes instinct and at which point
x and y start oscillating, with however a constant amplitude.
We refer the motivated reader back to the original papers [95]
for the other cases and interesting idiosyncratic properties.
One interesting point to notice is that in cases of “relative
best stability”, in which a =b=c=d=e=f =g =
1% from Figure we have oscillation which are stable
through time with the highest peek from the ultimate prey (z)
coming first and the lowest peek of the ultimate predator (z)
coming last. This suggests that sophisticated working trading
strategieﬂ need enough prey like strategief_g] in the same
ecosystem to get them to be profitable. One other interesting
observation is that the total ecosystem population as depicted

STperhaps from top algorithmic desks in top tier investment banks?
3perhaps the retail clients of the world?

in the thick black line from the same figure suggests that
it itself oscillates which may not necessarily be intuitive.
Indeed one could have speculated that the loss of a species di-
rectly benefits the other and that therefore the total population
should stay constant. This interesting observation suggests
that the oscillations of a financial market may likewise be
subject to similar dynamicﬂ a financial ecosystem may
go through periods in which it thrives followed by period
in which it declines. The economy itself is somewhat of a
noisy version of Figure [I9] The stunning similarities of the
competitive resource driven biological ecosystem along with
some compelling similarities in some of its cyclical behavior
makes the Lotka-Volterra n-species food chain equation an
interesting candidate when it comes to studying the stability
of the financial market especially the electronic trading
markets because of its systematic rule based approach and
non zero sum game like roots.

D. Formalizing the Evolutionary Process

With the aim of providing intuition with respect to the sort
of interaction that may occur between strategies, we need to
formalize the Evolutionary Process (EP), but first, we go
through few definitions.

Definition (Evolutionary Process): In the context of our
study, the set of rules that control the continuous change of an
ecosystem and more specifically its agents (e.g. strategies),
will be arbitrarily called Evolutionary Process.

Definition (Iteration Types): We will define two types of
iterations. The first type of iteration will be called Micro,
corresponding to an infinitesimal increment in our environ-
ment namely, an increment in which a strategy S analyses
and in turn changes the order book by placing an order
itself. The second type of iteration will be called Macro,
corresponding to a generational increment in our environ-
ment namely, a certain equal number of Micro increment

1t is worth to mention that the oscillations of the financial market may be
due to totally different reasons. We revert back here to what we mentioned in
the introduction of this Section. More specifically, the relationship between
theory and simulation in the scientific method, namely that a good theory
should be simulated and a good simulation should be able to help in
polishing the theory [135]. At this stage of the Section, we would like
to help the reader to follow the train of thought of the author.
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Fig. 17: Stable 3-species Lotka-Volterra Simulation

per strategy leading to a calculation of profit and loss (P&L)
and a survival proces@ based on this P&L.

Strategy A strategy will consist of an HFFF H, a rolling
P&L P and a common orderbook O as shown by Equation

@3

S£{P,H, 0} (13)

Definition (Alive/Survived Strategy): A strategy is defined
as alive if it does currently take action on the EP.

Definition (Dead Strategy): A strategy is defined as dead
if it no longer take action on the EP.

Definition (Born Strategy): A strategy is born if it will
take action on the EP for the first time on the next iteration.

Definition (Strategy Classification): We will label N, the
number of total alive strategies, Ny the number of trend
following like strategies, /V;'* the number of multi-linear re-
gression like strategies, N/ the number of xor like strategies
and NN the number of other unclassified strategie@ The
relationship between these entities can be summarized by

Equation (T4)).

N = N + N;* + N; + N¢ (14)

Remark One may ask why we have not chosen the first
letters of each of the strategies (“t” for trend following, “m”
for multi-linear regression and “x” for XOR strategy). The
reason why this has been named this way is because as

we will see in Section N{ behaves in mathematical

%Oexplained next.
61This label will be the same in Section [[II-C

biology like the number of preys in a Lotka-Volterra (LV)
3 species equations [19], that IN;”* behaves in mathematical
biology like the number of mixed (both prey and predator)
in the same system of equation and that NN; behaves in
mathematical biology like the number of super predators as
the third species of that system of equations. The different
possible permutations, constraints on the first letters being
different for each type of strategy and the association to the
LV 3 species equation, made the choice of e, m and r at first
glance the most optimal in this qualitative optimization by
constraint problem.

1) Survival & Birth Processes: The survival, death &
birth processes are a set of processes which impact the
number of live strategies Ny at any time k the following
way. If we call SNk = S(l), S(z), ey S(n), S(n-‘rp)’ ey
S(n,) the strategies ranked with respect to their P&L from
highest to lowest, we will admit the following definitions:

Definition (Survivor Set): The Survivor se@ is the set of
strategies with a positive P&L. Namely if S, = S(1), S(2),
- Sey With Sy > 0 and S(,11) < 0. We will subdivide
this set by distinguishing the secondary survivors set which
carnality a; = [%J survive without reproducing and the
primary survivors set which carnality a; = s — ag, which
survive and have one offspring with a “slightly different
DNA” in form of a conditional resampling of their NN
architecture.

Definition (Birth Process): We will call the Birth process,

the first half of survived strategies. Namely, if a; = b = [%J

%2or alternatively alive process.



the strategies S ... S,, will both survive and reproduce and
create a set of equal size but with a slightly different HFFF
and with carnality b = a;.

Definition (Death Process): We will call the Death process,
the set of strategies with a negative P&L. Namely if Sg =
S(s+1)s S(s+2)s - - - S(n,,) Will disappear from the market at
Macro iteration k + 1.

Remark We can easily see that s = a1 + a3, a1 = ao,
a1 = b. Figure [I8]illustrates these few definitions.
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Fig. 18: Death and Birth processes in our GA

2) Inheritance with Mutations : The intuition about the
mutation process is that each birth is function of a successful
strategy (the positive P&L of parents S ...S,,) should
resemble a great deal to that single paren@ which produced
it but be at the same time be a bit different to allow the
ecosystem to evolve. We have seen in Section that
the DNA of our strategies is essentially their HFFF H
(which is itself a combination of weights). We will therefore
concentrate on performing the re-sampling on the weights of
the offspring. Recall that the pdf of the beta distribution, is
given by

_Ta+B) a1y 81
B(z,a, ) = T(@)T(5) 71 —x) (15)
with I'(n) = (n -1, 0 < 2 < 1, and o,8 > 0O,

the shape parameters. The reason why this distribution is

6350 no crossover in this model.

interesting is that it is defined in a closed interval [0,1] and
can therefore be rescaled easily through a change of variable
to [-1,1], an interval which is a basic way of formalizing a
normalized importance of each node in the NN architecture
decision making of Figure [/] It also offers a broad range of
interesting shapes allowing the possibility to code a condi-
tional resampling model and therefore make clever proximity
changes around the symbolic levels: —1, 0 and 1. This way
we can prevent too large deviations and rather select small
incremental changes and intuitively follow the principles of
selection. We can see that the B(z,1,7) or B(1 — x,1,7)
both concentrate a great deal of the distribution towards 0
and 1 respectively. Likewise B(x, 3, 7) and B(z, 5, 7) provide
a more unbiased modification of the deviations since more
symmetrical.

Definition (Mutation Sampling): Each branch of the
HFFF described by Equation () will be sampled according

to Equation (16).

P+ 1
D(z) =B(I; ,a(i),ﬁ)lig_; (16a)
P+ 1
+ 8(1 — x; (@), 8) 1,01 (16b)
+ f(f)lmgé (16¢)
1, if1>]7>32
where a(z) =43, if 3>z >1 (16d)
5 if3>%>1
L, ifk<-1
and F(k) =4 3, if |k| < 1 (16e)
1, ifk>= L
and €| —1,1[{and B =7 (16f)

Remark The function «(Z) models the interval of condition
and is arbitrary chosen, though constructed by noticing that
the mode of the Beta distribution is given by aiElQ and also
so as to make the fractions easy and the intervals loosely

equal.

E. Evolutionary Dynamics Simulation

1) Observations: Following Cedric Villani’s [135] com-
ment on the relationship between theory and simulation,
more specifically around how simulations can give us good
intuition about the theory, we lay forward the results which
helped us formalize the hypothesis that we investigate latter
on in the Section more specifically when it comes to the kind
of interactions that may take place. These interactions will be
formally addressed through the concept of Path of Interaction
that we will introduce in Subsection However in the
meantime, in order to discuss the matter at the intuitive level
only we will call “HFFF 1 Trend Following (TF), “HFFF
2” Multi-Linear Regression (MLR) and “HFFF 3” XOR. We
may interpret the following. First the market was bullish in
the first parts of the zones then became bearish in the next
parts of the zones, the TF type strategies, first increases in
frequencies then diminishes suddenly in the middle of the
zones, the MLR type strategies increases in a short burst



right in the middle of the zone and immediately decreases.
Finally the XOR strategies frequency increases suddenly in
the middles of the zones and decreases slowly.

2) Possible Hypothetical Interpretation: At the early
stages of research, we hypothesized the following incomplete
interpretation. TF strategies are what people commonly call
self fulfilling like prophecies meaning that they only work
as long as everyone making up the competitive environment
follow the same trend. The biological mirror as described
from Section [[II-C] would be an ultimate prey which given
an environment without any predator would never die and ac-
tually grow exponentially. The XOR strategy is hypothesized
as being a super predator strategy (similar to the z parameter
in Section [[lI-C) and feeds on the MLR strategies. MLR are
hypothesized as being both predator and prey strategies. It
feeds onto the TF strategies but are used as prey by the XOR
strategies. The way the MLR dominates the TF strategy is
due to the fact that it looks at additional leading information
on the orderbook (the volumes at the different depth of the
order book) so it is leading in the trend whereas the TF
is lagging on the trend. XOR strategies can only survive if
enough prey (MLRs) are present in the ecosystem otherwise
it dies. The way the XOR strategy dominates the MLR
strategy is due to its ability to hide its cards better and is able
to better decipher spurious positions at higher depths of the
orderbook. The XOR strategy cannot invade the TF strategies
on its own since the sophistication of its bait (the systematic
strategy built to bait the MLR) is too complex to trick the TF.
An analogy could be made with a professional poker player
playing with a beginner whose moves are almost random.

Remark It has been speculated that the need for a bigger
brain in men is partly due to the need for human to elaborate
deceitful strategies with their rivals and cooperative strategies
with their allies. It is therefore not entirely ridiculous to
associate increased neural network branching (to be roughly
understood as increase in cranial size) with increased strategy
complexity. However, increased intelligence does not nec-
essarily equate to survival. A way to illustrate this is to
observe the shark population, which is considered like an
apex predator but with a relatively small brain that has not
evolved for millennia. By analogy we could speculate that
strategies with increased complexity may win in the short
run but may not necessarily prevail in the long run.

3) Regulatory Implications: The second and last imme-
diate application we will take a look at in the context of
this paper is the one of systemic risk. Given that this paper
proposes that the fluctuations of the markets are linked to the
frequency of the strategies composing the ecosystem of the
market, we propose a model which would take advantage of
this assumptions to propose to build the first few steps of a
theory that would help high level regulations. The exercise
would consist of monitoring these strategies interactions
and flag the market when necessary. This may sound a bit
grand or overly ambitious but for the sake of opening up a
discussion or at least exposing the benefits of future research
let us develop a bit the argument. Suppose now that we label

strategies of Figure [8] [I0] and [I4] by respectively z, y and z
and that we use Equation (I2))). If we can somehow correctly
classify and guess what the frequency of x, y and z are in the
ecosystem, then we can study whether or not the ecosystem
is stable [19]. Now going back to the actual mathematical
study of the stability of the financial market. Answering if
a financial market composed of 3 strategies is stable would
come to studying the Jacobian matrix J from Equation (T7)).

a—by —xb 0
J(x,y,2) = yd —c+dr—ez —ye 17)
0 —zg —f+gy

By examining the eigenvalues of J(z,y, z) we can indirectly
gain information around the equilibrium of our financial
system at the regulatory leveﬂ More specifically if all
eigenvalues of J(z,y,z) have negative real parts then our
system is asymptotically stable. Figure gives an illustra-
tion of a situation in which one of the eigenvalues is negative.
Many questions could be raised here: how can the regulators
gain information on the parameters composing the system of
equations (I2)? Also the market has surely more than 3 types
of strategies, how many exactly? Are these strategies easily
classifiable in terms of prey, predator and super predator or
can you find more subtle instances? It is very likely that
trading desks especially in the high frequency domain refuse
to provide their sets of strategies for the regulators to study
the Jacobian matrix in order to take the relevant actiond®] We
take this opportunity to recall the conjecture we introduced
in our last paper [86]:

Conjecture 1 (Diversity & the Financial Stability):
Diversity in financial strategies in the market lead to its
instability.

4) Optimal Control Theory: The Hamilton-Jacobi-
Bellman (HJB) partial differential equation [10] was devel-
oped in 1954 and is widely considered as a central theme
of optimal control theory. Its solutions is the value function
giving the minimum cost for a given dynamical system and
its associated cost function. Solved locally, the HJB is a
necessary condition, but when over the entire of state space,
it is referred to as necessary and sufficient for an optimum.
Its method can be generalized to stochastic systems. Its
discrete version is referred to as the Bellman equation and
its continuous version, the Hamilton-Jacobi equation.

5) Optimal Control Formalization: Formally we consider
the problem in deterministic optimal control over the time
period [0, T]:

V((0),0) = mgn{fo Cla(t), u(t)] dt + D[x(T)]} (18)

where C[] is the scalar cost rate function, D[] is the utility at
the final state, x(¢) the system state vector with x(0) usually
given, and finally u(¢) where 0tT is called the control vector

we aim at finding. The system of equation is also subject to
64we assume for the sake of this example that we only have 3 strategies.
instruct the trading desks to increase or decrease their notional so as to

enforce a manual intervention for the sake of the market’s stability.
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Fig. 19: Unstable 3-Species Lotka-Volterra Simulation

i(t) = F[z(t),u(t)] where F[] is a deterministic vector
describing the evolution of the state vector over time.

6) Partial Differential Equation Specification: The HIB
partial differential equation is given by:

V(x,t) + muin {VV(x,t) - F(z,u) + C(z,u)} =0 (19)

subject to the terminal condition V' (z,T) = D(z). V(z,t),
commonly known as the Bellman value function (our un-
known scalar) represents the cost incurred from starting in
x at time ¢ and controlling the system optimally until 7.

7) Equation derivation: V (xz(t),t) is the optimal cost-
to-go function, then by Bellman’s principle of optimal-
ity from time ¢t to t + dt, we have V(x(t),1)

min, {V(a:(t +dt),t+dt) + § C(a(s), u(s) ds}. The
Taylor expansion of the first term is V(2 (t + dt),t + dt) =
V(z(t),t)+V(z(t),t) dt+VV (x(t),t)-@(t) dt+o(dt) where
(0)(dt) denotes the higher order terms of the Taylor expan-
sion. Canceling V' (z(t),t) on both sides and dividing by dt,
and taking the limit as dt approaches zero, we obtain the HIB
equation. Its resolutions is done backwards in time which
can be extended to its stochastic version. In this latter case

f C(t,Xt,Ut) dt+D(XT) . with this
0

we have minlE
u

time (X¢)seqo,r] being stochastic and needing optimization
and (Ut)te[o,T] the control process. By first using Bellman
and then expanding V(X;,t) with Ito’s rule, one finds the
stochastic HIB equation min,, { AV (z,t) + C(t,z,u)} = 0
where A represents the stochastic differentiation operator,

and subject to the terminal condition V (z,T) = D(z )%

FE. Path of Interaction

Our first few simulations, despite not fulfilling the burden
of proof, opened our eyes up to issues associated to optimal-
ity, need for more scientific rigour and perhaps an alternative
way to fulfill this burden of proof. The concept of Path of
Interaction that we introduce next is an attempt at addressing
this alternative methodology.

1) HFTE Game: One way to control our simulation
issues, is to perhaps take a step back in complexity in order
to gain momentum in constructing a theory with more rigor.
With this in mind we have chosen to inspire ourself from
the scientific method used by Axelrod [6], [7] extended
by Nowak’s [104], [126], and to introduce a mathematical
object, similar in spirit to the PD matrix used as a battle
ground (Figure [I6) by the name of Path of Interaction.
In order to do this rigorously. Let’s first go through few
definitions.

Definition (Dynamic Mini Order-Book): We will call a
Dynamic Mini Order-Book o, the sequence of length [ of
static snapshots of the order-book “2:“1My, ;. of asked and
bid volumes a;/b; where i corresponds to the depth of the
order book and M its mid price.

Remark In the context of our study we will take [ = 4.

Definition (Ranking Rule): A Ranking Rule are the set
of directives that decides the Birth, Death and Survival
processes of any Strategy Ecosystem.

6the randomness has disappeared.



Definition (Environment): We will call an Environment e
of size i a set of evolving strategy, S = s%,s° ... s" of
HFFF spanning the one from Figure [/| with potential to
interact with each other one after the other via an order-
book, 421 My, 4,.

Remark Note that the Ranking Rules we assume going
forward are the one described by Figure[I8] The environment
can then evolves according to a set of Ranking Rules.

Definition (HFTE Game): We will call an HFTE Game the
sequence of Environments composed of 2 strategies, S =
5%, ..., s" of HFFF spanning the one from Figure (7| with

a dynamic mini order-book and P&L.

Definition (Full Order-Book (FOB)): An OB will be
called full if and only if it has a volume of 1 on all the
depth of the OB.

Definition (Path of Interaction Table): We will call an
Path of Interaction Table an HFTE Game decomposed in
its most infinitesimal steps.

The top row of the table points to the strategy involved
in the relevant column. The row below (2nd row from the
top) provides the stage of the HFTE Game. The 3rd row
corresponds to the trading signal. The game starts in a states
of in which none of the two strategies has a position (Signal
“N/A”) on the order book. Because each strategy needs
some form of information on the order book, we take as
assumption that there is a random seed on the order book.
There is four possibilities of random seeds corresponding
to whether the price has been going up or down last and
whether the order book has increased its OI or decreased it.
These four situations are symbolized by the following set of
symbols: 1T, 1/, |1 and ||. We have chosen the case of |] to
illustrate our examples arbitrarily. The 4th row corresponds
to the order book state. The latter can be either scarse or full.
We will see that this latter point matters but for now let us
illustrate this point with an example. In Table we start
pLLLLLL meaning that at the current price P, we have one
order to sell at the first 6 depths of the order book. The 5th
row corresponds to the current price (last completed order)
or the mid price if no order was completed in the current
iteration. The 6th row corresponds to the Open Interest. If the
buy side of the order book has one of its orders matched then
the OI decreases by 1 (—1 if the opposite occurs). The 7th
row corresponds to the price change. If no order is matched,
then the price is approximated by the mid price. The last
row corresponds to the profit and loss. In order to illustrate
the Path of Interaction we propose to go through the details
of a TF strategy interacting with another TF. Algorithm [3]
represents our simplified TF strat and Table [III| represent the
Path of Interaction of two strategies following the systematic
rules of Algorithm In this table, for convenience sak
we have chosen to represent only one side of the order book:
pLLLLLL (for display purposes seeing that the price only
takes one direction in the simulations). Since both strategies

7The price dynamics goes in only one direction in this case.
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Algorithm 3: Simplified TF Strategy
Input: s, AO,AP
Output: o
Our simple TF Strategy copies last update’s trend while
disregarding OI
if AP > 0 then
‘ order<— 1
else if AP < 0 then
‘ order«<— —1
else
| order— 0
end
return order

o e N B R W

follow the trend, and that the order book is full, the price
keeps increasing, their respective P&L keeps increasing and
the OI imbalance keeps decreasing. Table|IIl| can therefore be
seen as a rigorous proof that the TF strategies interacting with
each other is “self fulfilling”, a terminology we introduce
more rigorously next. We introduce before the concept of
Invasion Flow Chart which is mirror concept of evolutionary
dynamics applied to quantitative strategies through the mean
of the HFTE Game instead of the PD Matrix. We go first
through few formal definitions.

Definition (Invasion): We will call a strategy, s invasive
with respect to an environment, e when the P&L of s
increases through the HFTE Games taking place in the
environment e.

For instance, if we assume that, the more complex a network
is, the more likely it is to invade, up to a point where
overfitting makes the network obsolete in it performance then
we would expect to see an invasion flowchart like the one
in Figure 20| Indeed if we assume a TF brings some sort
of information innovation from a random strategy and if we
assume that the MLR sees more information than the TF and
so on then Figure represents a flow chart that exhibits
the idea that TF strategies would invade an environment
composed of random strategies, that TF would in turn be
invaded by MLR, which would be invaded by XORs etc
... This chart also assume that beyond XOR strategies, the
complexity would be such that it would equate to a random
strategy or would alternatively take a complex path which
would lead to a farmer like strategy. We will illustrate later
on in this Section that hypothesis illustrated by Figure [20] is
not necessarily verified.

® -0

t 8 1
0~=0—-0

Fig. 20: Tllustration for a hypothetical Strategy Invasion Map



Strategy seed T TF1 TF2 TF1 TF2 TF1 TF2
Iteration 0 1 2 3
Signal N/A +1 +1 +1 +1 +1 +1
OB pLLLLLL | (pLLLL1  (pLLLL | o pLll (o0 0pLl | o006 00PL  (0.0.0.0.0P
Mid 100 101 +102 103 104 105 106
AOI +1 -1 —2 -3 —4 -5 —6
APrice +1 +1 +1 +1 +1 +1 +1
P&L [0,0] [1,0] [2,1] [3,2]

TABLE III: Path of Interaction for 2 TF Strategies with T Seeds and Full OB

Definition (Self-Fulfilling): We will call a strategy, s Self-
Fulfilling when it is Invasive with respect to an environment
composed of strategies like itself.

2) Strategy Tournament: Before we discuss our Strategy
Tournament, in order to avoid the classification issues men-
tioned earlier in the paper, we take their most simple forms.
First introduce the simplified MLR strategy formalized in
Algorithm |4 The idea of this simplified version is that Price
and OB imbalance both contribute in defining the trading
signal. The last simplified strategy will be the simplified

Algorithm 4: Simplified MLR Strategies
Input: s, AO,AP
Output: o
Simplified MLR Strategy follows the trend until basic
OB imbalance
if AO +2 x AP > 0 then
| order— 1
else if AO + 2 x AP < 0 then
‘ order— —1
else
| order— 0
end
return order

o e N S B B W N

XOR in Algorithm [3]

A Path of Interaction tournament was implemented in
the context of 15 possible games on 7 different timescales:
0,2,3,5,11,23,47. The choice of these timescales may be
a little odd at first glance but the idea was to increase the
timescale on average by a factor of two while at the same
time picking prime numbers. The idea of the latter is related
to an intuition that we had over potential cycles occurring
in these games. Though formalizing these possible cycles
is premature we thought avoiding chances of getting cycles
would make analyzing these interactions easier.

Remark In order to use some conventions around strategy
sequences for HFTE games we have chosen the following
notation <= S9 and so LN s3 to mean, for the first case, that
strategy s; changes first the OB, then so (and the sequence
continues until the end of the timescale) and, for the second
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Algorithm 5: Simplified XOR Strategies
Input: s, AO,AP
Output: o

1 Defining simplified XOR Strategy

2 if (AO > 0) & (AP > 0) then

3 | order— 1

4 else if (AO >0) & (AP < 0) then
5 ‘ order<— —1

6 else if (AO <0) & (AP > 0) then
7 ‘ order— —1

8 else if (AO <0) & (AP <0) then
9 | order— 1

10 else

1 | order— 0

12 end

13 return order

case s3 impacts the OB after sy (before, again going back
to s1). For example, TF' — T'F means that the environment
is composed of two TF strategies and M LR I XOR
refers to an HFTE game composed of a TF, MLR and XOR
strategy which OB impact sequence is one which mimics the
intuitive order laid down by the — symbol (TF, first, MLR,
second and XOR, third). These symbols are expended into
their full form in Tables [[V] and [V] but we thought it would
be useful to have a text friendlier version for the analysis.

Table represents the results of these games for two
strategies interacting and Table [V] represents the same for
3 strategies. We can make several interesting observations.

Proposition The TF strategy is self-fulfilling on a OB that
is full.

Proof: We have illustrated this point with Table
Though only on 4 iterations, the proof can be expanded on
longer timescales. [ ]

Remark The intuition we had [86] around the TF acting like
a prey increasing exponentially in frequency in the absence
of predator is confirmed. The first connections to the Lotka-
Volterra 3-species predator/prey model is established. It is
worthy to note however that there is a benefit in starting first



SCenariO TF —- TF TF — MLR TF — XOR MLR — TF MLR — MLR MLR — XOR XOR —> TF XOR — MLR XOR — XOR
Code S1 S9 S3 S4 S5 S6 s7 58 S9
P&Lo (5] (5] (5] (6] (5] (5] (6] (5] (5]
APy 0 0 0 0 0 0 0 0 0
P&L> (5] (5] (5] (6] (5] (5] (6] (5] (5]
AP, 0 0 0 0 0 0 0 0 0
P&Ls (3] [3] [%'] [3] (3] ['] [3] (3] [5']
AP3 3 3 —1 3 3 —1 3 3 —1
P&Ls (%] [%] [%] [70] (5] (5] (2] (5] [ %]
APs5 6 -3 -3 5 -5 —4 5 —4 3
P&L1: [45] [%F] [4] [ 7] [13] [+] [26] [%°] [ %]
AP 15 11 -3 13 15 —6 11 11 3
P&Lys [187] ["&°] [4] [557] (3] [11] [ 125 ] [53] [ 5]
APs3 33 26 -3 28 36 —10 23 27 3
s | 1) | LR [ G [ me | o | e [ | o |
APy 69 —75 -3 58 78 —18 47 27 3
TABLE IV: P&L in Path of Interaction for 2 Strategies with T Seeds and Full OB
Scenario | mMLr <LE, xor | xor <LE, mLr | TF MEE, xor | xOorR MLE, 1p | 7p X9 yrr | mMLr XOE rp
Code 810 s11 s12 813 814 815
0 0 0 0 0 0
Pl ¢ 8] H H ] ¢
AP, 0 0 0 0 0 0
0 0 0 0 0 0
Pl 4] ¢ H H ] [¢]
AP 0 0 0 0 0 0
3 —2 3 —1 -1 3
PaLs H %] ] %] 2] 2]
AP3 3 —2 3 —1 —1 3
4 —2 8 5 —11 —3
Pl [4] (5] ] 4] [5¢] 7]
AP 4 3 —4 -5 —6 -3
—26 | —108 | 17 14 10 —48
et ||| : E1RNEE N T4
—21 —36 | —34 —37 25 —47
APy 17 —14 7 6 18 16
P&L —65 [ —164 ] sgr 5842 1%% 137
| 3] | El Eq
APog 31 —32 15 14 45 —46
peLe || | £ e EJ %)
231 | ~289 | —910 | —9013 | —588 13
APy7 —54 —b4 31 30 97 —104

TABLE V: P&L in Path of Interaction for 3 Strategies with 1T Seeds and Full OB
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as the TF1 does better at the end in this HFTE game.

Proposition A strategy A can invade a strategy B but the
latter can invade strategy B if the seed or and the sequence
in which these strategies are started changes.

Proof: The MLR strategy invades the TF strategy on
the longer times scales (column s» of Table but when
the MLR starts the HFTE game (column s, of Table [[V)
then TF invades the MLR strategy. The same remark can be
made when XOR take the MLR spot in the same HFTE set
up (column s and s7 of Table [[V). [ ]

Proposition The Dominance relation is not transitive.

Proof: This comes to exposing that if a strategy A
dominates a Strategy B and Strategy B dominates Strategy
C, this does not mean that Strategy A will dominate Strategy
C. An example of counterexample is s2, s¢ and s3 of Table

Proposition Having a more complex strategy does not mean
a higher P&L.

Proof: We can observe in column s; of Table that
the TF strategy invades the XOR strategy over the first 47
iterations even-though the XOR strategy involves a hidden
layer, on the contrary to the TF strategy that consist of only
1 input. [ ]

Proposition All strategies in an Ecosystem can make money
even if the market goes down.

Proof: See sg example in Table [ |

Proposition In a situation of twin strategies interacting
within an HFTE game, starting first is not necessarily ad-
vantageous.

Proof: See sy in Table [[V] for the example. [ |
Finally we notice, in Figure 21 that the 3 strategies ecosys-
tems exhibited more fluctuations than the 2 strategies ecosys-
tems which tend to support the conjecture than more diversity
in an ecosystem of strategies induces more instability to the
market.

100
75
50
25

AP

=25

-50
-75 —— 2 Strategies Ecosystems: [s3, S, ..., Sol

—— 3 Strategies Ecosystems: [S10, S11, ..., S15] \

0 10 20 30 40
Iteration

-100

Fig. 21: Market instability and additional strategy.
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Conjecture 2: All strategies in an ecosystem can make
money at the same time but all cannot lose money at the
same time.

Remark We noticed this interesting fact with our sample
of HFTE games but have not been able to found a counter
example yet nor been able to rigorously prove it.

We have built in this Section the foundations associated to
the Bottom-Up approach to algorithmic trading. We first
achieved that tackling the problem using a simple genetic
algorithm methodology which we have abandoned to a series
of problem associated, but not limited to classification. We
took this opportunity to shown possible connections to the
world of evolutionary dynamics, predator prey models, as
well as how the mathematical tools associated to these fields
that can be brought in the world of Quantitative Finance. In
order to perhaps take a step in ordet to gain momentum in the
scientific approach we formalized the HFTE game as well
as the Path of Interaction concept. We have also given few
examples of such games and also presented few interesting
results. Market participants are however quite secretive when
it comes to their financial strategy. The only observable data
on the market is essentially the price dynamics. We explore
in the next Section how inference can be constructed in
the Bottom-Up approach when the price dynamic alone is
available.

IV. STABILITY OF FINANCIAL SYSTEMS AND
MULTI-TARGET TRACKING

In this section we take a look at another example in which
ML can revolutionize classic Mathematical Finance as it
lays down the foundations for controlling systemic risk in a
challenging electronic trading environment where speed and
secrecy are of utmost importance. More specifically we first
offer a literature review of the Multi-Target Tracking starting
with the linear and then moving to non linear methods. We
then expand the study by connecting some of the concepts
in the previous two Sections with particle filtering applied
to scenario modelling.

A. Classic Methods in Multi-Target Tracking

Multi-Target Tracking (MTT), which deals with state
space estimation of moving targets, has applications in
different fields [9], [75], [129], the most intuitive ones being
perhaps radar and sonar.

1) Linear Methods: The Kalman Filter (KF) is a mathe-
matical tool which provides the best estimation (in a MSE
sense) of some dynamical process,(x), perturbed by noise
and influenced by a controlled process. The estimation is
based upon observations which are functions of these dynam-
ics (yx). A review can be found in [116]. The observations
of the KF are usually referred to in the literature as zj, and

the dynamics are given by Equation (20).
rp = Frrp_1 + Brug + wyg (20)

where F}, is the state transition model which is applied to the
previous state x;_1; By is the control-input model which is



applied to the vector uy (again we will assume later as null);
wy, is the process noise which is assumed to be drawn from
a zero mean multivariate normal distribution with covariance
Qr and wy, ~ N(0,Qy). At time k an observation of x, yx
is made according to Equation (21).

yr = Hpxp + v 21

where Hj is the observation model which maps the true
state space into the observed space. vy is the observation
noise which is assumed to be zero mean Gaussian white
noise with v ~ N(0, Rj). We also assume that the noise

Algorithm 6: Kalman Filter

Input: array of weights wi’
Output: array of weights w}! resampled

Predicted state:
-1 < FrZr_1jp—1 + Br—1ur—1
Pyjo—1 — Fiu P11 Ff + Qr—1

Update state:

Innovation (or residual)

Uk < Yb — HrZpp—1
Covariance

Sy, — Hkpk‘klelzﬂ + Ry
Optimal Kalman gain
Ky« Py HES
Updated state estimate

Ty < -1 + Kil
Updated estimate covariance
P < (I — K Hy) Prjr—1

R R B Y N L

-
NN R W N =D

Return state:
Return
wi

[ Y
S e

vectors ({w1, ..., wg}, {v1...v}) at each step are mutually
independent (cov(vk,wy) = 0 for all k). The KF being a
recursive estimator, we only need the estimated state from the
previous time step and the current measurement to compute
the estimate for the current state. ' will represent the
estimation of our state zj at time up to k. The state of our
filter is represented by two variables: &y, the estimate of
the state at time k given observations up to and including
time k; Py, the error covariance matrix (a measure of the
estimated accuracy of the state estimate). The KF has two
distinct phases: Predict and Update. The predict phase uses
the state estimate from the previous timestep to produce an
estimate of the state at the current timestep. In the update
phase, measurement information at the current timestep is
used to refine this prediction to arrive at a new, more accurate
state estimate, again for the current timestep. The formula
for the updated estimate covariance above is only valid for
the optimal Kalman gain. Usage of other gain values require
a more complex formula. The KF methodology has been
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summarized by Algorithm [6] Proof: Please see original
papers [63], [64]. [ ]
Although the KF presents obviously lots of benefits in
tracking, its linear constraints makes it not a first choice in
the exercise we have at hand. The EKF is essentially an
approximation of the KF for non-severely-non-linear models
which linearises about the current mean and covariance, so
that the state transition and observation models need not be
linear functions of the state but may instead be differentiable
functions. The dynamics and measurements of this equation
is presented in (22).

(Tp—1, up) + wi
(wk) + Vg

Tk

Yk

=f

22
:h (22)
The algorithm is very similar to the one described in

Algorithm (6) but with couple of modifications highlighted
below Algorithm (7))°

Proof: The proof for algorithm [7] is very similar to
the proof of algorithm [6] with couple of exceptions, first Fj,
and H}, approximations at the first order of Fj, and Hy, we
obtain a truncation error which technically can be bounded
and satisfies the inequality known as Cauchy’s estimate:
|R,(z)] < Mn% here (a — r,a + r) is the interval
where the variable x is assumed to take its values and M,
positive real constant such that | f("+1)(z)| < M, for all z €
(a—r,a+r). M, gets bigger as the curvature or non-linearity
gets more severe. When this error increases it is possible
to improve our approximation at the cost of complexity
by increasing by one degree our Taylor approximation, i.e:

— of o°f
B = ow F@r—1jp—1,uk) o f(Er—1)k—1,ur)? and Hj

10h
F(@kik—1) 20 | f(Zg)p—1)?" u

1
2

ah
ox

Remark Though the EKF tries to address some of the limi-
tations of the KF by relaxing some of the linearity constraints
it still needs to assume that the underlying function dynamics
are both known and derivable. This particular point requires
us to continue our literature review. However note, as we
will see in Section [[V-C.2] that this methodology might be a
good candidate when we use the dual mathematical biology
problem is used instead of the rough direct method.

2) Non-Linear Methods: Importance sampling (IS) was
first introduced in [93] and was further discussed in several
books including in [51]. The objective of importance sam-
pling is to sample the distribution in the region of importance
in order to achieve computational efficiency via lowering
the variance. The idea of importance sampling is to choose
a proposal distribution ¢(z) in place of the true, harder to
sample probability distribution p(x). The main constraint is
related to the support of ¢(x) which is assumed to cover that

%8Note that here Fj, = % and Hj, = gj

xr
Tp—1|k—1Yk Tllk—1



Algorithm 7: Extended Kalman Filter

Input: array of weights wi¥

Output: array of weights wi’

' resampled

Predicted state:

Trpp—1 < [(Trp—1jp—1,Ur)
Pyi—1 — FuPyo_1jp—1 FL + Qi1

Update state:

Innovation (or residual)

Uk < Yk — "(Tppp—1)
Covariance

Sy — Hkpk\kle]I + Ry
Optimal Kalman gain

Ky « Py HES !
Updated state estimate
Ty < -1 + KiUk
Updated estimate covariance
Py < (I — KiHy) Prjr—1

o 0 NN N T R W N -

L e
A R W N =D

of p(x).
| 1wy = [ @5 @ (30
~ 1 N .
f=5 WD) @)
Pi=1

In Equation (23a) we write the integration problem in the
more appropriate form with Equation (23b) the numerical
approximation where N, usually describes the number of
independent samples drawn from ¢(z) to obtain a weighted
sum to approximate f,

()Y _ p(m(i))
W) = @) (24a)
W (z)ocp(a®)q(z®) (24b)

and where W (z(V)) in Equation (24a) is the Radon-Nikodym
derivative of p(z) with respect to g(x) or called in engineer-
ing the importance weights. Equation (24b) suggests that if
the normalizing factor for p(z) is not known, the importance
weights can only be evaluated up to a normalizing constant.
To ensure that Ziv:pl W(z®) = 1, we normalize the impor-
tance weights to obtain Equation (23).

= S W (@) fz®)

N,
. 1 2z .
f= N : zizw(x() z®)
Nip > W(x®) Ny 5
©) (25)
where W (z()) = —=)__ are called the normalized
30 W(x®)

importance weights. The variance of importance sampler
estimate [17] in Equation is given by Vary[f] =

N Varf@W@)] = TVargf@p()/a@)] =
ox S - Blf@Pe)ds = o
LS )~ 2p() (@) [f (o)) + Colfl

(Ep [f(»L)])

A ST gy
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The variance can be reduced when an appropriate g(x)

is chosen to either match the shape of p(z) so as to
approximate the true variance; or to match the shape of
|f(z)|p(x) so as to further reduce the true variance.

. oVarg[f] (f(z) (»L)) -
Proof: aq(") = N S (52 )]dx
—Al,p S[((fq ((fl ))pq ((a; )]dz. q(x) having the constraint of

being a probability measure that is SJ_”O p(z)dx =1, we find
that ¢(x) must match the shape of p(x) or of | f(z)|p(z). ®

3) Resampling Methods: Resampling methods are usually
used to avoid the problem of weight degeneracy in our
algorithm. Avoiding situations where our trained probability
measure tends towards the Dirac distribution must be avoided
because it really does not give much information on all the
possibilities of our state. There exists many different resam-
pling methods, Rejection Sampling, Sampling-Importance
Resampling, Multinomial Resampling, Residual Resampling,
Stratified Sampling, and the performance of our algorithm
can be affected by the choice of our resampling method. The
stratified resampling proposed by Kitagawa [68] is optimal
in terms of variance. Figure 22] gives an illustration of
the Stratified Sampling and the corresponding algorithm is
described in algorithm [§] We see at the top of the Figure

Algorithm 8: Resample

Input: array of weights wi/
Output: array of weights w}! resampled

Sample:
u® ~ U[0,1/M]

Resample:
for m =11t N do
im) {( (m) _ u<m*1>m)J +1
“") (m)
w

- n

A U AR W N -

wlm) — g (m) 4 &
end

[22] the discrepancy between the estimated pdf at time ¢
with the real pdf, the corresponding CDF of our estimated
PDF, random numbers from [0, 1] are drawn, depending on
the importance of these particles they are moved to more
useful places. Sequential Monte Carlo methods (SMC), also
known as Particle Filters (PF) are statistical model estimation
techniques based on simulation. They are the sequential (or
’on-line’) analogue of Markov Chain Monte Carlo (MCMC)
methods and similar to importance sampling methods. If they
are elegantly designed they can be much faster than MCMC.
Because of their non linear quality they are often an alter-
native to the Extended Kalman Filter (EKF) or Unscented
Kalman Filter (UKF). They however have the advantage of
being able to approach the Bayesian optimal estimate with
sufficient samples. They are technically more accurate than
the EKF or UKF. The aims of the PF is to estimate the
sequence of hidden parameters, x; for k = 1,2, 3, ..., based
on the observations y;. The estimates of x;, are done via the



posterior distribution p(zk|y1,y2,-..,yx). PF do not care
about the full posterior p(x1, za, ..., Tkly1, Y2, .- -, yx) like
it is the case for the MCMC or importance sampling (IS)
approach. Let’s assume xj and the observations gy can be
modeled in the following way: x|Tr—1 ~ Pay |y, (T|Th—1)
and with given initial distribution p(x1), yx|Tr ~ py|e(Y|TK)-
Equations (26a) and (26D) gives an example of such system.

r = f(2r_1) + wp (26a)
yr = h(zy) + v (26b)
It is also assumed that cov(wg,vi) = 0 or wy and wg

mutually independent and iid with known probability density
functions. f(-) and h(-) are also assumed known functions.
Equations and are our state space equations. If

Algorithm 9: Sequential Monte Carlo

Input: array of weights w®, w(zxle') | y11)
N resampled

Output: array of weights w,,

1 Sample:
2 for L =11to Np do
L L
3 ‘ xl(c ) ~ ﬂ-(mk:‘xgzk)fpyl:k:)
4 end
sfor L=11t Np do
. (L) (L) p(yk\x(L))p(x<L)\a:(L)
B 1T )
7 end
8 for L =1 to Np do
(L) ;"
9 Wy = < p w(J)
J=1 "k
10 end
11 Ney < 1

Yioa (wl(cL)>2
Reample:
draw Np particles from the current particle set with
probabilities proportional to their weights. Replace the
current particle set with this new one.
if Nog < Ny, then
for L =11t Np do
w,(CL) —1 / N, P-
end
end

12
13

14
15
16
17
18

we define f(-) and h(-) as linear functions, with wy, and vy
both Gaussian, the KF is the best tool to find the exact sought
distribution. If f(-) and h(-) are non linear then the Kalman
filter (KF) is an approximation. PF are also approximations,
but convergence can be improved with additional particles.
PF methods generate a set of samples that approximate the
filtering distribution p(zk|y1,...,yx). If Np in the number
of samples, expectations under the probability measure are
approximated by Equation (7).

ff(xk)p(kal, o yR)dTy A —

26

Sampling Importance Resampling (SIR) is the most com-
monly used PF algorithm, which approximates the proba-
bility measure p(zx|y1,...,yx) via a weighted set of Np
particles (w(L),:ckL ) L = 1,...,Np. The importance

kj are approximations to the relative posterior
probability measure of the particles such that Z -1 w(L) =
1. SIR is a essentially a recursive version of importance
sampling. Like in IS, the expectation of a function f(-) can
be approximated like described in Equation (28).

weights w,(C

ff xE)p(xk|y1, - - yg)dag ~ Z wl® (L) (28)
The algorithm performance is dependent on the choice of
the proposal 7 (2 |%1.5—1, Y1) distribution with the optimal
proposal distribution being 7 (zx|xo.k—1,Yo:x) in Equation
(29).

(29)

7T(£k|$1:k-—1,y1:k) = P(Ik|$k—1,yk)

Because it is easier to draw samples and update the weight
calculations the transition prior is often used as importance
function: m(xk|1.6—1,y1.5) = P(xk|2K—1). The technique of
using transition prior as importance function is commonly
known as Bootstrap Filter and Condensation Algorithm.
Figure[22] gives an illustration of the algorithm just described.

(L)

Note that on line 5 of algorithm @ , simplifies to

wy,
L L D) .(L L) (L
w;iflp(yklmi, )), when 7r(36,(C )\xik)qul:k) :p(x,(c )\xéjl).
Algorithm (9) summarizes the SMC methodology.

B. Scenario Tracking Algorithm

1) Introduction: Recently, SMC methods [25], [26], [77],
especially when it comes to the data association issue,
have been developed. Particle Filters (PF) [44], [67], have
recently become a popular framework for MTT, because able
to perform well even when the data models are nonlinear
and non-Gaussian, as opposed to linear methods used by
the classical methods like the KF/EKF [52]. Given the
observations and the previous target state information SMC
can employ sequential importance sampling recursively and
update the posterior distribution of our target state. The
Probability Hypothesis Density (PHD) filter [122], [124],
[91], [136], which combines the Finite Set Statistics (FISST),
an extension of Bayesian analysis to incorporate comparisons
between different dimensional state-spaces, and the SMC
methods, was also proposed for joint target detection and
estimation [102]. The M-best feasible solutions is also a
new useful finding in SMC [102], [70], [11], [73], [12].
Articles [123], [125] were proposed to cope with both the
multitarget detection and tracking scenario but according
to [101] they are not robust if the environment becomes
more noisy and hostile, such as having a higher clutter
density and a low probability of target detection. To cope
with these problems a hybrid approach and it extensions
[101] were implemented. The aim of these methods is to
stochastically estimate the number of targets and therefore
the multitarget state. The soft-gating approach described in
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Fig. 22: Stratified Sampling illustration

[103] is an attempt to address the complex measurement-to-
target association problem. To solve this issue of detection
in the presence of spurious objects a new SMC algorithm is
presented in [74]. That method provided a solution to deal
with both time-varying number of targets, and measurement-
to-target association issues. Currently, tracking for multiple
targets has a couple of major challenges that are yet to be
answered efficiently. The first of these two main challenges
is the modelling of the time-varying number of targets in
an environment high in clutter density and low in detection
probability (hostile environment). To some extend the PHD
filter [92], [123], [125], [136], based on the FISST , has
proved ability in dealing with this problem with unfortu-
nately a significant degradation of its performance when the
environment is hostile [101]. The second main challenge
is the measurement-to-target association problem. Because
there is an ambiguity between whether the observation
consists of measurements originating from a true targets or a
clutter point, it becomes obviously essential to identify which
one is which. The typical and popular approach to solve this
issue is the Joint Probabilistic Data Association (JPDA) [9],
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[37]. Its major drawback though is that its tracks tend to
coalesce when targets are closely spaced [36] or intertwined.
This problem has been, however, partially studied. Indeed the
sensitivity of the track coalescence may be reduced if we
use a hypothesis pruning strategy [13], [53]. Unfortunately
the track swap problems still remain. Also performance of
the EKF [52] is known to be limited by the linearity of
the data model on the contrary to SMC based tracking
algorithms developed by [57], [47], [46], [54]. This issue
of data association can also be sampled via Gibbs sampling
[54]. Also because target detection and initialization were
not covered by this framework algorithms developed in [134]
were suggested in order to improve detection and tracking
performance. The algorithm suggested in [134] combines
a deterministic clustering algorithm for the target detection
issue. This clustering algorithm enabled to detect the number
of targets by continuously monitoring the changes in the
regions of interest where the moving targets are most likely
located. Another approach in [117] combines the track-
before-detect (TBD) and the SMC methods to perform joint
target detection and estimation, where the observation noise



is Rayleigh distributed but, according to [117], this algorithm
is currently applicable only to single target scenario. Solu-
tions to the data association problem arising in unlabelled
measurements in a hostile environment and the curse of
dimensionality arising because of the increased size of the
state-space associated with multiple targets were given in
[134]. In [134], a couple of extensions to the standard known
particle filtering methodology for MTT was presented. The
first extension was referred to as the Sequential Sampling
Particle Filter (SSPF), sampled each target sequentially by
using a factorisation of the importance weights. The second
extension was referred by the Independent Partition Particle
Filter (IPPF), makes the hypothesis that the associations
are independent. Real world MTT problems are usually
made more difficult because of couple of main issues.
First realistic models have usually a very non-linear and
non-Gaussian target dynamics and measurement processes
therefore no closed-form expression can be derived for the
tracking recursions. The most famous closed form recursion
leads to the KF [3] and arises when both the dynamic and
the likelihood model are chosen to be linear and Gaussian.
The second issue with real world problem is due to the
poor sensors targets measurements labelling which leads to a
combinatorial data association problem that is challenging in
a hostile environment. The complexity of the data association
problem may be enhanced by the increase in probability
of clutter measurements in lieu of a target in areas rich in
multi-path effects. We have seen that the KF is limited in
modelling non linearity because of its linear properties but
it is still an interesting tool as an approximation mean like it
has been done with the EKF [3] which capitalizes on linearity
around the current state in non linear models. Logically
the performance of the EKF decreases as the non-linearity
increases. The Unscented Kalman Filter (UKF) [62] was
created to answer this problem. The method maintains the
second order statistics of the target distribution by recursively
propagating a set of carefully selected sigma points. The ad-
vantage of this method is that it does not require linearisation
as well as usually yields more robust estimates. Models with
non-Gaussian state and/or observation noise were initially
studied and partially solved by the Gaussian Sum Filter
(GSF) [2] . That method approximates the non-Gaussian
target distribution with a mixture of Gaussians but suffers
when linear approximations are required similarly to the
EKF. Also, over time we experience a combinatorial growth
in the number of mixture components which ultimately leads
to eliminate branches to keep control of an exponential
explosion as iterations go forward. Another option that does
not require any linear approximations like it is the case with
the EKF or the GSF was proposed in [66]. In this case
the non-Gaussian state is approximated numerically with a
fixed grid, using Bayes’ rule the prediction step is integrated
numerically. Unfortunately because the computational cost of
the integration explodes with the dimension of the state-space
the method becomes useless for dimensions larger than four
[134]. For non-linear and non-Gaussian models, generally
speaking SMC’s [26], [78] known alternatively as we have
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seen as PF [44], [67] but also seldom CONDENSATION
[59] have become popular user friendly numerical techniques
that approximate Bayesian recursions for MTT. Its popular-
ity is mainly due to flexibility, relative simplicity as well
as efficiency. The method described, models the posterior
distribution with a set of particles with an associated weights
more or less big relative to the particle importance and
are propagated and adjusted throughout iterations. The very
big advantage with SMC method is that the computational
complexity does not become exorbitant with an increase in
the dimension of the state-space [66]. It has been defined in
[134] that there exists numerous strategies available to solve
the data association problem but they could be categorised
as either single frame assignment methods, or multi-frame
assignment methods. The multi-frame assignment problem
can be solved using Lagrangian relaxation [111]. Another
algorithm the Multiple Hypotheses Tracker (MHT) [112]
tries to keep track of all the possible association hypothe-
ses over time which makes it awkward as the number
of associations hypotheses grows exponentially with each
iteration. The Nearest Neighbour Standard Filter (NNSF) [9]
links each target with the closest measurement in the target
space. This simplistic method has the flaws that one may
assume it has, that is the method suppresses many feasible
hypotheses. The Joint Probabilistic Data Association Filter
(JPDAF) [9], [37] is more interesting in this respect as it
does not do as much pruning or pruning only infeasible
hypotheses. The parallel filtering algorithm goes through
the remaining hypotheses and adjusts the corresponding
posterior distribution. Its principal deficiency is that the final
estimate looses information because, to maintain tractability,
the corresponding estimate is distorted to a single Gaussian.
This problem however has been identified and strategies
have been suggested to address this shortcoming. For ex-
ample [107], [118] proposed strategies to instead reduce the
number of mixture components in the original mixture to
a tractable level. This algorithm unfortunately only partially
solved the problem as many feasible hypotheses may still be
pruned away. The Probabilistic Multiple Hypotheses Tracker
(PMHT) [41], [130] takes as hypothesis that the association
variables to be independent and avoids the problems of
reducing our state space. This leads to an incomplete data
problem that, however may be solved using the Expectation
Maximisation (EM) algorithm [23]. Unfortunately the PMHT
is not suitable for sequential applications because considered
a batch strategy. Moreover [138] has shown that the JPDA
filter outperforms the PMHT and we have seen earlier the
shortcomings of the JPDAF. Recently strategies have been
proposed to combine the JPDAF with particle techniques
to address the general non-linear and non-Gaussian models
[121], [120], [38], [65] issue of approximation of linearity
failing when the dynamic of measurement functions are
severly non-linear. The feasibility of multi-target tracking
with SMC has first been described in [5], [45] but the
simulations dealt only with a single target. In the article
[55] the distribution and the hypotheses of the association is
computed using a Gibbs sampler, [42] at each iterations. This



method, similar to the one described in [22], uses MCMC
[43] to compute the associations between image points within
the framework of stereo reconstruction. Because they are
iterative in nature and take an unknown number of iterations
to converge. These MCMC strategies though, are not always
suitable for on-line applications. Doucet [46] presents a
method where the associations are sampled from a well cho-
sen importance distribution. Although intuitively appealing
it is, however, reserved to Jump Markov Linear Systems
(JMLS) [27]. The follow up of this strategy, based on the
UKEF and the Auxiliary Particle Filter (APF) [109], so that
applicable to Jump Markov Systems (JMS) is presented in
[28]. Similar in [57], particles of the association hypotheses
are generated via an optimal proposal distribution. SMC
have also been applied to the problem of MTT based on
raw measurements [14], [119]. We have seen that the MTT
algorithms suffers from exponential explosion that is as the
number of targets increases, the size of our state spaces in-
creases exponentially. Because pruning is not always efficient
it may commonly occur that particles contain a mixture of
good estimates for some target states, and bad estimates for
other target states. This problem has been first acknowledged
in [106], and where a selection strategy is addressed to
solve this problem. In [134] a number of particle filter
based strategies for MTT and data association for general
non-linear and non-Gaussian models is presented. The first,
is referred to as the Monte Carlo Joint Probabilistic Data
Association Filter (MC-JPDAF) and presented by the authors
as a generalization of the strategy proposed in [121], [120] to
multiple observers and arbitrary proposal distributions. Two
extensions to the standard particle filtering methodology for
MTT is developed. The first strategy is presented by the
authors as an exact methodology that samples the individ-
val targets sequentially by utilizing a factorization of the
importance weights, called the Sequential Sampling Particle
Filter (SSPF). The second strategy presented in [134] as-
sumes the associations to be independent over the individual
target, similar to the approximation made in the PMHT, and
implies that measurements can be assigned to more than one
target. This assumption claims that it effectively removes all
dependencies between the individual targets, leading to an
efficient component-wise sampling strategy to construct new
particles. This approach was named Independent Partition
Particle Filter (IPPF). Their main benefit is that as opposed
to the JPDAF, neither approach requires a gating procedure
like in [57].

C. HFTE SMC Tracking Methodology

Now that we have done a comprehensive review of track-
ing methodologies we would like to apply our findings to
the HFTE formulated problem from Subsection ??. We will
describe first the brute force method in Subsection
then remind the connection the HFTE model has with the
predator prey model in Subsection in order to introduce
the dual methodology in Subsection

1) Direct Approach: The direct approach would consist of
tracking not only the number of alive strategies and number
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of births but on top of that the HFFF of each of the live
strategies, namely, if each particle is associated to our state
space 6 then we can summarize our state space by Equation

@op.
o2 Ny NENE UYL S O oY L0 b G0)

with IV, the number of survived strategies, NV, b the number
of born strategies, Ntd, the number of dead strategies and
N, the number of alive strategies{gj As we can see from
Equation (30)), not only we need to keep track of the alive
strategies through time but also of their HFFF which itself
has seemingly insurmountable dimenssionality challenges,
notably an exponential likelihood for clustering. If you add to
this specific point that you need to keep track of all possible
sets of orderbooks O and P&L P, with a little experience
in signal processing, one will realize that this path is a lost
battle before it really began. The question is whether there is
still something that can be done, this is what we will attempt
at answering in Section but before let’s recall the
connections the HFTE model has with predator prey models
in the following Subsection [[II-C

2) Dual Approach: One way to address this indirect
approach comes from realizing couple of points. First, a par-
ticle filtering exercise based on Equation (30)) is impossible
with the technology, and the research status quo. Second,
market participants will never divulge their strategies to allow
regulators to come up with original risk management systems
that we have discussed [86]. However, what can be done
is to assume, the HFTE model [86] behaves like the Ny
Species Lotka-Volterra and therefore the fluctuations of the
financial systems can be studied indirectly by studying the
mirror ecosystem model of Equation (3)).

‘Cil—f = ax — bz
L = a1zy1 — hiy1y2
d = a2y1Y2 — bay2ys
: = o= (31)
Zzzd‘z_l = ang—1YNg—2YNg—1 — bnp1YNp—12
5 = anpYNg—1YNg — DNaYNp 2
% = —angz + bneynez

However, Equation (31)) can be further simplified by as-
suming that the P&L lost by a strategy is linearly gained
by another which leads us to assume that a = a; = ...
ang = 1and b=b;=...= bN;; = 1. Finally the regulators
may assume that the maximum number of strategies M
can be fixed to the number of market participants. This is
obviously arguable on the basis that a market participant may
have multiple strategies but we can assume that this latter
multiple strategy is itself a strategy. These simplifications

ONg = N7 + Nl or N¢ = Nf_, + N} — N2



give Equation (32).

£ —a-ap
% = TY1 — Y1y2
% = Y1Y2 — Y2ys3

; = (32)
Z}gl = YNg—2YNp—1 — YNp—12

at = YNg-1YNg —YNp®
% = —Z+ YNgZ

We can observe in Figure 23] a simulation of this simplified
approach which makes the task of assigning a traditional
SMC to the scenarios more achievable than the brute force
direct approach.

Definition (HFTE Dual Tracking Methodology): We
will call the High Frequency Trading Ecosystem Dual
(HFTED) tracking methodology, the Lotka-Volterra mirror
problem we have described in this section.

It should become straightforward to see that using the dual
methodology reduces the dimensionality issue enough to al-
low most of the SMC methods to work in an otherwise open
problem in signal processing. We will leave the different
SMC methodologies implementation with the dual specified
problem as an exercise for the motivated reader or PhD
student looking for a paper idea.

3) Simplified Simulation: We present here an application
of the results from Section [[II-F to our tracking methodology
presented in this Section. For this we assume the state space
is limited to a set of 15 scenarios spanned by up to 3 different
types of strategies@] acting on the OB in different sequences.
In order to manage complexity we have also assumed that
there is no birth or death processes involved in our scenarios.
Algorithm [T0] describes our simplified study in pseudo code.
Note that the traditional resampling algorithm as developed
by Doucet [24] has been substituted by the term W7 ; + A,
in the line w§ — Ae x L= + (1= Ao — \) x Wy + A x
1/15. We also added a small noise function to the market
observed prices in order to make observations more realistic.
The results from the series of simulations are presented in
Figure What we can observe is that every scenario had
already clearly emerged by iteration 23, the second row from
the bottom on all 15 scenarios. By iteration 47, the density is
very clear, so much so that the only reason it is not a Dirac
function is due to the resampling methodology introduced in
that effect.

D. Another Practical Application

1) Problem Formulation: The context is the following:
we are working in a bank and have been given instructions
to build a realistic market simulators on which one can
test strategies. You are given a set of strategies 2
{S1,52,...,S5,} that can be replicated through the HFFF
that we have seen in Figure [/| You also assume that you

70Exact formalization has been given by Algorithms and
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Algorithm 10: Particle Filter Simplified HFTE Strategies
Input: AP, I, wy, Ae, A\
Output: w;
Wt—1 < Wy
W <0
for 0 < s<15do
H7 is is our Scenario Hash Table for scenario s and
iteration [
Ly — exp(—AP — H})
W =W+ Ly
end
for 0 < s<15do
Wi — e X L 4 (1= e = \) x W2 + A\ x 1/15
end
return w;

W N -

Algorithm 11: Scenarios Hash Table H7
Input: 7
Output: array position
if 7 == 0 then
| return 0
else if 1 ==
| return 1
else if / == 3 then
| return 2
else if / == 5 then
| return 3
else if 7/ == 11 then
| return 4
else if / == 23 then
| return 5
else if 7 == 47 then
| return 6
else
‘ return ’issue with iteration recognition’
end

then

o 0 NN R W N -

L e
NN R W N =D

have a history oh P&L distribution for each element of ().
This simulated market ought to be composed of an ecosystem
of all possible theoretical strategies which frequency is
unknown and which should react in such a way that the P&L
distribution of all strategies for which we have historical data
ought to perform in a similar manner.

2) Proposed Solution: We need to defined a particle filter
on the scenarios described in the problem formulation. In
doing so we need to both define a slightly different likelihood
function as well as a very different resampling solution.
We need to create a likelihood function for the particles
associated to the scenario being investigated. This likelihood
function should be itself function of the relative entropy
between the expected P&L distribution and the one realized
by the simulated market. The Kullback-Leibler divergence
[69], of equation (??) can be a simple enough measure for the
individual strategies being simulated. More specifically for
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Fig. 23: Simplified Stochastic 4-species Lotka-Volterra of Equation (31))
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Fig. 24: Particle Filter on market scenarios on [2,3,5, 11,23, 47] milestones

discrete probability distributions where H, is the historical  of strategies alive as initially defined by equation (T4).
distribution and S, the simulated distribution, the Kullback-

Leibler divergence from S to H is given by Equation (33). Nk
LY =" Dk (H|S) (34a)
i=1
z) ;
s L®
Dk (H]S) = ZH HG)’ 33 O N (34b)

We can then define the unnormalized likelihood of a market ~ Note here the resampling is at first glance done very dif-
scenario i by Equation (34a) where Ny, represents the number  ferently. Indeed we are no longer looking to directly find
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the most profitable strategie but the right frequency of
each strategy in the ecosystem so as to make the latter
more realistic (as compared measure of the historical P&L
distribution). A good argument could be made that selecting
for the best strategies using the genetic algorithm resampling
methodology of our original paper [87] summarized by figure
[I8] would converge to a mature market that will hopefully
converge to the ecosystem that would best accommodate the
simulation of the historical P&Ls of each strategy. This is
not necessarily a bad approach but a little restrictive. An
additional way to adjust the resampling here would perhaps
be to inspire ourselves from what would be a more rigorous
invasion chart of the one from figure 20} The resampling
methodology would then consist of increasing/decreasing the
neighboring strategies that impact the P&L of the strategies
which Kullback-Leibler divergence are the closest to 1 (most
off their historical P&L).

3) Example: For instance, let us assume in figure 20| that
we are sure of the invasion relation depicted by arrow 2 and 3
and that our 2 only consists of MLR, XOR and TF strategies.
We have also sampled few markets with a random frequency
of each of these strategies and are now examining how to
adjust the frequencies of each strategy in each scenario so as
to converge with a set of senarios in which the P&L of each
strategy is similar to the historical one. In each scenario we
calculate the Kullback-Leibler divergence of each strategy
and have found that the MLRs are the one which are the
closest to 1. This means that in this precise scenario we
need to increase the set of strategies which would benefit in
making the MLR closer to their historical P&L. In this case,
let’s say that the P&L resulting in the simulation for the MLR
is significantly below it’s historical one. We therefore need
to increase the frequency of TF strategies so as to encourage
the MLR invasion and therefore their increase in P&L and
therefore an anticipated decrease in their simulated Kullback-
Leibler divergence score. Had the P&L been overestimated,
we would have instead increased the frequency of XOR
strategies.

V. CONCLUSION
A. Summary

We have started this paper by pointing to a puzzling ob-
servation from the newly born high frequency commodities
market which because of its extreme youth and therefore
immaturity makes it a great case study for a high frequency
market at inception and therefore for our purpose. More
specifically as we have seen with Figure [, on 06/08/2011,
fascinating patterned oscillations occurred in the commodi-
ties market. These oscillations cannot be explained by the
Top-Down assumption in Quantitative Finance (e.g. the
Brownian motion). We have proposed in this paper to study
these oscillations with the bottom-up approach instead. The
latter theory was developed in 3 Sections. We first expressed,
in Section [T} classic Financial Strategies in HFFF format and
shown the incentive for going from from a simple perceptron,

710r rather, not just yet.
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to shallow and finally deep learning. We also established
connections to fields that are traditionally associated to
mathematical biology, in Section [III, namely predator-prey
models and evolutionary dynamics. This was done in order
to express the bottom-up approach at the infinitesimal level.
More specifically we developed the concept of Path of
Interaction in an HFTE Game. Finally we looked at how
the financial market composition could be tracked through
time with MTT in Section [Vl

B. Current & Future Research

Our first few simulations opened our eyes up to issues
associated to optimality and need for more scientific rigor.
We have classified these points of improvement in half a
dozen issues listed below.

1) Classification Simplification: As mentioned before the
direct simulation approach [86] is too challenging and the
results perhaps too convoluted to filter out the essence of
the paper. For this reason we proposed to study the problem
using fixed HFFFs, of Figures 8] [[0]and[T3] Though this sim-
plifies the problem it also means there is human intervention
in the strategy pool chosen. This latter intervention, though
convenient raises the question of whether what seems to
be equivalent strategies are equivalent after all. Less human
interventions should take place going forward.

2) The State Space can be improved: Choosing three
types of strategies greatly limits our state space which makes
our tracking methodology easier but not as realistic as we
wish ultimately. Additional strategies must be incorporated
and more HFTE games must be included in our database
of scenarios. This could be the work of many years and
could be addressed in the form of creating an online database
in which interested scientists could deposit their findings in
object oriented format for simulation purposes.

3) Order-book Dynamics: Many of the markets are driven
by different rules for the OB. We need to incorporate
these different rules in our HFTE games as the latter rules
obviously impact the outcome of the games.

4) Increased HFFF complexity does not equate to Inva-
sion: It has been speculated that the need for a bigger brain
in men is partly due to the need for humans to elaborate
deceitful strategies with their rivals and cooperative strategies
with their allies. It is therefore not entirely ridiculous to
associate increased neural network branching (to be roughly
understood as increase in cranial size) with increased strat-
egy complexity. However, increased intelligence does not
necessarily equate to survival as we can see in the shark
population, considered like an apex predator in the sea
but with a relatively small brain that has not evolved for
millennial. We are very much at the early stages in defining
NN complexity and dominance. A clear picture did not
necessarily emerge from the first simulations.

5) Birth & Death Processes: We need to incorporate a
Birth and Death Process to our MTT to make more realistic
scenarios. In order to do that we need to incorporate the OB
in the likelihood function instead of using only the price
dynamics. This will undoubtedly make the programming



exercise more challenging but will at the same time bring
more value to the research in the long run.

6) Complex Food Webs: We have seen in Section [I1I-
[E1] that we have taken [ = 4 in our Path of Interaction
sequence. Would the Path of Interaction results change if we
increase the sequence’s length? In the context of the Path of
Interaction study, is there a more rigorous way to connect
some of the Lotka-Volterra predator prey models to these
interactions? It seems intuitively more likely that the strategy
ecosystem should rather be a complex food web. Can we
enhance the idea of the simple Lotka-Volterra predator prey
model to more complex food webs? More specifically what
are the strategies that would create a stable and unstable
food web? The concept of Path of Interaction is meant to be
a bridge connecting the gap between strategy formalization
to evolutionary dynamics but this bridge in not yet clearly
specified.

7) Diversity & Stability: One other legitimate question
that we can ask ourselves is whether the HFFF a complex
enough network to model all financial strategies? And if not
all, does it encompass enough strategies to convey something
interesting and meaningful when you make the strategies
interact with each other. In this context our first chapter
and paper [86] ended with the proposed “Diversity & the
Financial Markets” conjecture below which is currently an
open problem that is interesting to mention in the context of
future research:

Conjecture 3 (Diversity & the Financial Markets):
Diversity in financial strategies in the market leads to its
instability.

Remark Note this conjecture has be studied partially with
simulations and can be perhaps indirectly studied or at
least intuitively using some of the finding in mathematical
biology. More specifically the one associated with diversity
in ecosystem and stabilit However we are still a long way
before being able to answer this question.
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