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Abstract— The change subsequent to the sub-prime crisis
pushed pressure on decreased financial products complexity,
going from exotics to vanilla options but increase in pricing
efficiency. We introduce in this paper a more efficient method-
ology for vanilla option pricing using a scenario based particle
filter in a hostile data environment. In doing so we capitalize
on the risk factor decomposition of the the Implied Volatility
surface Parametrization (IVP) recently introduced [70] in order
to define our likelihood function and therefore our sampling
methodology taking into consideration arbitrage constraints.
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I. SCOPE

A. Market context

The financial crisis of 2009 and the resulting social uproar
led to an ethical malaise [51], [69], [74] that grew in the
scientific community as well as within practitioners which
changed the market in many ways including the following:
‚ convoluted financial products with high volatility or/and

low liquidity and/or without any societal need, other
than as speculative tool, such as exotic products were
chastised [49] and many desks were closed as a result,

‚ the product class that took the niche of exotics became
simpler vanilla products, which hedging property has
still utilitarian value1, more liquid, less volatile and
therefore more in-line with the role of derivatives at
their inception,

‚ traditional financial mathematical programs focused on
derivatives in which highest likelihood and mathemat-
ical convenience prevailed over data supported by the
market were chastised and rethought [61] which popu-
larized Machine Learning (ML) and more specifically
Gaussian processes (GP) within them because they
provided a flexible non-parametric framework to which,
one could incorporate growing data. The latter academic
scheme is already making good progress [91] at model-
ing the options market but it seems there are some room

1babak.mahdavidamghani@oxford-man.ox.ac.uk
2steve.roberts@oxford-man.ox.ac.uk
1For example a farmer would use a put options in order to hedge himself

against the prices of its crop going down few months before maturity.

for improvement especially when coherence as defined
by arbitrage constraints is taken into consideration,

‚ liquidity modeling became of central focus for govern-
ment led initiatives [84] such as for example within the
Fundamental Review of the Trading Book (FRTB),

‚ risk models increased in sophistication more specifically
in the context of coherent non-arbitrageable scenarios
[71] and risk factor to P&L mapping [84].

B. Problem Formulation

In this paper we expose some of the challenges asso-
ciated to the process of price discovery in the context of
vanilla options market making, more specifically resulting
to its asynchronous and multi-space2 properties and with the
arbitrage and liquidity constraints.

1) The problem of normalizing rolling contracts: Though
sometimes including small idiosyncratic differences most
derivatives listed markets typically offer new contracts once
a month with a two year expiry on a fixed date. This means
that once, two years have elapse from the first issuance of the
listed contracts, we have every months the contracts which
were issues 2 years back that expire. The day an issuance
occurs:
‚ we have a new information about what the information

stored in implied volatility surface is worth with a two
year expiry,

‚ a new information about short dated options (which
expired the day of issuance)

‚ as well as information about the surface every month in
between these two time-lapses.

It is usually agreed that there exists 9 important pillars in
which linear interpolation in variance space gives reasonable
results3. These pillars are Over Night (ON), 1 Week (1W),
2W, 1M, 2M, 3M, 6M, 1 Year (1Y) and 2Y. Figure I-
B.1 gives an illustration of these pillars the instant of
simultaneous issuance of the longest expiry options with the
expiry of the shortest expiry contracts. Figure I-B.1 illustrates
the case in which the last expiry was more than a day away
associated with the challenges in estimating these invisible
points.

2to be understood as the strike and tenor space
3For example on the FX markets.
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Appendix: Issue of contracts expressed in dates vs expiry
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Figure: When a contract roll occurs we have a simple solution
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Fig. 1. When contracts roll we have a simple solution
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Appendix: Issue of contracts expressed in dates vs expiry
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Figure: When there is no roll, how do we populate the red zones without jumps?
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Fig. 2. When there is no roll, how do we populate the red zones without jumps?
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2) The problem of asynchronous data from the OTC
market: The second problem we will address in the one
associated to the question of marked implied volatility sur-
face (IVS) update in cases of non listed volatilities. For
instance figure I-B.2 represents a tranche of our IVS. We
can see that a random arrival at a specific point of the IVS
may diffuse throughout the tranche and beyond but the way
this is done is critical in the context of Market Making.
for instance in figure I-B.2 the arrival of information on a
specific moneyness (the arrow) could mean many things:
‚ the specific moneyness has increased without any

change on the remainder of the IVS,
‚ the overall IVS price has increased but we only observe

one specific point,
‚ a change of skew,
‚ a change in the total variance structure,
‚ a localized change in the implied, volatility with small

impact in the direct vicinity without change in the
distant points,

‚ an increase in that specific point with a decrease in the
rest of the IVS.

‚ other less likely change in various risk factors.

Distribution	for	potential	impact	as	function	of	distance

ln 𝐹/𝑘 or	𝐹 − 𝐾 or	delta

𝜎),+

Distribution	for	potential	impact	as	function	of	distance

Distribution	for	potential	
impact	as	function	of	distance

Fig. 3. Asynchronous information arrival on specific moneyness and the
intuitive representation for the impact on other the other strikes of the same
tenor

These few changes and their mix will have to be adequately
addressed in our proposed methodologies at the distribution
level in which the latter is of various scenarios of IVS
changes.

C. Structure of this technical document

We first explore the science of fetching the raw, available
but sparse data from the markets in section II. In section III
we present the risk factors associated to the volatility surface
by re-introducing the ones of the Implied Volatility Surface
Parametrization (IVP) [70]. We will recall in section IV the
arbitrage constraints inherent to the IVS, a necessary step
to the resampling methodology we will introduce in section
VI. A literature review for scenario tracking will however be
summarized prior to that in section V.

II. THE SCIENCE OF FETCHING THE RAW DATA

A. Black-Scholes related models

The celebrated Black-Scholes-Merton (BSM) model is
the most respected closed form equation that provides the

mathematical weaponry to price European options model. It
can take 3 main form depending on the underlying diffusion:
‚ Log-Normal diffusion: the most well known form,
‚ Normal Assumption: which has become more useful in

the recent past especially on the interest rate market in
which we have seen in 2016 the bizarre economic state
of negative ones,

‚ Garman Kohlhagen model on the FX market which
formalizes the log-normal diffusion as a ratio of log-
normal diffusion.

1) Log-Normal Assumption: The BSM formula using the
log-normal diffusion is given equation (1).

CpSt, T q “ e´rpT´tqrFNpd1q ´KNpd2qs (1)

with d1 “ 1
σ
?
T´t

“

ln
`

S0

K

˘

` pr ´ q ` 1
2σ

2qpT ´ tq
‰

,
d2 “ d1 ´ σ

?
T ´ t, Np¨q the cumulative distribution

function of the standard normal distribution, T ´ t the time
to maturity, St the spot price of the underlying asset, Ft
the forward price, K is the strike price, r the risk free rate,
q the dividend yield and σ the volatility of returns of the
underlying asset.
Proof: If we take the BSM diffusion dSt{St “

pr ´ qqdt ` σdWt, using Ito’s lemma, we get
ST “ Ste

pr´q`σ
2

2 qpT´tq`σWT´t . The price of a
European Call is given by CpSt, T q “ e´rpT´tqEQrST ´

Ks` “ e´rpT´tq 1?
2πσ

ş8

´8
pST ´ Kq1STąKe

´x2

2σ dx.
We can also note that ST ą K ô x ă

1
σ
?
T´t

“

ln
`

S0

K

˘

` pr ´ q ` 1
2σ

2qpT ´ tq
‰

. We can get
rid of the indicator function and adjust the born of the
integral function and we get equation (1).

2) Normal Assumption: The BSM pricing methodology
using the normal diffusion is given equation (2).

CpS0, tq “ e´rpT´tqrpF ´KqNpdq`σ
?
T ´ tN 1pdqs (2)

with d “ F´K
σ
?
T´t

.
Proof: If we take the BSM normal diffusion dSt “ pr ´
qqdt`σdWt, using the proof methodology of II-A.1 we get
equation (2).

3) Garman Kohlhagen model: An adjustment in the FX
market is necessary compared to the other markets. This is
done with the Garman Kohlhagen (GK) [27] model instead of
the BSM model to account for the presence of two interest
rates relevant to pricing: rd the domestic risk free simple
interest rate and rf the foreign risk free simple interest
rate. Equation (3), with the usual BSM naming conventions,
provides the pricing method laid down by GK.

C “ S0e
´rfTNpd1q ´Ke

´rdTNpd2q (3)

with d1 “
lnpS0{Kq`prd´rf`σ

2
{2qT

σ
?
T

and d2 “ d1 ´ σ
?
T .

Proof: If we take the BSM normal diffusion dSt{St “ prd´
rf qdt`σdWt, using the proof methodology of II-A.1 we get
equation (2).

B. Ensemble learning and the Brent Algorithm
The BSM assumes constant volatility but the vanilla

options’ prices, as seen on the market, suggest that the BSM
is wrong.
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1) Motivation: There are many reasons why the BSM is
still used but for the sake of making the reasons brief, we
can put forward the argument of the Greeks being critical
across all main banking functions:
‚ Front Office: where pricing and hedging is used on daily

basis on options’ desks,
‚ Middle Office: risk management in which VaR method-

ologies using sensitivities are quite common and
‚ Back Office: product control in which clearing method-

ologies require live P&L and often sensitivities are used.
To reconcile the BSM equation to the market observable
prices, the only non-observable value is the volatility input
value. We call IVS the geometrical 3D structure which takes
as input a tenor and a moneyness4 and returns the volatility
value which reconciles the BSM equation to the market
observable price (as we can see from figure 4). If we call the
function Pricer, the closed form formula returning the BSM
of equation (1), (2) or (3) with F P tN ,L,Gu acting as a flag
to the pricing methodology. There are 3 main algorithms used
going from price risk to implied vol, namely the Bisection,
the Newton-Raphson and their “ensemble learning”, Brent
algorithm.

2) Bisection: The Bisection method described in algo-
rithm 1 has the property of always converging but can be
a bit slow. This root-finding method repeatedly bisects the
interval of study and subsequently selects the subinterval in
which the root is contained. The process is repeated until the
root is found within an arbitrary error.

Algorithm 1 Bisection method returns IVS
Require: P, St,K, rd, rf , T
Ensure: P « CpF , St,K, σi, T, rd, rf , q, r, T q

1: εÐ 0.01; N “ 50; σ` Ð 3.0; σ´ Ð 0.01;
2: for i “ 1 to N do
3: σi Ð

σ``σ´
2

4: if P ą CpSt,K, σ, T, rd, rf , q, rq then
5: σ` Ð σi
6: else
7: σ´ Ð σ
8: end if
9: if |P ´ CpSt,K, σ, T, rd, rf , q, rq| ă ε then

10: iÐ N
11: end if
12: end for
13: Return σi

3) Newton-Raphson: The Newton-Raphson described in
algorithm 2 is faster than the bisection method but does not
always converge. The idea of this root finding algorithm
starts with an initial guess, assumed reasonably close to
the the solution. Using basic calculus, the tangent line is
then calculated as a mean to approximate the next guess.
The method is iterated until a stopping criteria such as an
approximate error is enforced.

4or log-moneyness or delta space depending on which form of the BSM
and which asset class we are dealing with.

Algorithm 2 Newton method returns IVS σi
Require: P, St,K, rd, rf , T
Ensure: P « CpF , St,K, σi, T, rd, rf , q, r, T q

1: σ0 Ð .5,
2: εÐ 10´5,
3: εÐ 10´14,
4: M “ 20
5: S “ false
6: y1 Ð Ke´rτφpd2q

?
τ

7: for i “ 1 to M do
8: y Ð CpF , St,K, σ0, T, rd, rf , q, r, T q

9: d2 Ð
lnpS{Kq`pr´q´σ2

0{2qτ

σ0

?
T

10: y1 “ Ke´rτφpd2q
?
τ

11: if |y1| ă ε then
12: break;
13: end if
14: σ1 “ σ0 ´ y{y

1

15: if |σ0 ´ σ1| ă εˆ |σ1| then
16: F “ true
17: break;
18: end if
19: σ0 “ σ1

20: end for
21: if S “ true then
22: Return σi
23: else
24: “Algorithm did not converge”
25: end if

4) Brent: The Brent algorithm is a mixture of the Bi-
section described in algorithm 1 and the Newton methods
described in algorithm 2. The Brent algorithm essentially
tried the Newton method and switches to the Biscetion
method if the algorithm has hard time converging. If both
speed and accuracy matter, we recommend this algorithm,
otherwise the simplicity of the Bisection method works in
most financial applications.

Remark We will call Cp.q the pricing function that gets as
input an implied volatility σpt, kq and returns the relevant
price. B will therefore be the normal, log-normal or the
Garman Kohlhagen formula depending on the asset class in
which one works.

III. IMPLIED VOLATILITY SURFACE RISK FACTORS

The objective of this section is to discuss the risk factors
associated to the simplest of the non linear products, the
vanilla options, which are the stepping stones of more
complex derivative strategies5. Studying vanilla options can
be done in couple of domains, the price domain or the IVS
domain, developed to address the limitations of the Black-
Scholes model. As it happens, working on the IVS domain
offers lots of benefits that the price domain cannot replicate.
There exists many parametrization of the IVS, notably the

5eg: straddle, strangle, butterfly, call & calendar spread, condor, etc ...
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Fig. 4. A possible arbitrage free IVS plot

Schonbucher and the SABR models [98], [40], [4], have had
their share of practitioners enthusiasts. However, we will only
discuss the SVI [28], [30], [29], [31] model and its most
advanced extension, the IVP as it is currently the one which
has the most comprehensive number of risk factors.

A. The Raw Stochastic Volatility Inspired (SVI) model

1) History: One advertised6 advantage of the SVI is that it
can be derived from Heston [44], [30], a model used by many
financial institutions for both risk, pricing and sometimes
statistical arbitrage purposes. One of the main advantages
of this parametrization is its simplicity. Advertised as being
parsimonious, its parametrization assumed linearity in the
wings (in which it yields a poor fit) because of its inability to
handle variance swaps, leading it to become decommissioned
couple of years after its birth. Another limitation of the SVI
became apparent after the subprime crisis and the subsequent
call for mathematical models that would incorporate liquidity
which the SVI did not incorporate [70].

Remark In terms of notations, we use the traditional no-
tation [31] and in the foregoing, we consider a stock price
process pStqtě0 with natural filtration pFtqtě0, and we define
the forward price process pFtqtě0 by Ft :“ EpSt|F0q. For

6One of the main point of this paper is to expose a small mistake that
was done in one particular paper [28] but for the sake of the introduction,
we will make this remark as a footnote.

any k P R and t ą 0, CBSpk, σ
2tq denotes the Black-

Scholes price of a European Call option on S with strike
Fte

k, maturity t and volatility σ ě 0. We shall denote the
Black-Scholes IVS by σBSpk, tq, and define the total implied
variance by

wpk, χRq “ σ2
BSpk, tqt.

The implied variance v shall be equivalently defined as
vpk, tq “ σ2

BSpk, tq “ wpk, tq{t. We shall refer to the two-
dimensional map pk, tq ÞÑ wpk, tq as the volatility surface,
and for any fixed maturity t ą 0, the function k ÞÑ wpk, tq
will represent a slice.

2) Formula: For a given maturity slice, we shall use the
notation wpk, χRq where χR “ ta, b, ρ,m, σu represents a
set of parameters, and the t-dependence is dropped.

Remark Note that in the context of an implied volatility
parametrization, “parameters” and “risk factors” can be used
interchangeably.

For a given parameter set. Then the raw SVI parameterization
of implied variance reads:

wpk, χRq “ a` brρpk ´mq `
a

pk ´mq2 ` σ2s (4)

with k being the log-moneyness (logpKF q with F being the
value of the forward).

5



Remark Note that there exist several other forms of the SVI
model which are equivalent to each other through a set of
transform functions [31]. The motivation of their existence
and the details of the transforms are out of scope but we
refer to the original papers [31] for the motivated reader.

The advantage of Gatheral’s model was that it was a paramet-
ric model that was easy to use, yet had enough complexity
to model with great accuracy a great portion of the volatility
surface and its dynamic. Figure 5 illustrates the change in
the a parameter (the general volatility level risk), Figure
6 illustrates the change in the b parameter (the vol of vol
risk), Figure 7 illustrates the change in the ρ parameter (the
skew risk), Figure 9 illustrates the change in the σ parameter
(the ATM volatility risk) and finally Figure 8 illustrates the
change in the m parameter (the horizontal displacement risk).

B. Relation between IVP and raw SVI

Jim Gatheral developed the SVI model at Merrill Lynch in
1999 and implemented it in 2005. The SVI was subsequently
decommissioned in 2010 because of its limitations in accu-
rately pricing out of the money variance swaps (for example
short maturity Var Swaps on the Eurostoxx are overpriced
when using the SVI). This is because the wings of the SVI
are linear and have a tendency to overestimate the out of
the money (OTM) variance swaps. Benaim, Friz and Lee [6]
gave a mathematical justification for this market observation.
The paper suggests that the IVS cannot grow asymptotically
faster than

?
k but may grow slower than

?
k when the

distribution of the underlier does not have finite moments
(eg: has heavy tails). This suggest that the linear wings of
the SVI model may overvalue really deeply OTM options
which is observable in the markets. In order to address the
limitations of the SVI model in the wings, while keeping
its core skeleton intact, Mahdavi-Damghani [4] proposed a
change of variable which purpose was to penalize the wings’s
linearity. The additional relevant parameter was called β and
was later extended in order to also address the liquidity
constraints of the model [70] especially given the challenging
regulatory environment7. Mahdavi-Damghani initially named
the model “generalized SVI” (gSVI) [4] but renamed it
“Implied Volatility Parametrization” (IVP) [70] once the
liquidity parameters were incorporated. In order to keep the
number of factor limited, this β penalization functions was
made symmetrical on each wing8. The function needed to be
increasing as it gets further away from m, majored by a linear
function increasing in rm;`8r, decreasing in s´8;ms and
increasing in concavity the further away it gets from the
center. Equation (5) summarizes the gSVI9. The penalization
was initially given by equation (5b). Figure 10 illustrates the

7e.g. Fundamental Review of the Trading Book (FRTB)
8But induced geometrically more significant on the steepest wing: for e.g.

more significant on the left wing in the Equities market and more significant
on the right wing of the Commodities (excluding oil) market

9or alternatively IVP’s mid, model

change in the β parameter.

σ2
gSV I pkq “ a` b

„

ρ pz ´mq `

b

pz ´mq
2
` σ2



z “
k

β|k´m|
, 1 ď β ď 1.4

(5a)

(5b)

Remark The downside transform in the gSVI [4] was arbi-
trarily given by z “ k

β|k´m|
, 1 ď β ď 1.4. It is however,

important to note, that there are many ways of defining
the downside transform. One general approach would be to
define µ and η like it is done in equation (6a). That idea can
be prolonged to exponential like function such as the one
in Equations (6b) or (6c). The idea is always the same: the
further away you are from the ATM, the bigger the necessary
adjustment on the wings.

z “
k

βµ`η|k´m|

z “ e´β|k´m|pk ´mq

z “ log pβ|k ´m|q

(6a)

(6b)
(6c)

Mahdavi-Damghani, in introducing the IVP model [70]
picked in equation (6a) a µ “ 1 and η “ 4 and have
the transformation in the form z “ k

β1`4|k´m| because it
yields better optimization results on the FX markets and also
because it relaxes the constraint on β but our intuition is that
the exponential like function may work better when it comes
to showing convergence between the modified Heston and
the IVP model [72].

C. Risk factors associated to Liquidity

By incorporating the information on the gSVI, the ATM
Bid Ask spread and the curvature adjustment of the wings
Mahdavi-Damghani [4], [70] defines what he labeled the
Implied Volatility surface Parametrization (IVP) below:

σ2
IV P,o,τ pkq “

„

ρτ pzo,τ ´mτ q `

b

pzo,τ ´mτ q
2
` σ2

τ



ˆ bτ ` aτ

zo,τ “
k

β
1`4|k´m|
o,τ

σ2
IV P,`,τ pkq “

„

ρτ pz`,τ ´mτ q `

b

pz`,τ ´mτ q
2
` σ2

τ



ˆ bτ ` aτ ` ατ ppq

z`,τ “zo,τ r1` ψτ ppqs

σ2
IV P,´,τ pkq “

„

ρτ pz´,τ ´mτ q `

b

pz´,τ ´mτ q
2
` σ2

τ



ˆ bτ ` aτ ´ ατ ppq

z´,τ “zo,τ r1´ ψτ ppqs

ατ ppq “α0,τ ` paτ ´ α0,τ qp1´ e
´ηατ pq

ψτ ppq “ψ0,τ ` p1´ ψ0,τ qp1´ e
´ηψτ pq

The functions αppq (figure 11) and ψppq (figure 12) model
the ATM and wing curvature of the Bid-Ask keeping in mind
the idea that the bigger the position size the bigger the market

6
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impact and hence the wider the Bid-Ask. This market impact
parameter is controlled by p (figure 13). Finally, couple of
additional parameters model the elasticity of the liquidity:
ηψ (figure 14) and ηα (figure 15).

IV. ARBITRAGE & THE OPTIONS MARKET

As we have seen in section I-A, having coherent risk sce-
narios has become of central importance in the last few years.
The way stress testing is assessed for the options market
is usually threefold. First, the performance as defined by
the difference between the number of exceptions as returned
from the back-testing exercise and the quantile level of our
VaR, is of central importance at the first glance. Having a
poor risk engine that does not take into account arbitrage
creation may distort many scenarios especially when the
shape of the IVS is highly skewed or/and high. Second,
many of the risk engines uses numerical methods which
break if an arbitrage is created on the IVS. Finally, many of
the risk engines whether presented internally in the financial
institution or outside with the regulators is scrutinized and
if arbitrage is not seriously considered the reputation of
the managers/bank is compromised and the likelihood of
acceptance of the corresponding risk model decreases as a
result. We will see in this section the constraints around
the arbitrage frontiers given by the conditions on the strike
(section IV-A) and tenor (section IV-B) spaces.

A. Condition on the strike

The model set up is the usual. Let us set up the probability
space pΩ, pfqptě0q,Qq, with pfqptě0q generated by the T ` 1
dimensional Brownian motion and Q is the risk neutral
probability measure under which the discounted price of
the underlier, rS, is a martingale. We also assume that
the underlier can be represented as a stochastic volatility
lognormal Brownian motion as represented by 7.

dSt “ rStdt` σtStdWt (7)

In order to prevent arbitrages on the volatility surface we will
start from basic principles and derive the constraints relevant
to the strike and tenor.

1) Theoretical form: Using Dupire’s results [20], [21], we
can write the price of a call: CpS0,K, T q “ e´rTEQrST ´
Ks` “ e´rT

ş`8

K
pST ´ KqφpST , T qdST with φpST , T q

being the final probability density of the call. Differentiating
twice we find equation (8).

B2C

BK2
“ φpST , T q ą 0. (8)

Proof: We write our call price CpS0,K, T q “

e´rTEQrST ´ Ks` which, using integration gives
e´rT

ş`8

K
pST ´ KqφpST , T qdST

BC
BK which we simplify to

´e´rT
ş`8

K
φpST , T qdST “ ´e´rTEpST ą Kq. Also we

know that 0 ď ´e´rT BC
BK ď 1. Differentiating a second

time and setting r “ 0 we find φpST , T q “ B
2C
BK2 .

Using numerical approximation we get equation (9) which
is known in the industry as the arbitrage constraint of the

positivity of the butterfly spread [107].

@∆, CpK ´∆q ´ 2CpKq ` CpK `∆q ą 0 (9)

Proof: Given that the probability density must be
positive we have B

2C
BK2 ě 0, using numerical approximation,

we get

B2C

BK2
“ lim

∆Ñ0

rCpK ´∆q ´ CpKqs ´ rCpKq ´ CpK `∆qs

∆2

“ lim
∆Ñ0

CpK ´∆q ´ 2CpKq ` CpK `∆q

∆2

therefore CpK ´∆q ´ 2CpKq ` CpK `∆q ě 0

Gatheral and Jacquier [31] proved that the positivity of
the butterfly condition comes back to making sure that the
function gpq below is strictly positive.

gpkq :“

ˆ

1´
Kw1pkq

2wpkq

˙2

´
w1pkq2

4

ˆ

1

wpkq
`

1

4
`
w2pkq

2

˙

Proof: We have shown in equation (8) that B
2C
BK2 “ φpq.

Applying this formula to the Black-Scholes equation gives
for a given tenor φpkq “ gpkq?

2πwpkq
exp

´

´
d2pkq

2

2

¯

where

wpk, tq “ σ2
BSpk, tqt is the implied volatility at strike K

and where d2pkq :“ ´k?
wpkq

´
a

wpkq.

Function gpkq yields a polynomial of the second degree with
a negative highest order which suggest that the function is
inverse bell curve like and potentially only positive given
two constraints which may appear as contradicting some of
the initial slides Gatheral presented back in 2004. If ge1 and
ge2 happens to be the exact roots of gpkq “ 0 with ge2 ě ge1
then the volatility surface is arbitrage free with respect to the
butterfly constraint if wpkq ď ge2 and wpkq ě ge1.

2) Necessary but not sufficient Practical form: There
exists another version of this butterfly condition, in equation
(8), that is a necessary but not sufficient condition to make
a volatility surface arbitrage free but remains useful when
one has a more practical objective which will be illustrated
with an example in section III. This condition is given by
equation (10).

@K,@T, |TBKσ
2pK,T q| ď 4 (10)

Proof: The intuition behind the proof is taken from
Rogers and Tehranchi [93] but is somewhat simplified for
practitioners. Assuming r “ 0, let us define the Black-
Scholes call function f : R ˆ r0,8q ÝÑ r0, 1q in terms
of the tail of the standard Gaussian distribution Φpxq “

1?
2Π

ş`8

x
expp´y

2

2 qdy and given by:

fpk, νq “

$

&

%

Φp
k
?
ν
´

?
ν

2
q ´ ekΦp

k
?
ν
`

?
ν

2
q if ν ą 0

p1` ekq` if ν “ 0

Let us call Vtpk, τq the implied variance at time t ě 0 for
log-moneyness k and time to maturity τ ě 0. Let’s now

9
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Fig. 11. Change in the α parameter in the IVP model
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Fig. 12. Change in the ψ parameter in the IVP model
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Fig. 13. Change in the p parameter in the IVP model
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Fig. 14. Change in the ηψ parameter in the IVP model
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Fig. 15. Change in the ηα parameter in the IVP model

label our Kappa and Vega, with the convention that φpxq “
1?
2Π

expp´x
2

2 q.

fkpk, νq “ ´e
kΦp

k
?
ν
`

?
ν

2
q

fνpk, νq “ φp
k
?
ν
`

?
ν

2
q{2
?
ν

Now define the function I : tpk, cq P Rˆr0,8q : p1`ekq` ď
c ă 1u ÝÑ r0, 1q implicitly by the formula:

fpk, Ipk, cqq “ c

Calculus gives Ic “ 1
fν

and Ik “ ´ fk
fν

, from here using the
chain rule, designating Bk`V as the right derivative. We have

Bk`V “ Ik ` IcBkErpSτ ´ ekq`s

Bk`V “ ´
fk
fν
´

PpSτ ą ekq

fν

ă ´
fk
fν
“ 2

?
ν

Φp k?
ν
`
?
ν

2 q

φp k?
ν
`
?
ν

2 q

Now using the bounds of the Mills’ ratio 0 ď 1 ´ xΦpxq
φpxq ”

εpxq ď 1
1`x2 , we have:

Bk`V ď
4

k{V ` 1
ă 4

Similarly we can show [93] that Bk´V ą ´4, therefore we
have |BkV | ă 4

One can think of the boundaries of the volatility surface, as
extrapolated by equation (10), as more relaxed boundaries
(but still ”close”) in the strike space compared to the exact
solution from gpkq set to 0 which are both necessary and suf-
ficient conditions for the volatility surface to be arbitrage free
for the butterfly condition. Formally if ga1 and ga2 happens to
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be the exact roots of |TBKσ2pK,T q| ´ 4 “ 0, with ga2 ě ga1
then we have ga1 ď ge1 ď wpkq ď ge2 ď ga2 . The reason
why equation (10) is practical is because in de-arbitraging
methodologies (as we will see more in details in section
III), there exist for the pricers, a component of tolerance
anyways (the pricers are stable if the volatility surface is
slightly away of its arbitrage frontier). This suggests that
finding a close enough solution but building on top of that
an iterative methodology to get closer and closer to the
practical arbitrage frontier is almost equally fast, but with
less computing trouble, than having the exact theoretical
solution (and building an error tolerance finder on top of it
anyways). This is because there is less probability to make
a typo mistakes in typing the exact solution of gpkq (or
its numerical approximation) especially if your parametrized
version of the volatility surface is complex which is the case
in most banks (tga1 , g

a
2u are easier to find than tge1, g

e
2u). Also

as we will see in section III that given that we would like
a liquidity component around a mid price, having a simple
”close enough” constraint on the mid becomes very useful
especially if we are happy to allow the mid to have arbitrages
on it, something which happens to be the case from time
to time on the mid vol of the market anyways. Figure 16
represents a counter example of |TBKσ2pK,T q| ď 4 applied
to the Raw SVI parametrisation10 in which pa, b,m, ρ, σq “
p0.0410, 0.1331, 0.3586, 0.3060, 0.4153q respect the bp1 `
|ρ|q ď 4

T inequality but for which the probability density
function at expiry in negative around moneyness of 0.8
yielding a butterfly arbitrage.

B. Condition on the tenor

The model setup is the same as in section IV-A, that is let
us set up the probability space pΩ, pfqptě0q,Qq, with pfqptě0q

generated by the T ` 1 dimensional Brownian motion and
Q is the risk neutral probability measure under which the
discounted price of the underlier, rS, is a martingale. We also
assume that the underlier can be represented as a stochastic
volatility lognormal Brownian motion as represented by
equation (7). In order to prevent arbitrages on the volatility
surface on the tenor space we will split this subsection in its
theoretical form in section IV-B.1 and IV-B.2 for its practical
form.

1) Theoretical form: The condition on the tenor axis
which insures the volatility surface to be arbitrage free is
that the calendar spread should be positive:

CpK,T `∆q ´ CpKe´r∆, T q ě 0 (11)

Proof: One application of Dupire’s formula [20],
[21] is that the pseudo-probability density must satisfy the
Fokker-Planck [24], [88] equation. This proof is taken from
El Karoui [56]. Let us apply Itô to the semi-martingale
. This is formally done by introducing the local time
ΛKT : e´rpT`εq pST`ε ´Kq

`
´ e´rpT q pST ´Kq

`
“

şT`ε

T
re´ru pSu ´Kq

`
du `

şT`ε

T
e´ru1tSuěKudSu `

10which we discuss more in details in section III.

1
2

şT`ε

T
e´rudΛKu . Local times are introduced in mathematics

when the integrand is not smooth enough. Here the
call price is not smooth enough around the strike
level at expiry. Now we have: E

`

e´ru1tSuěKuSu
˘

“

C pu,Kq `Ke´ruP pSu ě Kq “ C pu,Kq ´K BC
BK pu,Kq.

The term of the form E
´

şT`ε

T
e´rudΛKu

¯

is found due to
the formula of local times, that is:

E

˜

ż T`ε

T

e´rudΛKu

¸

“

ż T`ε

T

e´ruduE
`

ΛKu
˘

“

ż T`ε

T

e´ruduσ2 pu,KqK2φ pu,Kq

“

ż T`ε

T

σ2 pu,KqK2 B
2C

BK2
pu,Kq du

Plugging these results back into the first equation we get:

C pT ` ε,Kq “C pT,Kq ´

ż T`ε

T

rC pu,Kq du` pr ´ qq

ˆ

ż T`ε

T

ˆ

C pu,Kq ´K
BC

BK
pu,Kq

˙

du

`
1

2

ż T`ε

T

σ2 pu,KqK2 B
2C

BK2
pu,Kq du

If we want to give a PDE point of view of this problem we
can notice that φ pT,Kq “ e´rT B

2C
BK2 pT,Kq verifies the dual

forward equation:

φ
1

T pT,Kq “
1

2

B2
`

σ2 pT,KqK2φ pT,Kq
˘

BK2

´
B2 ppr ´ qqKφ pT,Kqq

BK

Integrating twice by part, we find:

Be´rTC pT,Kq

BT
“

1

2
σ2 pT,KqK2erT

B2C pT,Kq

BK2

´

ż `8

K

pr ´ qqKerT

ˆ
B2C pu,Kq

BK2
BK pT,Kq du

Now integrating by part again and setting dividends to 0 we
find the generally admitted relationship:

BC

Bt
“
σ2

2
K2 B

2C

BK2
´ rK

BC

BK

and therefore we have:

σ “

d

2
BC
Bt ` rK

BC
BK

K2 B2C
BK

From this formula and from the positivity constraint on
equation (8) we find that BC

Bt `rK
BC
BK ě 0. Note that for very

small ∆, we have CpKe´r∆, T q « CpK´Kr∆, T q. Using
Taylor expansion we get CpK ´ Kr∆, T q “ CpK,T q ´

Kr∆ BC
BK ` . . . and therefore rK BC

BK «
CpK,T q´CpKe´r∆,T q

∆ .
Using forward difference approximation we also have BC

BK “
CpK,T`∆q´CpK,T q

∆ and from Fokker-Planck we have BC
Bt `

12



Remark 3.2. By a careful study of the minima and the shapes of the two slices w(·, t1)
and w(·, t2), it is possible to determine a set of conditions on the parameters ensuring no
calendar spread arbitrage. However these conditions involve tedious combinations of the
parameters and will hence not match the computational simplicity of the lemma.

For a given slice, we now wish to determine conditions on the parameters of the raw
SVI formulation (3.1) such that butterfly arbitrage is excluded. By Lemma 2.1, this is
equivalent to showing (i) that the function g defined in (2.1) is always positive and (ii)
that call prices converge to zero as the strike tends to infinity. Sadly, the highly non-linear
behaviour of g makes it seemingly impossible to find general conditions on the parameters
that would eliminate butterfly arbitrage. We provide below an example where butterfly
arbitrage is violated. Notwithstanding our inability to find general conditions on the
parameters that would preclude arbitrage, in Section 4, we will introduce a new sub-class
of SVI volatility surface for which the absence of butterfly arbitrage is guaranteed for all
expiries.

Example 3.1. (From Axel Vogt on wilmott.com) Consider the raw SVI parameters:

(a, b,m, ρ, σ) = (−0.0410, 0.1331, 0.3586, 0.3060, 0.4153) , (3.8)

with t = 1. These parameters give rise to the total variance smile w and the function g
(defined in (2.1)) on Figure 1, where the negative density is clearly visible.
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Figure 1: Plots of the total variance smile w (left) and the function g defined in (2.1)
(right), using the parameters (3.8).

4 Surface SVI: A surface free of static arbitrage

We now introduce a class of SVI volatility surfaces—which we shall call SSVI (for ‘Surface
SVI’)—as an extension of the natural parameterization (3.2). For any maturity t ≥ 0,

10

Fig. 16. Axel Vogt [111] counter-example for bp1` |ρ|q ď 4
T

being arbitrage free

rK BC
BK ě 0. Substituting, we obtain CpK,T`∆q´CpK,T q

∆ `
CpK,T q´CpKe´r∆,T q

∆ ě 0. Simplifying further we find
CpK,T `∆q ´ CpKe´r∆, T q ě 0.

2) Practical form: Similarly to section IV-A there exists a
more practical equivalent to the calendar spread criteria. This
equivalent criteria is known as the falling variance criteria
which states that if S is a martingale under the risk neutral
probability measure Q,

@t ą s, e´rtEQpSt ´Kq
` ě e´stEQpSs ´Kq

` (12)

Proof: e´rtEQpSt ´ Kq` ě e´rsEQpSs ´ Kq` ñ

e´rtEQpSt ´ Kq` ´ e´rsEQpSs ´ Kq` ě 0 ñ Calendar
Spread ě 0 ñ CpK,T `∆q ´ CpKe´r∆, T q ě 0

C. Arbitrage Frontiers and de-arbitraging

1) General picture: As we have seen from equations (9)
and (11) there are couple of arbitrages types, the calendar
and butterfly arbitrage as summarized my equation (13b).

@∆, CpK ´∆q ´ 2CpKq ` CpK `∆q ą 0

@∆,@T,CpK,T `∆q ´ CpKe´r∆, T q ě 0

(13a)

(13b)

A new wave of risk methodologies with the objective of mak-
ing incoherent scenarios like the ones allowing an arbitrage
is currently being developed [4], [31], and though promissing
few questions remain to be addressed [70].

Remark Note that once Bid Ask has been incorpo-
rated, we care a bit less about the mid in the con-
text of vanilla options market making. Though the mid
may have arbitrages at the portfolio level, the Bid-
Ask relaxes the butterfly spread equations. We get,
in the context of the IVP mode described in section
III: @∆, CpK ´ ∆, σIV P,`,tpkqq ´ 2CpK,σIV P,´,tpkqq `
CpK ` ∆, σIV P,`,tpkqq ą 0 which gives: CpK,T `

∆, σIV P,`,tpkqq ´ CpKe
´r∆, T, σIV P,´,tpkqq ě 0.

2) Intuitive Mathematical Specification: If we were to
take an intuitive representation of the IVS at market ob-
servable pillars with a double array (figure 17), then if we
disregard macro-economical, asset specific factors11, then the
relative co-movements of these pillars as driven by the pure
arbitrage opportunities as explained by section IV-A and IV-
B would be best described by figure 17.

Remark This intuitive representation of figure 17 no longer
works with the FX pillars (figure 18). This is because the
data in FX is listed in delta space but the classic de-arbing
algorithms assumes that the data is conveniently aligned in
log-moneyness space12. Indeed the market delta space pillars
are the 10, 25, 50, 75, 90 delta13. The delta to log-moneyness
conversion creates increasing mis-alignments as the tenor
increases (figure 18).

3) Few Definitions:

Definition Let Cτ be the set of standardized pillars, Ck

the set of standardized strikes14. Let’s call Cd the set of
live contract expiries. We will call σtpCτi , C

k
j q the implied

volatility, as observed from the price space and σ̂tpCτi , C
k
j q

the closest implied volatility spanned by the IVP parameters
for σtpCτi , C

k
j q with:

‚ ”i”th observed element of Cτ where 1 ă i ă |Cτ | and
‚ ”j”th element of Ck of Cd where 1 ă j ă |Cd| and

Definition Let’s call C̃τ P Cτ and C̃k P Ck the set of
incomplete data taken within the standardized strikes.

Remark For most cleared asset classes, we usually have:

11In the Equities market the skew is such that it reflect the market
participants fear of bankruptcies and hence a premium towards a price
decrease of the underlier. In the commodities market we see the reverse
(with an exception for oil), people are afraid of prices going up and hence
the observation of a reverse skew.

12∆f “ φe´rftNpφ 1
2
σ
?
tq

13On the tenor axis the pillars are usually ON, 1W, 2W, 1M, 2M, 3M,
6M, 1Y, 18M, 2Y.

14which can depending on the market be expressed in moneyness, log-
moneyness or delta.
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Cτ “ tON, 1W, 2W, 1M, 2M, 3M, 6M, 1Y, 18M, 2Y u.

Remark If we are dealing with the FX market, we have
Ck “ t10, 25, 50, 75, 90u.

Remark In general we have |Ck| ă |Cτ | .

4) Optimization by constraint specification: De-arbing is
a convoluted mathematical optimization which perfect solu-
tion falls outside the scope of what, people in the industry,
especially within the risk space usually define to be below
the threshold for the pragmatic benefits to complexity ratio,
so for this section of the practitioners, we propose, a par-
tial de-arbing process for which a simplified de-arbitraging
methodology has been illustrated in figure 17 and for which
the optimization by constraint algorithm is described below.

solve:
σ̂tpτ, dq “ arg min

σ̃tpτ,dq

ř

τ

ř

drCpσi,tpτ, dqq ´ Cpσ̃tpτ, dqqs
2

subject to:
@d P Ck, CB,d,τ

1 ă CB,d,τ
2 and

@τ P Cτ , CC,d,τ
1 ă CC,d,τ

1

Where we call B the call spread15 arbitrage flag and CSd,τ1

its impact in price given by CSd,τ1 “

ˇ

ˇ

ˇ
CB,d,τ

1 ´ CB,d,τ
2

ˇ

ˇ

ˇ
1B

where CB,d,τ
1 “ C

´

K ´ ∆, σ0pK ´ ∆, τq
¯

and CB,d,τ
2 “

C
´

K,σ0pK, τq
¯

. Let C be the Calendar spread arbitrage

flag and CSd,τ2 its price impact given by CSd,τ2 “
ˇ

ˇ

ˇ
CC,d,τ

1 ´ CC,d,τ
2

ˇ

ˇ

ˇ
1C where CC,d,τ

1 “ C
´

K, τ`∆, σ0pK, τ`

∆q
¯

and CC,d,τ
2 “ C

´

Ke´r∆, σ0pKe
´r∆, τq

¯

. In this
algorithm, we make sure that for every pillar tenor and every
pillar strikes the relevant points are mutually arbitrage free16.
We try to find the shortest distances between the input vol
and its closest arbitrage free mirror subject to the Call spread
(equivalent to butterfly) and Calendar spread Conditions.
In order to use the usual optimization tools, we need to
adjust the objective function to take in the constraints of
the problem. Now adjusting the the objective function as
described in equation (14).

σ̂tpτ, dq “ arg minσ̃tpτ,dq
ÿ

τ

ÿ

d

rσi,tpτ, dq ´ σ̃tpτ, dqs
2

`KpCSd,τ1 ` CSd,τ2 q (14)

where K is the constraint scalar17.
5) Economical argument around the closest arbitrage

frontier: The Mean Square Error (MSE) methodology of
the pointwise de-arbitraging methodology of algorithm 14
gives an intuitive representation in figures 17 and 18 of how
the closest geometrical implied vol would be adjusted like.
Though these optimization algorithms in the L2-norm appear

15equivalent to the Butterfly condition
16without any guaranty that the in between pillars are arbitrage free.

However we will see that this latter technical malaise can be neglected
when add a bid/ask spread.

17a big enough number to make sure the constraints are respected but not
too big to create numerical instabilities

intuitive for a Mathematician, they do not make sense in a
market point of view. A better approach would be to do the
optimization in L2-norm but rather on the price space instead
of the IVS space like proposed by equation (15) with BSp.q
representing any of the 3 methodologies of section II-A and
K̃ representing a normalized scalar chosen18 to benefit the
optimization process on the price space, namely

σ̂tpτ, dq “ arg min
σ̃tpτ,dq

ÿ

τ

ÿ

d

K̃pCSd,τ1 ` CSd,τ2 q

`rCpσi,tpτ, dqq ´ Cpσ̃tpτ, dqqs
2 (15)

Though closer, this latter approach on the mid still does not
reflect the critical liquidity aspect which creates on regular
basis a mid volatility surface which is itself not arbitrage
free but, however, not arbitrage-able when liquidity is taken
into account. Moreover, the strong correlation between the
different tenors of the volatility surface may influence the
convenient substitution in situation of impossibility of perfect
hedging. Also the view in the better methodology would be
to interpret the movement as an economical argument rather
than a MSE argument on the implied volatility in which the
movement have higher variances on the lower tenor without
much price impact.

V. REVIEW OF INFERENCE MODELS

A. Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) algorithms [78]
sample from a probability distribution based on a Markov
chain that has a desired equilibrium distribution, the quality
of the sample improving at each additional iteration. We will
see next few version of the MCMC algorithm.

1) Metropolis-Hastings algorithm: The Metropolis-
Hastings algorithm is a MCMC method that aims at
obtaining a sequence of random samples from a probability
distribution for which direct sampling is difficult [79] and
initially advertised of high dimensions. We will see in the
next few algorithm examples that the methodology is now
classified as useful for low dimensional problems. At each
iteration xt, the proposal next point x1 is sampled through
a proposed distribution gpx1|xtq. We then calculate:

‚ with a1 “
P px1q
P pxtq

is the the probability ratio between the
proposed sample and the previous sample,

‚ and a2 “
gpxt|x

1
q

gpx1|xtq
, the ratio of the proposal density in

both directions19.

and set a “ maxpa1a2, 1q, we then accept xt`1 “ x1 if
r „ U r0, 1s ě a which essentially means that if a “ 1,
accept is always true otherwise you accept with a probability
a1a2. The algorithm works best if the proposal distribution
is similar to the real distribution. Note that the seed is slowly
forgotten as the number of iterations increases.

18different from K
19equal to 1 is the proposal density is symmetric

14



If 

Then If 

+     - 

Call Prices Implied Volatility 

> 

Increasing Strikes 

Increasing 
Tenors 

- 
+ 

< 

Increasing Strikes 

Increasing 
Tenors 

Then 

Fig. 17. Visualization for the core simple de-arbing idea
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Fig. 18. Visualization for the core simple de-arbing idea approximation

2) Gibbs sampling: Perhaps one of the simplest
MCMC algorithms, the Gibbs Sampling (GS) algorithm
was introduced in by Geman & Geman [33] with the
application of image processing. Later it was discussed
in the context of missing data problems [108]. The
benefice of the Gibbs algorithm for Bayesian analysis
was demonstrated in Tanner and Wong [108]. To
define the Gibbs sampling algorithm, let the set of
full conditional distributions be: πpψ1|ψ2, . . . ,ψpq,
. . . , πpψd|ψ1,ψ2, . . . ,ψd´1,ψd`1, . . . ,ψpq, . . . ,
πpψp|ψ1, . . . ,ψp´1q. One cycle of the GS, described
in algorithm 3, is completed by sampling tψku

p
k“1 from

the mentioned distributions, in sequence and refreshing the
conditioning variables. When d is set to 2 we obtain the two
block Gibbs sampler described by Tanner & Wong [108]. If
we take general conditions, the chain generated by the GS
converges to the target density as the number of iterations
goes towards infinity. The main drawback with this method
however is its relative computational heavy aspect because
of the burn-in period.

3) Hamiltonian Monte Carlo: Hamiltonian Monte Carlo
[19], sometimes also referred to20 as hybrid Monte Carlo
is an MCMC method for obtaining a sequence of random
samples from a probability distribution for which direct
sampling is difficult. It serves to address the limitations
of the Metropolis-Hastings algorithm by adding few more
parameters that aim is to reduce the correlation between
successive samples using a Hamiltonian evolution process
and also by targeting states with a higher acceptance rate.

4) Ordered Overrelaxation: Overrelaxation is usually a
term associated with a Gibbs Sampler but in the context
of this subsection we discuss Ordered Overrelaxation. The
methodology aims at addressing the slowness associated in
performing a random walk with inappropriately selected step
sizes. The latter problem was addressed by incorporating a
momentum parameter which consist of sampling n random
variables (20 is considered a good [68] number for n), sorting
them from biggest to smallest, looking where xt ranks, say
at p’s position, amongst the n variables and the picking n´p

20though more in the past.
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Algorithm 3 GIBBS-SAMPLING(ψp0q1 , . . . ,ψ
p0q
p )

Require: Specify an initial value ψp0q “
´

ψ
p0q
1 , . . . ,ψ

p0q
p

¯

Ensure:
 

ψp1q,ψp2q, . . . ,ψpMq
(

1: for j “ 1, 2, . . . ,M do
2: Generate ψpj`1q

1 from π
´

ψ1|ψ
pjq
2 ,ψ

pjq
3 , . . . ,ψ

pjq
p

¯

3: Generate ψ
pj`1q
2 from

π
´

ψ2|ψ
pj`1q
1 ,ψ

pjq
3 , . . . ,ψ

pjq
p

¯

4:
...

5: Generate ψ
pj`1q
d from

πpψd|ψ1,ψ2, . . . ,ψd´1,ψd`1, . . . ,ψpq.

6:
...

7: Generate ψpj`1q
p from π

´

ψp|ψ
pj`1q
1 , . . . ,ψ

pj`1q
p´1

¯

8: Return the values
 

ψp1q,ψp2q, . . . ,ψpMq
(

9: end for

for the subsequent sample xt`1 [80]. This form of optimal
“momentum” parameter design is a central pillar of research
in MCMC.

5) Slice sampling: Slice sampling is one of the remark-
ably simple methodologies [80] of MCMC which can be
considered as a mix of Gibbs sampling, Metropolis-Hastings
and rejection sampling methods. It assumes that the target
density P˚pxq can be evaluated at any point x but is more
robust compared to the Metropolis-Hastings especially when
if comes to step size. Like rejection sampling it draws
samples from the volume under the curve. The idea of the
algorithm is that it switches vertical and horizontal uniform
sampling by starting horizontally, then vertically performing
“slices” based on the current vertical position. MacKay made
good contributions in its visual [68] representation.

6) Multiple-try Metropolis: One way to address the curse
of dimensionality is the Multiple-try Metropolis which can
be though of as a enhancement of the Metropolis-Hastings
algorithm. The former allows multiple trials at each point
instead of one by the latter. By increasing both the step size
and the acceptance rate, the algorithm helps the convergence
rate of the sampling trajectory [67]. The curse of dimension-
ality is another central area of research for MCMCs.

7) Reversible-Jump: Another variant of the Metropolis-
Hastings is the Reversible-jump MCMC (RJ-MCMC)
developed by Green [39]. One key factor or RJ-MCMC
is that it is designed to address changes of dimensionality
issues. In our case, as we saw in section III of “Paper
Format” document, we face a dual type issues around
change of dimensionality. The first being the frequency
of each strategy in an ecosystem and the second element
being the HFFF21 which branching structure and size
changes as a function of the strategy22. More formally.

21See figure 6 of “Paper Format” document for more information.
22See in section III and Figures 6, 9, 10 and 11.

Let us define nm P Nm “ t1, 2, . . . , Iu, as our model
indicator and M “

ŤI
nm“1 Rdm the parameter space

whose number of dimensions dm is function of model
nm (with our model indicators not needing to be finite).
The stationary distribution is the joint posterior distribution
of pM,Nmq that takes the values pm,nmq. The proposal
m1 can be constructed with a mapping g1mm1 of m and
u, where u is drawn from a random component U with
density q on Rdmm1 . The move to state pm1, n1mq can
thus be formulated as pm1, n1mq “ pg1mm1pm,uq, n

1
mq.

The function gmm1 :“ pm,uq ÞÑ pm1, u1q, with
pm1, u1q “

`

g1mm1pm,uq, g2mm1pm,uq
˘

must be one
to one and differentiable, and have a non-zero support:
supppgmm1q ‰ ∅, in order to enforce the existence of
the inverse function g´1

mm1 “ gm1m, that is differentiable.
Consequently pm,uq and pm1, u1q must have the same
dimension, which is enforced if the dimension criterion
dm ` dmm1 “ dm1 ` dm1m is verified (dmm1 is the
dimension of u). This criterion is commonly referred to
as dimension matching. Note that if Rdm Ă Rdm1 then
the dimensional matching condition can be reduced
to dm ` dmm1 “ dm1 , with pm,uq “ gm1mpmq.
The acceptance probability is given by apm,m1q “

min
´

1, pm1mpm1fm1 pm
1
q

pmm1qmm1 pm,uqpmfmpmq

ˇ

ˇ

ˇ
det

´

Bgmm1 pm,uq
Bpm,uq

¯
ˇ

ˇ

ˇ

¯

,
where pmfm, the posterior probability is given by
c´1ppy|m,nmqppm|nmqppnmq with c being the normalising
constant. Many problems in data analysis require the
unsupervised partitioning. Roberts, Holmes and Denison
[92] re-considered the issue of data partitioning from an
information-theoretic viewpoint and shown that minimisation
of partition entropy may be used to evaluate the most
probable set of data generators which can be employed
using a RJ-MCMC.

B. Dynamical Linear Methods

Multi-Target Tracking (MTT) which deals with state space
estimation of moving targets has applications in different
fields [5], [64], [105], the most intuitive ones being perhaps
of radar and sonar function.

1) Kalman Filter: The Kalman Filter (KF) is a mathemat-
ical tool which purpose is to make the best estimation in a
Mean Square Error (MSE) sense of some dynamical process,
(xk), perturbed by some noise and influenced by a controlled
process. For the sake of our project we will assume that the
controlled process is null but will still incorporate it in the
general state in order to fully understand the model. The
estimation is done via observations which are functions of
these dynamics (yk). Roweis and Ghahramani made a quality
review [94] of the topic. The dynamics of the KF is usually
referred in the literature as xk and given by equation (16).

xk “ Fkxk´1 `Bkuk ` wk (16)

with Fk is the state transition model which is applied to the
previous state xk´1; Bk is the control-input model which is
applied to the vector uk (often taken as the null vector); wk
is the process noise which is assumed to be drawn from a
zero mean multivariate normal distribution with covariance
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Qk and wk „ Np0, Qkq. At time k an observation of xk, yk
is made according to equation (17).

yk “ Hkxk ` vk (17)

where Hk is the observation model which maps the true
state space into the observed space. vk is the observation
noise which is assumed to be zero mean Gaussian white
noise with vk „ Np0, Rkq. We also assume that the noise
vectors ptw1, . . . , wku, tv1 . . . vkuq at each step are all
assumed to be mutually independent (covpvk, wkq “ 0 for
all k). The KF being a recursive estimator, we only need the
estimated state from the previous time step and the current
measurement to compute the estimate for the current state.
x̂k will represent the estimation of our state xk at time up
to k. The state of our filter is represented by two variables:
x̂k|k, the estimate of the state at time k given observations
up to and including time k; Pk|k, the error covariance matrix
(a measure of the estimated accuracy of the state estimate).
The KF has two distinct phases: Predict and Update. The
predict phase uses the state estimate from the previous
timestep to produce an estimate of the state at the current
timestep. In the update phase, measurement information at
the current timestep is used to refine this prediction to arrive
at a new, more accurate state estimate, again for the current
timestep. The formula for the updated estimate covariance

Algorithm 4 KALMAN-FILTER(w)
Require: array of weights wN1
Ensure: array of weights wM1 resampled

1: //Predicted state:
2: x̂k|k´1 “ Fkx̂k´1|k´1 `Bk´1uk´1

3: Pk|k´1 “ FkPk´1|k´1F
T
k `Qk´1

4: //Update state:
5: //Innovation (or residual)
6: ỹk “ yk ´Hkx̂k|k´1

7: //Covariance
8: Sk “ HkPk|k´1H

T
k `Rk

9: //Optimal Kalman gain
10: Kk “ Pk|k´1H

T
kS

´1
k

11: //Updated state estimate
12: x̂k|k “ x̂k|k´1 `Kkỹk
13: //Updated estimate covariance
14: Pk|k “ pI ´KkHkqPk|k´1

above is only valid for the optimal Kalman gain. Usage of
other gain values require a more complex formula. Below
we present a partial proof of the KF algorithm [53], [54].
Proof: The second line of the algorithm is derived the fol-
lowing way: x̂k|k´1 “ E rxks “ E rFkxk´1 `Bkuk ` wks
“ Fkx̂k´1|k´1 ` Bk´1uk´1. The third line of the
algorithm is derived the following way: Pk|k´1 “

E rxkxks “ E

»

—

—

—

–

Fk xk´1|k´1x
T
k´1|k´1

E
”

xk´1|k´1x
T
k´1|k´1

ı

“Pk|k´1

F T
k

fi

ffi

ffi

ffi

fl

` 2 E
“

Fkxk´1|k´1Bkuk
‰

0

` 2 E
“

Fkxk´1|k´1wk
‰

0

`

2 E rBkukwks

0

` E
“

wkw
T
k

‰

Qk

“ FkPk´1|k´1F
T
k ` Qk´1. The

8th line is derived the following way: Sk “ E rykyks “

E

»

—

—

–

Hk xkx
T
k

E
”

xk´1|k´1x
T
k´1|k´1

ı

“Pk|k´1

HT
k

fi

ffi

ffi

fl

` 2 E rHkxkvks

0

`

E rvkvks

Rk

“ HkPk|k´1H
T
k `Rk.

As for the Kalman Gain, we first rearrange some
of the equations in a more useful form. First,
with the error covariance Pk|k as above Pk|k “

covpxk ´ x̂k|kq and substitute in the definition of x̂k|k
Pk|k “ covpxk ´ px̂k|k´1 ` Kkỹkqq and substitute ỹk.
Pk|k “ covpxk ´ px̂k|k´1 ` Kkpyk ´ Hkx̂k|k´1qqq. Pk|k
“ covpxk ´ px̂k|k´1 ` KkpHkxk ` vk ´ Hkx̂k|k´1qqq,
now by collecting the error vectors we get Pk|k “

covppI ´ KkHkqpxk ´ x̂k|k´1q ´ Kkvkq. Given that the
measurement error vk is uncorrelated with the other terms,
we have Pk|k “ covppI´KkHkqpxk´x̂k|k´1qq`covpKkvkq,
now by the properties of vector covariance this
becomes Pk|k “ pI ´ KkHkqcovpxk ´ x̂k|k´1qpI ´
KkHkq

T ` KkcovpvkqKT
k which, using our invariance

on Pk|k´1 and the definition of Rk becomes Pk|k “

pI ´ KkHkqPk|k´1pI ´ KkHkq
T ` KkRkK

T
k . This

rearrangement is known in the literature as the Joseph form
of the covariance equation, which is true independently of
Kk. Now if Kk is the optimal Kalman gain, we can simplify
further. The Kalman filter is a minimum MSE estimator.
The error is xk ´ x̂k|k. We would like to minimize the
expected value of the square of the magnitude of this vector,
Er|xk ´ x̂k|k|

2s. This idea is equivalent to minimizing
the trace of the posterior estimate covariance matrix Pk|k.
By expanding out the terms in the equation above and
rearranging, we get: Pk|k “ Pk|k´1 ´ KkHkPk|k´1 ´

Pk|k´1H
T
kK

T
k ` KkpHkPk|k´1H

T
k ` RkqK

T
k “ Pk|k´1

´ KkHkPk|k´1 ´ Pk|k´1H
T
kK

T
k ` KkSkK

T
k . The

trace is minimized when the matrix derivative is zero:
B trpPk|kq
B Kk

“ ´2pHkPk|k´1q
T ` 2KkSk “ 0. Solving this

for Kk yields the Kalman gain: KkSk “ pHkPk|k´1q
T

“ Pk|k´1H
T
k Kk “ Pk|k´1H

T
kS

´1
k . This optimal Kalman

gain, is the one that yields the best estimates when
used. The formula used to calculate the posterior error
covariance can be simplified when the Kalman gain equals
the optimal value derived above. Multiplying both sides
of our Kalman gain formula on the right by SkK

T
k , it

follows that KkSkK
T
k “ Pk|k´1H

T
k K

T
k . Referring back to

our expanded formula for the posterior error covariance,
Pk|k “ Pk|k´1 ´ KkHkPk|k´1 ´ Pk|k´1H

T
k K

T
k `

KkSkK
T
k we find that the last two terms cancel out, giving

Pk|k “ Pk|k´1 ´ KkHkPk|k´1 “ pI ´KkHkqPk|k´1. This
formula is low latency and thus usually used. One should
keep in mind that it is only correct for the optimal gain
though.
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2) Extended Kalman Filter: The EKF is essentially an
approximation of the KF for non-severely-non-linear models
which linearises about the current mean and covariance, so
that the state transition and observation models need not be
linear functions of the state but may instead be differentiable
functions. The dynamics and measurements of this equation
is presented in (18).

#

xk “ fpxk´1, ukq ` wk

yk “ hpxkq ` vk
(18)

The algorithm is very similar to the one described in

Algorithm 5 EXTENDED-KALMAN-FILTER(w)
Require: array of weights wN1
Ensure: array of weights wM1 resampled

1: //Predicted state:
2: x̂k|k´1 “ fpx̂k´1|k´1, ukq
3: Pk|k´1 “ FkPk´1|k´1F

T
k `Qk´1

4: //Update state:
5: //Innovation (or residual)
6: ỹk “ yk ´ hpx̂k|k´1q

7: //Covariance
8: Sk “ HkPk|k´1H

T
k `Rk

9: //Optimal Kalman gain
10: Kk “ Pk|k´1H

T
kS

´1
k

11: //Updated state estimate
12: x̂k|k “ x̂k|k´1 `Kkỹk
13: //Updated estimate covariance
14: Pk|k “ pI ´KkHkqPk|k´1

algorithm 4 but with couple of modifications highlighted
below algorithm 523.
Proof: The proof for algorithm 5 is very similar to the
proof of algorithm 4 with couple of exceptions. First, Fk
and Hk are approximations of first order of Fk and Hk.
Second, we get a truncation error which can be bounded
and satisfies the inequality known as Cauchy’s estimate:
|Rnpxq| ď Mn

rn`1

pn`1q! , here pa ´ r, a ` rq is the interval
where the variable x is assumed to take its values and Mn

positive real constant such that |f pn`1qpxq| ďMn for all x P
pa´r, a`rq. Mn gets bigger as the curvature or non-linearity
gets more severe. When this error increases it is possible
to improve our approximation at the cost of complexity
by increasing by one degree our Taylor approximation, i.e:
Fk “

Bf
Bx

ˇ

ˇ

ˇ

fpx̂k´1|k´1,ukq
` 1

2
B

2f
Bx2

ˇ

ˇ

ˇ

fpx̂k´1|k´1,ukq2
and Hk “

Bh
Bx

ˇ

ˇ

fpx̂k|k´1q
` 1

2
Bh
Bx

ˇ

ˇ

fpx̂k|k´1q
2 .

Remark Though the EKF tries to address some of the limi-
tations of the KF by relaxing some of the linearity constraints
it still needs to assume that the underlying function dynamics
are both known and derivable. This particular point is not at
all desirable in many applications.

23Note that here Fk “
Bf
Bx

ˇ

ˇ

ˇ

ˇ

x̂k´1|k´1,uk

and Hk “ Bh
Bx

ˇ

ˇ

ˇ

ˇ

x̂k|k´1

.

C. Dynamical Non-linear methods

1) Sequential Monte Carlo methods: Sequential Monte
Carlo methods (SMC) [16], [66] known alternatively as Parti-
cle Filters (PF) [35], [58] or also seldom CONDENSATION
[50], are statistical model estimation techniques based on
simulation. They are the sequential (or ’on-line’) analogue of
Markov Chain Monte Carlo (MCMC) methods and similar to
importance sampling methods. If they are elegantly designed
they can be much faster than MCMC. Because of their non
linear quality they are often an alternative to the Extended
Kalman Filter (EKF) or Unscented Kalman Filter (UKF).
They however have the advantage of being able to approach
the Bayesian optimal estimate with sufficient samples. They
are technically more accurate than the EKF or UKF. The
aims of the PF is to estimate the sequence of hidden
parameters, xk for k “ 1, 2, 3, . . ., based on the observations
yk. The estimates of xk are done via the posterior distribution
ppxk|y1, y2, . . . , ykq. PF do not care about the full posterior
ppx1, x2, . . . , xk|y1, y2, . . . , ykq like it is the case for the
MCMC or importance sampling (IS) approach. Let’s assume
xk and the observations yk can be modeled in the following
way:
‚ xk|xk´1 „ pxk|xk´1

px|xk´1q and with given initial
distribution ppx1q.

‚ yk|xk „ py|xpy|xkq.
‚ equations (19) and (20) gives an example of such

system.

xk “ fpxk´1q ` wk (19)
yk “ hpxkq ` vk (20)

It is also assumed that covpwk, vkq “ 0 or wk and vk
mutually independent and iid with known probability density
functions. fp¨q and hp¨q are also assumed known functions.
Equations (19) and (20) are our state space equations. If we
define fp¨q and hp¨q as linear functions, with wk and vk both
Gaussian, the KF is the best tool to find the exact sought
distribution. If fp¨q and hp¨q are non linear then the Kalman
filter (KF) is an approximation. PF are also approximations,
but convergence can be improved with additional particles.
PF methods generate a set of samples that approximate the
filtering distribution ppxk|y1, . . . , ykq. If NP in the number
of samples, expectations under the probability measure are
approximated by equation (21).

ż

fpxkqppxk|y1, . . . , ykqdxk «
1

NP

NP
ÿ

L“1

fpx
pLq
k q (21)

Sampling Importance Resampling (SIR) is the most com-
monly used PF algorithm, which approximates the proba-
bility measure ppxk|y1, . . . , ykq via a weighted set of NP
particles

´

w
pLq
k , x

pLq
k

¯

: L “ 1, . . . , NP (22)

The importance weights w
pLq
k are approximations to the

relative posterior probability measure of the particles such
that

řP
L“1 w

pLq
k “ 1. SIR is a essentially a recursive version
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Algorithm 6 RESAMPLE(w)
Require: array of weights wN1
Ensure: array of weights wM1 resampled

1: u0 „ Ur0, 1{M s
2: for m “ 1 to N do
3: ipmq Ð

Y

pw
pmq
n ´ upm´1qmq

]

` 1

4: upmq “ upmq ` ipmq

M ´ w
pmq
n

5: end for

of importance sampling. Like in IS, the expectation of a
function fp¨q can be approximated like described in equation
(23).

ż

fpxkqppxk|y1, . . . , ykqdxk «
NP
ÿ

L“1

wpLqfpx
pLq
k q (23)

The algorithm performance is dependent on the choice of
the proposal distribution πpxk|x1:k´1, y1:kq with the optimal
proposal distribution being πpxk|x0:k´1, y0:kq in equation
(24).

πpxk|x1:k´1, y1:kq “ ppxk|xk´1, ykq (24)

Because it is easier to draw samples and update the weight
calculations the transition prior is often used as importance
function.

πpxk|x1:k´1, y1:kq “ ppxk|xk´1q

The technique of using transition prior as importance func-
tion is commonly known as Bootstrap Filter and Condensa-
tion Algorithm. Figure 19 gives an illustration of the algo-
rithm just described. Note that on line 5 of algorithm 7, ŵpLqk ,
simplifies to w

pLq
k´1ppyk|x

pLq
k q, when πpx

pLq
k |x

pLq
1:k´1, y1:kq “

ppx
pLq
k |x

pLq
k´1q. Because it is in general difficult to design

a proposal distributions with the ability of approximating
the posterior distribution well, a past methodology was to
sample from the transition prior which the latter can fail in
situation in which new measurements happen to be in the tail
of the prior or if the likelihood is too peaked in comparison
to the prior [109]. These kind of situations happen often
in Finance since data exhibits jump like behavior. More
information around this topic can be found in [87]. This
naturally invited the use of the EKF and then the UKF as
the proposal distribution for the PF [109].

Proposition The latter method converges.

Proof: This proof is taken from [109], [12]. Let BpRnq
be the space of bounded, Borel measurable functions on
Rn. We denote ||f || , supxPRn |fpxq|. If the importance
weight given by ppyt|xtqppxt|xt´1q

qpxt|x0:t´1,qy1:t
is an upper bound for any

pxt´1, ytq, then for all t ě 0, there exists ct independent of
N , such that for any ft P BpRnxˆpt`1qq we get ct

||ft||
2

Np
ě

E
„

´

1
NP

řNP
L“1 fpx

pLq
k q ´ fpxkqppxk|y1:kqdxk

¯2


.

Remark Though naturally more robust and more accommo-
dating of fatter tails it also naturally yields bigger variance.

Algorithm 7 SMC(w)

Require: array of weights wNp , πpxk|x
pLq
1:k´1, y1:kq

Ensure: array of weights wNp resampled

1: for L “ 1 to NP do
2: x

pLq
k „ πpxk|x

pLq
1:k´1, y1:kq

3: end for
4: for L “ 1 to NP do
5: ŵ

pLq
k “ w

pLq
k´1

ppyk|x
pLq
k qppx

pLq
k |x

pLq
k´1q

πpx
pLq
k |x

pLq
1:k´1,y1:kq

6: end for
7: for L “ 1 to NP do
8: w

pLq
k “

ŵ
pLq
k

řP
J“1 ŵ

pJq
k

9: end for
10: N̂eff “

1
řP
L“1

´

w
pLq
k

¯2

11: if N̂eff ă Nthr then
12: resample: draw NP particles from the current par-

ticle set with probabilities proportional to their
weights. Replace the current particle set with this
new one.

13: for L “ 1 to NP do
14: w

pLq
k “ 1{NP .

15: end for
16: end if

2) Resampling Methods: Resampling methods are usually
used to avoid the problem of weight degeneracy in our
algorithm. Avoiding situations where our trained probability
measure tends towards the Dirac distribution must be avoided
because it really does not give much information on all the
possibilities of our state. There exists many different resam-
pling methods, Rejection Sampling, Sampling-Importance
Resampling, Multinomial Resampling, Residual Resampling,
Stratified Sampling, and the performance of our algorithm
can be affected by the choice of our resampling method. The
stratified resampling proposed by Kitagawa [59] is optimal
in terms of variance. Figure 19 gives an illustration of
the Stratified Sampling and the corresponding algorithm is
described in algorithm 6. We see at the top of the figure
19 the discrepancy between the estimated pdf at time t with
the real pdf, the corresponding CDF of our estimated PDF,
random numbers from r0, 1s are drawn, depending on the
importance of these particles they are moved to more useful
places.

3) Importance Sampling : Importance sampling (IS) was
first introduced in [77] and was further discussed in several
books including in [41]. The objective of importance sam-
pling is to sample the distribution in the region of importance
in order to achieve computational efficiency via lowering
the variance. The idea of importance sampling is to choose
a proposal distribution qpxq in place of the true, harder to
sample probability distribution ppxq. The main constraint is
related to the support of qpxq which is assumed to cover that
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Chap. 2 : Literature Review

2.1.4 Resampling Methods

Resampling methods are usually used to avoid the problem of weight degeneracy in our algorithm.

Avoiding situations where our trained probability measure tends towards the Dirac distribution

must be avoided because it really does not give much information on all the possibilities of our

state. There exists many different resampling methods, Rejection Sampling , Sampling-Importance

Resampling , Multinomial Resampling , Residual Resampling , Stratified Sampling, and the per-

formance of our algorithm can be affected by the choice of our resampling method. The stratified

resampling proposed by Kitagawa [9] is optimal in terms of variance. Figure 2.3 gives an illustration

of the Stratified Sampling and the corresponding algorithm is described in algorithm 13 . The aim

CDF F
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Np−1
Np

, 1]
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Np
, 2
Np

]
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Figure 2.3: Resampling illustration

of figure 2.3 is to talk, we hope, louder than words. It illustrates the Stratified Sampling. We see

32

Fig. 19. Stratified Sampling illustration

of ppxq. In equation (25) we write the integration problem
in the more appropriate form.

ż

fpxqppxqdx “

ż

fpxq
ppxq

qpxq
qpxqdx (25)

In IS the number, Np, usually describes the number of
independent samples drawn from qpxq to obtain a weighted
sum to approximate f̂ in equation (26).

f̂ “
1

Np

Np
ÿ

i“1

W
´

xpiq
¯

f
´

xpiq
¯

(26)

where W pxpiqq is the Radon-Nikodym derivative of ppxq
with respect to qpxq or called in engineering the importance
weights (equation (27)).

W
´

xpiq
¯

“
p
`

xpiq
˘

q
`

xpiq
˘ (27)

If the normalizing factor for ppxq is not known, the im-
portance weights can only be evaluated up to a normal-
izing constant: W

`

xpiq
˘

9p
`

xpiq
˘

q
`

xpiq
˘

. To ensure that
řNp
i“1W px

piqq “ 1, we normalize the importance weights
to obtain equation (28).

f̂ “

1
Np

řNp
i“1W

`

xpiq
˘

f
`

xpiq
˘

1
Np

řNp
i“1W

`

xpiq
˘

“
1

Np

Np
ÿ

i“1

W̃
´

xpiq
¯

f
´

xpiq
¯

(28)

where W̃
`

xpiq
˘

“
Wpxpiqq

řNp
i“1 Wpx

piqq
are called the normalized

importance weights. The variance of importance sampler
estimate [11] in equation (28) is given:

V arqrf̂ s “
1

Np
V arqrfpxqW pxqs

“
1

Np
V arqrfpxqppxq{qpxqs

“
1

Np

ż
„

fpxqppxq

qpxq
´ Eprfpxqs

2

qpxqdx

“

ż
„

p
pfpxqppxqq2

qpxq
q ´ 2ppxqfpxqEprfpxqs



dx

ˆ
1

Np
`
pEprfpxqsq2

Np

“
1

Np

ż
„

p
pfpxqppxqq2

qpxq
q



dx´
pEprfpxqsq2

Np

The variance can be reduced when an appropriate qpxq
is chosen to either match the shape of ppxq so as to
approximate the true variance; or to match the shape of
|fpxq|ppxq so as to further reduce the true variance.
Proof: BV arqrf̂s

Bqpxq “ ´ 1
Np

ş

rp
pfpxqppxqq2

qpxq2 qsdx “

´ 1
Np

ş

rp
pfpxqppxqq2

qpxqqpxq qsdx. qpxq having the constraint of

being a probability measure that is
ş`8

´8
ppxqdx “ 1, we find

that qpxq must match the shape of ppxq or of |fpxq|ppxq.
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D. Scenario Tracking Algorithm

1) Context: Recently, SMC methods [15], [16], [65],
especially when it comes to the data association issue, have
been developed. Particle Filters (PF) [35], [58], have recently
become a popular framework for Multi Target Tracking
(MTT), because able to perform well even when the data
models are nonlinear and non-Gaussian, as opposed to linear
methods used by the classical methods like the KF/EKF [42].
Given the observations and the previous target state infor-
mation SMC can employ sequential importance sampling
recursively and update the posterior distribution of our target
state. The Probability Hypothesis Density (PHD) filter [101],
[103], [75], which combines the Finite Set Statistics (FISST),
an extension of Bayesian analysis to incorporate comparisons
between different dimensional state-spaces, and the SMC
methods, was also proposed for joint target detection and
estimation [82]. The M-best feasible solutions is also a new
useful finding in SMC [82], [60], [7], [62], [8]. Articles
[102], [104] were proposed to cope with both the multitarget
detection and tracking scenario but according to Ng, Li, God-
sill, and Vermaak [81] they are not robust if the environment
becomes more noisy and hostile, such as having a higher
clutter density and a low probability of target detection. To
cope with these problems a hybrid approach and it extensions
[81] were implemented. The aim of these methods is to
stochastically estimate the number of targets and therefore
the multitarget state. The soft-gating approach described in
[83] is an attempt to address the complex measurement-to-
target association problem. To solve this issue of detection
in the presence of spurious objects a new SMC algorithm is
presented in [63]. That method provided a solution to deal
with both time-varying number of targets, and measurement-
to-target association issues.

2) Time-varying number of targets & measurement-to-
target association: Currently, tracking for multiple targets
has a couple of major challenges that are yet to be answered
efficiently. The first of these two main challenges is the
modelling of the time-varying number of targets in an
environment high in clutter density and low in detection
probability (hostile environment). To some extend the PHD
filter [76], [102], [104], based on the FISST , has proved
ability in dealing with this problem with unfortunately a
significant degradation of its performance when the envi-
ronment is hostile [81]. The second main challenge is the
measurement-to-target association problem. Because there is
an ambiguity between whether the observation consists of
measurements originating from a true targets or a clutter
point, it becomes obviously essential to identify which one
is which. The typical and popular approach to solve this
issue is the Joint Probabilistic Data Association (JPDA) [5],
[25]. Its major drawback though is that its tracks tend to
coalesce when targets are closely spaced [22] or intertwined.
This problem has been, however, partially studied. Indeed the
sensitivity of the track coalescence may be reduced if we
use a hypothesis pruning strategy [9], [43]. Unfortunately
the track swap problems still remain. Also performance of

the EKF [42] is known to be limited by the linearity of
the data model on the contrary to SMC based tracking
algorithms developed by [48], [38], [37], [46]. This issue
of data association can also be sampled via Gibbs sampling
[46]. Also because target detection and initialization were
not covered by this framework algorithms developed in [110]
were suggested in order to improve detection and tracking
performance. The algorithm suggested in [110] combines
a deterministic clustering algorithm for the target detection
issue. This clustering algorithm enabled to detect the number
of targets by continuously monitoring the changes in the
regions of interest where the moving targets are most likely
located. Another approach in [95] combines the track-before-
detect (TBD) and the SMC methods to perform joint target
detection and estimation, where the observation noise is
Rayleigh distributed but, according to [95], this algorithm
is currently applicable only to single target scenario. Solu-
tions to the data association problem arising in unlabelled
measurements in a hostile environment and the curse of
dimensionality arising because of the increased size of the
state-space associated with multiple targets were given in
[110]. In [110], a couple of extensions to the standard known
particle filtering methodology for MTT was presented. The
first extension was referred to as the Sequential Sampling
Particle Filter (SSPF), sampled each target sequentially by
using a factorisation of the importance weights. The second
extension was referred by the Independent Partition Particle
Filter (IPPF), makes the hypothesis that the associations are
independent. Real world MTT problems are usually made
more difficult because of couple of main issues. First realistic
models have usually a very non-linear and non-Gaussian
target dynamics and measurement processes therefore no
closed-form expression can be derived for the tracking recur-
sions. The most famous closed form recursion leads to the
KF [2] and arises when both the dynamic and the likelihood
model are chosen to be linear and Gaussian. The second
issue with real world problem is due to the poor sensors
targets measurements labeling which leads to a combinatorial
data association problem that is challenging in a hostile
environment. The complexity of the data association problem
may be enhanced by the increase in probability of clutter
measurements in lieu of a target in areas rich in multi-path
effects. We have seen that the KF is limited in modeling
non linearity because of its linear properties but it is still
an interesting tool as an approximation mean like it has
been done with the EKF [2] which capitalizes on linearity
around the current state in non linear models. Logically
the performance of the EKF decreases as the non-linearity
increases. The Unscented Kalman Filter (UKF) [52] was
created to answer this problem. The method maintains the
second order statistics of the target distribution by recursively
propagating a set of carefully selected sigma points. The ad-
vantage of this method is that it does not require linearisation
as well as usually yields more robust estimates. Models with
non-Gaussian state and/or observation noise were initially
studied and partially solved by the Gaussian Sum Filter
(GSF) [1] . That method approximates the non-Gaussian

21



target distribution with a mixture of Gaussians but suffers
when linear approximations are required similarly to the
EKF. Also, over time we experience a combinatorial growth
in the number of mixture components which ultimately leads
to eliminate branches to keep control of an exponential
explosion as iterations go forward. Another option that does
not require any linear approximations like it is the case
with the EKF or the GSF was proposed [57]. In this case
the non-Gaussian state is approximated numerically with a
fixed grid, using Bayes’ rule, the prediction step is integrated
numerically. Unfortunately because the computational cost of
the integration explodes with the dimension of the state-space
the method becomes useless for dimensions larger than four
[110]. For non-linear and non-Gaussian models, generally
speaking SMC’s have become popular user friendly numer-
ical techniques that approximate Bayesian recursions for
MTT. Its popularity is mainly due to flexibility, relative sim-
plicity as well as efficiency. The method models the posterior
distribution with a set of particles with an associated weights
more or less big relative to the particle importance and
are propagated and adjusted throughout iterations. The very
big advantage with SMC method is that the computational
complexity does not become exorbitant with an increase in
the dimension of the state-space [57]. It has been defined in
[110] that there exists numerous strategies available to solve
the data association problem but they could be categorized
as either single frame assignment methods, or multi-frame
assignment methods. The multi-frame assignment problem
can be solved using Lagrangian relaxation [89]. Another
algorithm the Multiple Hypotheses Tracker (MHT) [90] tries
to keep track of all the possible association hypotheses over
time which makes it awkward as the number of associations
hypotheses grows exponentially with each iteration.

3) The problem of pruning: The Nearest Neighbor Stan-
dard Filter (NNSF) [5] links each target with the closest
measurement in the target space. This simplistic method has
the flaws that one may assume it has, that is the method
suppresses many feasible hypotheses. The Joint Probabilistic
Data Association Filter (JPDAF) [5], [25] is more interesting
in this respect as it does not do as much pruning or pruning
only infeasible hypotheses. The parallel filtering algorithm
goes through the remaining hypotheses and adjusts the corre-
sponding posterior distribution. Its principal deficiency is that
the final estimate looses information because, to maintain
tractability, the corresponding estimate is distorted to a single
Gaussian. This problem however has been identified and
strategies have been suggested to address this shortcoming.
For example [86], [96] proposed strategies to instead reduce
the number of mixture components in the original mixture to
a tractable level. This algorithm unfortunately only partially
solved the problem as many feasible hypotheses may still be
pruned away. The Probabilistic Multiple Hypotheses Tracker
(PMHT) [32], [106] takes as hypothesis that the association
variables to be independent and avoids the problems of
reducing our state space. This leads to an incomplete data
problem that, however may be solved using the Expectation
Maximisation (EM) algorithm [14]. Unfortunately the PMHT

is not suitable for sequential applications because considered
a batch strategy. Moreover [112] has shown that the JPDA
filter outperforms the PMHT and we have seen earlier the
shortcomings of the JPDAF. Recently strategies have been
proposed to combine the JPDAF with particle techniques
to address the general non-linear and non-Gaussian models
[100], [99], [26], [55] issue of approximation of linearity fail-
ing when the dynamic of measurement functions are severly
non-linear. The feasibility of multi-target tracking with SMC
has first been described in [3], [36] but the simulations dealt
only with a single target. In the article [47] the distribution
and the hypotheses of the association is computed using a
Gibbs sampler, [33] at each iterations. This method, similar
to the one described in [13], uses MCMC [34] to compute
the associations between image points within the framework
of stereo reconstruction. Because they are iterative in nature
and take an unknown number of iterations to converge. These
MCMC strategies though, are not always suitable for on-
line applications. Doucet [37] presents a method where the
associations are sampled from a well chosen importance
distribution. Although intuitivly appealing it is, however,
reserved to Jump Markov Linear Systems (JMLS) [17].
The follow up of this strategy, based on the UKF and the
Auxiliary Particle Filter (APF) [87], so that applicable to
Jump Markov Systems (JMS) is presented in [18]. Similar
in [48], particles of the association hypotheses are generated
via an optimal proposal distribution. SMC have also been
applied to the problem of MTT based on raw measurements
[10], [97]. We have seen that the MTT algorithms suffers
from exponential explosion that is as the number of targets
increases, the size of our state spaces increases exponentially.
Because pruning is not always efficient it may commonly
occur that particles contain a mixture of good estimates
for some target states, and bad estimates for other target
states. This problem has been first acknowledged in [85],
and where a selection strategy is addressed to solve this
problem. In [110] a number of particle filter based strategies
for MTT and data association for general non-linear and non-
Gaussian models is presented. The first, is referred to as the
Monte Carlo Joint Probabilistic Data Association Filter (MC-
JPDAF) and presented by the authors as a generalization of
the strategy proposed in [100], [99] to multiple observers and
arbitrary proposal distributions. Two extensions to the stan-
dard particle filtering methodology for MTT is developed.
The first strategy is presented by the authors as an exact
methodology that samples the individual targets sequentially
by utilizing a factorization of the importance weights, called
the Sequential Sampling Particle Filter (SSPF). The second
strategy presented in [110] assumes the associations to be
independent over the individual target, similar to the approx-
imation made in the PMHT, and implies that measurements
can be assigned to more than one target. This assumption
claims that it effectively removes all dependencies between
the individual targets, leading to an efficient component-wise
sampling strategy to construct new particles. This approach
was named Independent Partition Particle Filter (IPPF). Their
main benefit is that as opposed to the JPDAF, neither
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approach requires a gating procedure like in [48].

VI. GENERATING THE IMPLIED VOLATILITY SCENARIOS

A. Overview
We have seen in section III the IVP as a function of its risk

factors, in section IV the conditions which make a volatility
surface coherent and in section V the classic multi target
tracking methodologies. We will see that these sections are
very useful in helping us define the core components of our
SMCM that is the formalization of the likelihood function
in subsection VI-C and the sampling processes in subsection
VI-D. Prior to going through these subsections we will first
go through few definitions in subsection VI-B that will help
us navigate through the formalization.

B. Pillar Normalization and Few Definitions
Definition Let T “ tt0, t1 . . . , tNu be the ordered set of
arrival times such that ti ă ti`1.

Remark tN represents the most recent time-stamp.

Definition Let w “ tw0, w1 . . . , wNu be the set of weights
associated to our arrival times process such that:

wi “ λwi`1, 0 ă λ ă 1 (29)

Definition We call λd,τ the λ weight defined above associ-
ated to the time the implied volatility d and tenor τ , σd,τ ,
arrived in our dataset.

Definition We will call σ̂tpϑ,Kq the linear interpolation in
variance space of the implied volatility. Equation (30) gives
its formula.

σ̂2
t pϑ,C

k
j q “

pCτi`1 ´ ϑqσ
2
t pC

τ
i`1, C

k
j q

Cτi`1 ´ C
τ
i

`
pϑ´ Cτi qσ

2
t pC

τ
i , C

k
j q

Cτi`1 ´ C
τ
i

(30)

where ϑ P rCτi , C
τ
i`1s and 1 ă i ă |Cτ |.

Remark The above definition does not include a definition
of the edges of our IVS and also assume a perfect inter-
polation and extrapolation methodology already exist on the
strike space .

As we have seen and illustrated by figure I-B.1, when there
is no roll, how do we populate the red zones without creating
spurious jumps? For this specific exercise we need to create a
proxy. If we call Υ the stopping24 time at which the contract
rolls as in equation (31)

Υ “ inftt|σ2
t pC

τ
1 , C

k
j q “ σ2

t pC
d
1 , C

k
j qu (31)

then the longest tenor proxy can be better approximated by
equation (32a) and the shortest by equation (32b):
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k
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τ
i`1, C

k
j q
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τ
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τ
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k
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σ̂2
t pC

τ
i`1, C

k
j q

(32a)

(32b)

24to take on probabilistic jargon

with i “ |Cτ | ´ 1 for equation (32a) and i “ 1 for equation
32b.

Definition Without loss of generality we will refrain from
using the various symbolics defined in this subsection and
will assume, unless otherwise specified, that throughout
the paper the implied volatility tenors are the one of the
normalized tenors as opposed to specific contracts.

C. Bespoke Likelihood Function

In order to define our likelihood function we must first
define the arrival and the weighting process associated to the
arrival time. We must also rank the risk factors from most
likely to least likely. There are several methods that can be
used to perform the latter task, we recommend a stepwise
regression [45] as it is simple enough but recognize that other
methods potentially better, may be used as well [23]. Let us
call:
‚ λ0 r-squared contribution of a pointwise change of the

IVS,
‚ λ1 “ tλa, λb, λρ, λm, λσ, λβu the set of ranked r-

squared contribution of each of the 6 parameters P χit “
tait, b

i
t, ρ

i
t,m

i
t, σ

i
t, β

i
tu where i P Cτ representing the

mid and liquidity parameters of each pillar tenors.
‚ λ2 “ tλpa,bq, λpa,ρq, . . . , λpm,βqu the set of unique

pairwise parameter changes but there really is one set
of pairwise parameters that interests us (the combine
change in skew and vol of vol),

‚ the subset of λ1 Y λpb,ρq of all accepted scenarios:

λ “ tλ0, λa, λb, λρ, λm, λσ, λβ , λpb,ρqu (33)

‚ Hp.q the function taking a uniform random variable u „
U r0, 1s and returning the set of parameter(s) associated
to λ: see algorithm (8).

‚ N t
p the number of particles at time t but the number

of particles only change as a function of the rounding
functions used. It always mean reverts towards Np so
we will chose Np instead for convenience sake.

D. Bespoke Sampling Algorithm

1) General Idea: When information about a specific
point, σd,τ , of the IVS has arrived we can assume that this
change:
‚ is isolated but this specific point propagates arbitrage

free constraints on the IVS which would otherwise
remain constant (BPC)25,

‚ corresponds to a change in “vol of vol” (the b param-
eter in the IVP model introduced in section III more
specifically figure 6) BPC,

‚ corresponds to a change in “skew” (the ρ parameter in
the IVP model introduced in section III more specifi-
cally figure 7) BPC,

‚ corresponds to an individual change of any other of IVP
parameter introduced in section III,

25We substitute this sentence in italic by BPC from now on
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Algorithm 8 Hpλq
Require: λ
Ensure: a set of parameter(s) is returned

1: u „ U
“

0, λ0 ` λa ` λb ` λρ ` λm ` λσ ` λβ ` λpb,ρq
‰

2: if 0 ď u ă λ0 then
3: return p0q
4: else if λ0 ď u ă λa then
5: return paq
6: else if λa ď u ă λb then
7: return pbq
8: else if λb ď u ă λρ then
9: return pρq

10: else if λρ ď u ă λm then
11: return pmq
12: else if λm ď u ă λσ then
13: return pσq
14: else if λσ ď u ă λβ then
15: return pβq
16: else if λβ ď u ă λb,ρ then
17: return pb, ρq
18: else
19: return ERROR
20: end if

‚ corresponds to a multiple change of any of the IVP
parameters introduced in section III: more specifically
“spot-vol”.

The reason why mapping onto the IVP parameter is a good
idea is because the parameters of the IVP not only fit better
than any model the market observed prices but also its
parameters map to easily understandable economical risk
factor like we have seen before. The sampling methodology
will consist of changing each parameters of the 3 sets of
types of sampling:
‚ the first type of sampling is one in which we only move

that new point that just arrived. We call this Sample
0P26.

‚ the second type will consists of sampling 1 parameter
of the IVP in order to explain the new data to map
the change of price by a change of economical climate.
For example, the ATM is the point which arrived the
most recently, then our PF will assume with one of its
scenarios that this is due of a change in Vol of Vol (and
therefore) all the point of the implied volatility should
be adjusted accordingly. We will call this sampling
Sample 1P.

‚ the third type will consists of assuming that the point
change is the result of two economical factor happening
at the same time. For example, imagine you are assigned
the task to mark an in the money call for wheat and the

26Note that we could have called this one Sample 1P with the “P” meaning
“point” but this could be also interpreted as “parameter” which we use
for the second type of sampling. Therefore in order to limit confusion we
preferred calling it Sample 0P for 0 parameters

economical climate is that there are political tension
with Russia27 (therefore vol of vol increases) and that
at the same time we have information that there are
possible droughts that are incoming (there is a change
of skew). This leads our PF to assume with one of its
scenarios that this is due to a change in Vol of Vol and
Skew at the same time and that all the point of the
implied volatility should be adjusted accordingly. We
will call this sampling Sample 2P.

Remark Note that we could do the same methodology with:
‚ Three or more of the parameters but usually higher

order greeks beyond the second-order are considered
negligible on the market and therefore it is not worth
adding complexity as the ratio of the benefits over
the latter does not invite such extension. However,
the motivated student may wish to apply higher order
sampling as an exercise.

‚ we could very well imagine scenarios in which the
parameters of different tenors react together at the
same extent but we thought that the de-arbitraging
methodology would partially take care of this specific
additional type of sampling and we also thought that
the methodology was complex enough the way it is cur-
rently proposed. We may address that specific limitation
in a subsequent paper if needed.

2) Formalization: Let’s call the set of IVP parameters
which best fit our IVS information by:

χit “ tχ
M,i
t Y χL,it u (34)

where i P Cτ , χit “ tait, b
i
t, ρ

i
t,m

i
t, σ

i
t, β

i
tu and χM,i

t “

tψi0,t, α
i
0,t, η

i
ψ,t, η

i
α,tu representing the mid and liquidity pa-

rameters of each pillar tenors. In addition we will call 9σpp, qq
(where q P Ck and p P Cτ ) the most recent data and the
array of weights wNp . We sample our scenarios according to
the following optimization by constraints is which x

piq
k of

algorithm (7) is replaced by:

x
piq
k “ arg min

σ̃tpτ,dq

ř

τ

ř

drCpσtpτ, dqq ´ Cpσ̃Hpλq,tpτ, dqqs
2

subject to:
@d P Ck, CB,d,τ

1 ă CB,d,τ
2

@τ P Cτ , CC,d,τ
1 ă CC,d,τ

1

σ̂pp, qq “ 9σpp, qq
1|ait´ãit|ą0 ` 1

|bit´b̃
i
t|ą0 ` 1|ρit´ρ̃it|ą0 ` 1|mit´m̃it|ą0`

1|σit´σ̃it|ą0 ` 1
|βit´β̃

i
t |ą0 “ cardpHpλqq

where cardpHpλqq represents the cardinality of our hash
function.

Remark Note that Sample0P will not return any solution
if the point updated induces arbitrages on the IVS. It also
implies that IVS will have to be saved in grid form instead
of parametric form.

27Russia is one of the first exporters of wheat
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Fig. 20. USD/EUR 2 years expiry straddle strategy backtest under Anticipative Responsible VaR of with λ “ 0.999.

VII. BACKTESTING

In terms of data, it would be good to have a time series
of the implied volatility surface (IVS) in grid format as well
as the specific points which led to the update of the IVS of
the time series. We are ideally interested here to see how
the non visible points are updated in the internal system
as a result of a single visible additional information. This
kind of data is unfortunately not available on the market and
this for a good reason. Indeed, the market becomes visible
upon the exchange of a contract or a series of contracts. For
example, let us assume that we are long a 2 year expiry
straddle on the USD/EUR, we only know about the change
of the volatility a posteriori and through the observed price
of the latter straddle. We can for example use our scenario
based particle filter for risk purposes. More specifically, we
can point to our related study [73] in which we also express
the Risk mirror problem stress scenario generation in terms
of a clustering problem and also introduce the concept of
Responsible VaR, responsive on the upside and stable on the
downside. We point to our results and its discussion in the
original paper [73]. Figure 20 represent a backtest we have
performed using our methodology with a λ “ 0.999.

VIII. CONCLUSION

A. Summary

We first discussed the science of fetching the raw available
sparse data from the markets in section II. In section III we
explore the volatility surface risk factors as a premise, with
the section IV on arbitrage constraints, to the resampling
methodology that is needed in the framework of particle
filter methods for which we have also done a literature
review in section V. We finally discuss, in section VI the
methodology which objective is to generate the implied
volatility scenarios.

B. Future Research

We have raised several limitation to our current model.
First we have limited our model to a span of stress, i “
tp0q, paq, pbq, pρq, pmq, pσq, pβq, pb, ρqu, which most complex
co-movement pb, ρq is limited to a single pair of factors out
of the 15 theoretical ones possible. The model does not even
explore movements with 3, 4, 5 or 6 risk factors. It would
seem unrealistic to explore all the possibilities but it seems
equally plausible that more scenarios could be included.
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