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Abstract— In this paper we propose a new approach to
studying electronic trading & systemic risk by re-introducing
the High Frequency Trading Ecosystem (HFTE) model [65].
We specify an approach in which agents interact through a
topological structure designed to address the complexity de-
mands of most common high frequency strategies but designed
randomly at inception. This strategy ecosystem is then studied
through a simplified genetic algorithm. The results open up
intriguing social and regulatory implications which we propose
to study through tracking methodologies and results from
theoretical biology. The proposed simplifications aim to bring
rigour compared to our first attempt at studying the problem.
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I. INTRODUCTION

A. Historical Context

After the subprime crisis of 2008 and the resulting so-
cial uproar, governments strongly pushed the regulators to
develop more efficient risk monitoring systems1. The new
candidate sector under question was that of algorithmic sys-
tematic trading which led to the flash crash of May 6, 2010,
in which the Dow Jones Industrial Average lost almost 10%
of its value in matter of minutes. However, the current state of
the art risk models are the ones inspired by the last subprime
crisis and are essentially models of networks in which each
node can be impacted by the connected nodes through con-
tagion [37] and is better suited to lower frequency models.
Indeed, on 06/08/2011 a seemingly relatively unnoticed event
occurred on the natural gas commodities market. We say
“relatively unnoticed” simply because the monetary impact
was limited and finance is unfortunately an industry in which
warning signs are usually dismissed until it is too late. We
can see from Figure 1 that clearly something non-random is
occurring. This feeling is exacerbated by the strong intuition
that only interacting agents falling into some sort of quagmire
could yield such series of increasing oscillations followed by
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1In this context risk is viewed as a mixture or Market and Reputation.

Fig. 1. Natural Gas flash crash of 06/08/2011 [76]

a mini crash. Indeed, commodities has historically been seen
as a physical market, this in turn meaning that the prices
are driven by supply and demand of commodities which
can be consumed, stored and/or produced. This particular
point is a unique feature compared to the other markets
(Equities, FX, or Rate). Also this Figure 1 suggests that the
common, though perhaps a bit lazy view, that crashes occur
through totally unpredictable [105] events may not be true
for algorithmic trading.

B. Scientific method & parallel to Conway’s Game of Life

In this paper we take an approach, similar in methodol-
ogy, to Conway’s Game of Life [27], a four-rule cellular
automaton.We apply Conway’s methodology to the world
of High Frequency Trading (HFT) while adjusting some
of the idiosyncratic parts of the exercise. As a reminder,
Conway’s Game of Life assumes that complexity in an
ecosystem2 arises from simple rules. For instance, these rules
can lead to different families of automatons (when iterations
are increased and the seed is random) such as:

‚ Stable forms3. Intuitively the reader may guess that the
concept of financial stability may be related through a
similar methodology.

‚ Oscillating forms: for example the “Blinker”, the
“Toad”, the “Beacon4”, the “Pulsar” and the “Pen-
tadecathlon5”. The concept of financial cycles, or HF

2“Ecosystem” and “Market” are used interchangeable in this paper.
3eg: the “Block”, the “Beehive”, the “Loaf”, the “Boat” etc...
4all three, examples of two period iteration
5three and fifteen period iterations respectively.



oscillations such as of Figure 1 may be induced through
a similar methodology.

‚ Moving forms6 with different sizes and speeds7.
The parallel to the world of quantitative financial strategies
would be the following few points:
‚ interacting agents lead to market price fluctuations and,

more specifically, their interaction determines the stabil-
ity or instability of the market depending on what the
market participating strategies involved as well as the
evolving order-book.

‚ the market will follow the rules of a zero-player game8

with, however, random seeds.
‚ agents (eg: strategies) will follow a rules for their births

and deaths.

C. Market & Orderbooks

1) Caveat: this paper assumes a simplification of the
market: that is one product into one single possible market
with few market participants who are unable to cheat the
system through technology. In reality there exists a plethora
of products in many markets in multiple geographical loca-
tions and the Securities & Exchange Commission (SEC) and
the Financial Conduct Authority (FCA) expose new stories
of cheats on daily basis. This approach may seem overly
simplistic, but, we will see that this simplistic rule abiding
approach may open up a new perceptive towards how people
see and may want to take actions on the market.
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Fig. 2. Order-book visual representation

2) Description: traditional order books consists of a list
of orders that a trading venue (such as an exchanges) uses
to record the market participants’ interests in a particular
financial product. Typically a rule-based algorithm records
these interests, taking into account the price & the volume
proposed (on either side of the bid ask) as well as the time
that interest was recorded.

Definition We define at1 and bt1 the best ask & bid total
volumes at time t. By extension ati, b

t
i with i P t1, 2, 3, 4u

6eg: the “Glider” and the “LWSS (Lightweight spaceship)” etc...
7idiosyncratic properties from the Game of Life, which parallel to our

problem is not necessarily transferable.
8Meaning that its evolution is determined by its initial state, requiring no

further input.

correspond to total volume at the relevant depth in the order
book with the special case where i “ 4 which represents the
total volume at the 4th level and beyond. We will call mt

the mid price of the best bid/ask at time t.

Figure 2 represent an order book which the previous defini-
tion aims at describing.

3) Variable Definition:

Definition We will label by tyiun´1
i“0 the price process of

interest, i P r0, ns its discretized 500ms snapshots with i “ 0
being the most recent snapshot and i “ n its most distant
snapshot. Moreover we will assume here that 500ms is
enough time for the trading system to take the data, reformat
it, analyze it as well allow the relevant strategy to take
actions. Similarly we will define txj,1, xj,2, . . . xj,punj“i`1

the relevant, p leading indicators to the price dynamic of
interest.

Remark We will assume that the leading indicators9 for the
price process can only be taken from the order book which
is a reasonable assumption in the higher frequencies. Some
accepted leading indicators are listed below:
‚ The price of the underlier itself
‚ The accumulated volume at different market depths of

the order book (4 of the bid side and 4 on the ask side
for a total of 9 leading indicators with the price process:
see Figure 2).

D. Problem Formulation & Agenda

1) Problem Formulation: the connection between ma-
chine learning and high frequency trading (HFT) has long
been implicitly established via the numerous systematic
trading positions available in most job searching tools (eFi-
nancialCareers, LinkedIn, etc). It is, however, unclear which
of the numerous machine learning techniques is most relevant
to what high frequency traders wish to accomplish. The
field of machine learning itself is rich; genetic algorithms,
algorithmic game theory, state space models, Kalman filters,
sequential Monte Carlo methods, support vector machines,
neural networks or even a simple multi-linear regression are
some of the key words mentioned. However, what most of
these methodologies have in common is that they assume
a pattern inherent to the market itself as opposed to taking
the market as a consequence of the strategies composing this
market10.

Remark An interesting analogy can be made with respect
to how the gene centered view of evolution (as opposed to
the individual centered view of evolution) completely re-
shuffled our understanding of natural selection and gave
the opportunity to see altruism at a different light. By
analogy, we are trying to communicate the idea that the
market centered view of financial systems is the wrong way
to understand the fluctuation of the market and that the

9A leading indicator is a measurable financial/economic factor that
changes before the variable which is the object of the forecast (eg: a price)
starts to follow a particular pattern.

10Top-Down vs Bottom-Up approach
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strategy centered view of the financial system provides the
opportunity to look at the market differently.

2) Agenda: We will first go through a literature review of
mathematical methods for tracking is section II, a shorter and
perhaps less broad literature review of relevant theoretical
biology in section III. We will then summarize the relevant
points associated to the High Frequency Trading Ecosystem
(HFTE) model recently introduced [65] in section IV. Fi-
nally in section V-B we will discuss the current and future
anticipated research associated to the problem of interest.

II. REVIEW OF INFERENCE AND DYNAMICAL MODELS

A. Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) algorithms [72]
sample from a probability distribution based on a Markov
chain that has a desired equilibrium distribution, the quality
of the sample improving at each additional iteration. We will
see next few version of the MCMC algorithm.

1) Metropolis-Hastings algorithm: The Metropolis-
Hastings algorithm is a MCMC method that aims at
obtaining a sequence of random samples from a probability
distribution for which direct sampling is difficult [73] and
initially advertised of high dimensions. We will see in the
next few algorithm examples that the methodology is now
classified as useful for low dimensional problems. At each
iteration xt, the proposal next point x1 is sampled through
a proposed distribution gpx1|xtq. We then calculate:

‚ with a1 “
P px1q
P pxtq

is the the probability ratio between the
proposed sample and the previous sample,

‚ and a2 “
gpxt|x

1
q

gpx1|xtq
, the ratio of the proposal density in

both directions11.
and set a “ maxpa1a2, 1q, we then accept xt`1 “ x1 if
r „ U r0, 1s ě a which essentially means that if a “ 1,
accept is always true otherwise you accept with a probability
a1a2. The algorithm works best if the proposal distribution
is similar to the real distribution. Note that the seed is slowly
forgotten as the number of iterations increases.

2) Gibbs sampling: Perhaps one of the simplest
MCMC algorithms, the Gibbs Sampling (GS) algorithm
was introduced in by Geman & Geman [29] with the
application of image processing. Later it was discussed
in the context of missing data problems [106]. The
benefice of the Gibbs algorithm for Bayesian analysis
was demonstrated in Tanner and Wong [106]. To
define the Gibbs sampling algorithm, let the set of
full conditional distributions be: πpψ1|ψ2, . . . ,ψpq,
. . . , πpψd|ψ1,ψ2, . . . ,ψd´1,ψd`1, . . . ,ψpq, . . . ,
πpψp|ψ1, . . . ,ψp´1q. One cycle of the GS, described
in algorithm 1, is completed by sampling tψku

p
k“1 from

the mentioned distributions, in sequence and refreshing the
conditioning variables. When d is set to 2 we obtain the two
block Gibbs sampler described by Tanner & Wong [106]. If
we take general conditions, the chain generated by the GS
converges to the target density as the number of iterations

11equal to 1 is the proposal density is symmetric

Algorithm 1 GIBBS-SAMPLING(ψp0q1 , . . . ,ψ
p0q
p )

Require: Specify an initial value ψp0q “
´

ψ
p0q
1 , . . . ,ψ

p0q
p

¯

Ensure:
 

ψp1q,ψp2q, . . . ,ψpMq
(

1: for j “ 1, 2, . . . ,M do
2: Generate ψpj`1q

1 from π
´

ψ1|ψ
pjq
2 ,ψ

pjq
3 , . . . ,ψ

pjq
p

¯

3: Generate ψ
pj`1q
2 from

π
´

ψ2|ψ
pj`1q
1 ,ψ

pjq
3 , . . . ,ψ

pjq
p

¯

4:
...

5: Generate ψ
pj`1q
d from

πpψd|ψ1,ψ2, . . . ,ψd´1,ψd`1, . . . ,ψpq.

6:
...

7: Generate ψpj`1q
p from π

´

ψp|ψ
pj`1q
1 , . . . ,ψ

pj`1q
p´1

¯

8: Return the values
 

ψp1q,ψp2q, . . . ,ψpMq
(

9: end for

goes towards infinity. The main drawback with this method
however is its relative computational heavy aspect because
of the burn-in period.

3) Hamiltonian Monte Carlo: Hamiltonian Monte Carlo
[21], sometimes also referred to12 as hybrid Monte Carlo
is an MCMC method for obtaining a sequence of random
samples from a probability distribution for which direct
sampling is difficult. It serves to address the limitations
of the Metropolis-Hastings algorithm by adding few more
parameters that aim is to reduce the correlation between
successive samples using a Hamiltonian evolution process
and also by targeting states with a higher acceptance rate.

4) Ordered Overrelaxation: Overrelaxation is usually a
term associated with a Gibbs Sampler but in the context
of this subsection we discuss Ordered Overrelaxation. The
methodology aims at addressing the slowness associated in
performing a random walk with inappropriately selected step
sizes. The latter problem was addressed by incorporating a
momentum parameter which consist of sampling n random
variables (20 is considered a good [63] number for n), sorting
them from biggest to smallest, looking where xt ranks, say
at p’s position, amongst the n variables and the picking n´p
for the subsequent sample xt`1 [77]. This form of optimal
“momentum” parameter design is a central pillar of research
in MCMC.

5) Slice sampling: Slice sampling is one of the remark-
ably simple methodologies [77] of MCMC which can be
considered as a mix of Gibbs sampling, Metropolis-Hastings
and rejection sampling methods. It assumes that the target
density P˚pxq can be evaluated at any point x but is more
robust compared to the Metropolis-Hastings especially when
if comes to step size. Like rejection sampling it draws
samples from the volume under the curve. The idea of the
algorithm is that it switches vertical and horizontal uniform

12though more in the past.
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sampling by starting horizontally, then vertically performing
“slices” based on the current vertical position. MacKay made
good contributions in its visual [63] representation.

6) Multiple-try Metropolis: One way to address the curse
of dimensionality is the Multiple-try Metropolis which can
be though of as a enhancement of the Metropolis-Hastings
algorithm. The former allows multiple trials at each point
instead of one by the latter. By increasing both the step size
and the acceptance rate, the algorithm helps the convergence
rate of the sampling trajectory [60]. The curse of dimension-
ality is another central area of research for MCMCs.

7) Reversible-Jump: Another variant of the Metropolis-
Hastings, and perhaps most promising methodology when
it comes to our application is the Reversible-jump MCMC
(RJ-MCMC) developed by Green [35]. One key factor or
RJ-MCMC is that it is designed to address changes of
dimensionality issues. In our case, as we saw in section
III of “Paper Format” document, we face a dual type
issues around change of dimensionality. The first being
the frequency of each strategy in an ecosystem and the
second element being the HFFF13 which branching structure
and size changes as a function of the strategy14. More
formally. Let us define nm P Nm “ t1, 2, . . . , Iu, as our
model indicator and M “

ŤI
nm“1 Rdm the parameter space

whose number of dimensions dm is function of model
nm (with our model indicators not needing to be finite).
The stationary distribution is the joint posterior distribution
of pM,Nmq that takes the values pm,nmq. The proposal
m1 can be constructed with a mapping g1mm1 of m and
u, where u is drawn from a random component U with
density q on Rdmm1 . The move to state pm1, n1mq can
thus be formulated as pm1, n1mq “ pg1mm1pm,uq, n

1
mq.

The function gmm1 :“ pm,uq ÞÑ pm1, u1q, with
pm1, u1q “

`

g1mm1pm,uq, g2mm1pm,uq
˘

must be one
to one and differentiable, and have a non-zero support:
supppgmm1q ‰ ∅, in order to enforce the existence of
the inverse function g´1

mm1 “ gm1m, that is differentiable.
Consequently pm,uq and pm1, u1q must have the same
dimension, which is enforced if the dimension criterion
dm ` dmm1 “ dm1 ` dm1m is verified (dmm1 is the
dimension of u). This criterion is commonly referred to
as dimension matching. Note that if Rdm Ă Rdm1 then
the dimensional matching condition can be reduced
to dm ` dmm1 “ dm1 , with pm,uq “ gm1mpmq.
The acceptance probability is given by apm,m1q “

min
´

1, pm1mpm1fm1 pm
1
q

pmm1qmm1 pm,uqpmfmpmq

ˇ

ˇ

ˇ
det

´

Bgmm1 pm,uq
Bpm,uq

¯
ˇ

ˇ

ˇ

¯

,
where pmfm, the posterior probability is given by
c´1ppy|m,nmqppm|nmqppnmq with c being the normalising
constant. Many problems in data analysis require the
unsupervised partitioning. Roberts, Holmes and Denison
[89] re-considered the issue of data partitioning from an
information-theoretic viewpoint and shown that minimisation
of partition entropy may be used to evaluate the most
probable set of data generators which can be employed

13See figure 6 of “Paper Format” document for more information.
14See in section III and Figures 6, 9, 10 and 11.

using a RJ-MCMC.

B. Dynamical Linear Methods

Multi-Target Tracking (MTT) which deals with state space
estimation of moving targets has applications in different
fields [6], [57], [103], the most intuitive ones being perhaps
of radar and sonar function.

1) Kalman Filter: The Kalman Filter (KF) is a mathemat-
ical tool which purpose is to make the best estimation in a
Mean Square Error (MSE) sense of some dynamical process,
(xk), perturbed by some noise and influenced by a controlled
process. For the sake of our project we will assume that the
controlled process is null but will still incorporate it in the
general state in order to fully understand the model. The
estimation is done via observations which are functions of
these dynamics (yk). Roweis and Ghahramani made a quality
review [91] of the topic. The dynamics of the KF is usually
referred in the literature as xk and given by equation (1).

xk “ Fkxk´1 `Bkuk ` wk (1)

with Fk is the state transition model which is applied to the
previous state xk´1; Bk is the control-input model which is
applied to the vector uk (often taken as the null vector); wk
is the process noise which is assumed to be drawn from a
zero mean multivariate normal distribution with covariance
Qk and wk „ Np0, Qkq. At time k an observation of xk, yk
is made according to equation (2).

yk “ Hkxk ` vk (2)

where Hk is the observation model which maps the true
state space into the observed space. vk is the observation
noise which is assumed to be zero mean Gaussian white
noise with vk „ Np0, Rkq. We also assume that the noise
vectors ptw1, . . . , wku, tv1 . . . vkuq at each step are all
assumed to be mutually independent (covpvk, wkq “ 0 for
all k). The KF being a recursive estimator, we only need the
estimated state from the previous time step and the current
measurement to compute the estimate for the current state.
x̂k will represent the estimation of our state xk at time up
to k. The state of our filter is represented by two variables:
x̂k|k, the estimate of the state at time k given observations
up to and including time k; Pk|k, the error covariance matrix
(a measure of the estimated accuracy of the state estimate).
The KF has two distinct phases: Predict and Update. The
predict phase uses the state estimate from the previous
timestep to produce an estimate of the state at the current
timestep. In the update phase, measurement information at
the current timestep is used to refine this prediction to arrive
at a new, more accurate state estimate, again for the current
timestep. The formula for the updated estimate covariance
above is only valid for the optimal Kalman gain. Usage of
other gain values require a more complex formula. Below
we present a partial proof of the KF algorithm [47], [48].
Proof: The second line of the algorithm is derived the fol-
lowing way: x̂k|k´1 “ E rxks “ E rFkxk´1 `Bkuk ` wks
“ Fkx̂k´1|k´1 ` Bk´1uk´1. The third line of the
algorithm is derived the following way: Pk|k´1 “
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Algorithm 2 KALMAN-FILTER(w)
Require: array of weights wN1
Ensure: array of weights wM1 resampled

1: //Predicted state:
2: x̂k|k´1 “ Fkx̂k´1|k´1 `Bk´1uk´1

3: Pk|k´1 “ FkPk´1|k´1F
T
k `Qk´1

4: //Update state:
5: //Innovation (or residual)
6: ỹk “ yk ´Hkx̂k|k´1

7: //Covariance
8: Sk “ HkPk|k´1H

T
k `Rk

9: //Optimal Kalman gain
10: Kk “ Pk|k´1H

T
kS

´1
k

11: //Updated state estimate
12: x̂k|k “ x̂k|k´1 `Kkỹk
13: //Updated estimate covariance
14: Pk|k “ pI ´KkHkqPk|k´1

E rxkxks “ E

»

—

—

—

–

Fk xk´1|k´1x
T
k´1|k´1

loooooooooomoooooooooon

E
”

xk´1|k´1x
T
k´1|k´1

ı

“Pk|k´1

F T
k

fi

ffi

ffi

ffi

fl

` 2 E
“

Fkxk´1|k´1Bkuk
‰

loooooooooooomoooooooooooon

0

` 2 E
“

Fkxk´1|k´1wk
‰

loooooooooomoooooooooon

0

`

2 E rBkukwks
looooomooooon

0

` E
“

wkw
T
k

‰

loooomoooon

Qk

“ FkPk´1|k´1F
T
k ` Qk´1. The

8th line is derived the following way: Sk “ E rykyks “

E

»

—

—

—

–

Hk xkx
T
k

loomoon

E
”

xk´1|k´1x
T
k´1|k´1

ı

“Pk|k´1

HT
k

fi

ffi

ffi

ffi

fl

` 2 E rHkxkvks
looooomooooon

0

`

E rvkvks
looomooon

Rk

“ HkPk|k´1H
T
k `Rk.

As for the Kalman Gain, we first rearrange some
of the equations in a more useful form. First,
with the error covariance Pk|k as above Pk|k “

covpxk ´ x̂k|kq and substitute in the definition of x̂k|k
Pk|k “ covpxk ´ px̂k|k´1 ` Kkỹkqq and substitute ỹk.
Pk|k “ covpxk ´ px̂k|k´1 ` Kkpyk ´ Hkx̂k|k´1qqq. Pk|k
“ covpxk ´ px̂k|k´1 ` KkpHkxk ` vk ´ Hkx̂k|k´1qqq,
now by collecting the error vectors we get Pk|k “

covppI ´ KkHkqpxk ´ x̂k|k´1q ´ Kkvkq. Given that the
measurement error vk is uncorrelated with the other terms,
we have Pk|k “ covppI´KkHkqpxk´x̂k|k´1qq`covpKkvkq,
now by the properties of vector covariance this
becomes Pk|k “ pI ´ KkHkqcovpxk ´ x̂k|k´1qpI ´
KkHkq

T ` KkcovpvkqKT
k which, using our invariance

on Pk|k´1 and the definition of Rk becomes Pk|k “

pI ´ KkHkqPk|k´1pI ´ KkHkq
T ` KkRkK

T
k . This

rearrangement is known in the literature as the Joseph form
of the covariance equation, which is true independently of
Kk. Now if Kk is the optimal Kalman gain, we can simplify
further. The Kalman filter is a minimum MSE estimator.

The error is xk ´ x̂k|k. We would like to minimize the
expected value of the square of the magnitude of this vector,
Er|xk ´ x̂k|k|

2s. This idea is equivalent to minimizing
the trace of the posterior estimate covariance matrix Pk|k.
By expanding out the terms in the equation above and
rearranging, we get: Pk|k “ Pk|k´1 ´ KkHkPk|k´1 ´

Pk|k´1H
T
kK

T
k ` KkpHkPk|k´1H

T
k ` RkqK

T
k “ Pk|k´1

´ KkHkPk|k´1 ´ Pk|k´1H
T
kK

T
k ` KkSkK

T
k . The

trace is minimized when the matrix derivative is zero:
B trpPk|kq

B Kk
“ ´2pHkPk|k´1q

T ` 2KkSk “ 0. Solving this
for Kk yields the Kalman gain: KkSk “ pHkPk|k´1q

T

“ Pk|k´1H
T
k Kk “ Pk|k´1H

T
kS

´1
k . This optimal Kalman

gain, is the one that yields the best estimates when
used. The formula used to calculate the posterior error
covariance can be simplified when the Kalman gain equals
the optimal value derived above. Multiplying both sides
of our Kalman gain formula on the right by SkK

T
k , it

follows that KkSkK
T
k “ Pk|k´1H

T
k K

T
k . Referring back to

our expanded formula for the posterior error covariance,
Pk|k “ Pk|k´1 ´ KkHkPk|k´1 ´ Pk|k´1H

T
k K

T
k `

KkSkK
T
k we find that the last two terms cancel out, giving

Pk|k “ Pk|k´1 ´ KkHkPk|k´1 “ pI ´KkHkqPk|k´1. This
formula is low latency and thus usually used. One should
keep in mind that it is only correct for the optimal gain
though.

2) Extended Kalman Filter: The EKF is essentially an
approximation of the KF for non-severely-non-linear models
which linearises about the current mean and covariance, so
that the state transition and observation models need not be
linear functions of the state but may instead be differentiable
functions. The dynamics and measurements of this equation
is presented in (3).

#

xk “ fpxk´1, ukq ` wk

yk “ hpxkq ` vk
(3)

The algorithm is very similar to the one described in

Algorithm 3 EXTENDED-KALMAN-FILTER(w)
Require: array of weights wN1
Ensure: array of weights wM1 resampled

1: //Predicted state:
2: x̂k|k´1 “ fpx̂k´1|k´1, ukq
3: Pk|k´1 “ FkPk´1|k´1F

T
k `Qk´1

4: //Update state:
5: //Innovation (or residual)
6: ỹk “ yk ´ hpx̂k|k´1q

7: //Covariance
8: Sk “ HkPk|k´1H

T
k `Rk

9: //Optimal Kalman gain
10: Kk “ Pk|k´1H

T
kS

´1
k

11: //Updated state estimate
12: x̂k|k “ x̂k|k´1 `Kkỹk
13: //Updated estimate covariance
14: Pk|k “ pI ´KkHkqPk|k´1

algorithm 2 but with couple of modifications highlighted
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below algorithm 315.
Proof: The proof for algorithm 3 is very similar to the
proof of algorithm 2 with couple of exceptions. First, Fk
and Hk are approximations of first order of Fk and Hk.
Second, we get a truncation error which can be bounded
and satisfies the inequality known as Cauchy’s estimate:
|Rnpxq| ď Mn

rn`1

pn`1q! , here pa ´ r, a ` rq is the interval
where the variable x is assumed to take its values and Mn

positive real constant such that |f pn`1qpxq| ďMn for all x P
pa´r, a`rq. Mn gets bigger as the curvature or non-linearity
gets more severe. When this error increases it is possible
to improve our approximation at the cost of complexity
by increasing by one degree our Taylor approximation, i.e:
Fk “

Bf
Bx

ˇ

ˇ

ˇ

fpx̂k´1|k´1,ukq
` 1

2
B
2f
Bx2

ˇ

ˇ

ˇ

fpx̂k´1|k´1,ukq
2

and Hk “

Bh
Bx

ˇ

ˇ

fpx̂k|k´1q
` 1

2
Bh
Bx

ˇ

ˇ

fpx̂k|k´1q
2 .

Remark Though the EKF tries to address some of the limi-
tations of the KF by relaxing some of the linearity constraints
it still needs to assume that the underlying function dynamics
are both known and derivable. This particular point is not at
all desirable in many applications.

C. Dynamical Non-linear methods

1) Sequential Monte Carlo methods: Sequential Monte
Carlo methods (SMC) [18], [59] known alternatively as Parti-
cle Filters (PF) [31], [52] or also seldom CONDENSATION
[45], are statistical model estimation techniques based on
simulation. They are the sequential (or ’on-line’) analogue of
Markov Chain Monte Carlo (MCMC) methods and similar to
importance sampling methods. If they are elegantly designed
they can be much faster than MCMC. Because of their non
linear quality they are often an alternative to the Extended
Kalman Filter (EKF) or Unscented Kalman Filter (UKF).
They however have the advantage of being able to approach
the Bayesian optimal estimate with sufficient samples. They
are technically more accurate than the EKF or UKF. The
aims of the PF is to estimate the sequence of hidden
parameters, xk for k “ 1, 2, 3, . . ., based on the observations
yk. The estimates of xk are done via the posterior distribution
ppxk|y1, y2, . . . , ykq. PF do not care about the full posterior
ppx1, x2, . . . , xk|y1, y2, . . . , ykq like it is the case for the
MCMC or importance sampling (IS) approach. Let’s assume
xk and the observations yk can be modeled in the following
way:
‚ xk|xk´1 „ pxk|xk´1

px|xk´1q and with given initial
distribution ppx1q.

‚ yk|xk „ py|xpy|xkq.
‚ equations (4) and (5) gives an example of such system.

xk “ fpxk´1q ` wk (4)
yk “ hpxkq ` vk (5)

It is also assumed that covpwk, vkq “ 0 or wk and vk
mutually independent and iid with known probability density

15Note that here Fk “
Bf
Bx

ˇ

ˇ

ˇ

ˇ

x̂k´1|k´1,uk

and Hk “
Bh
Bx

ˇ

ˇ

ˇ

ˇ

x̂k|k´1

.

functions. fp¨q and hp¨q are also assumed known functions.
Equations (4) and (5) are our state space equations. If we
define fp¨q and hp¨q as linear functions, with wk and vk both
Gaussian, the KF is the best tool to find the exact sought
distribution. If fp¨q and hp¨q are non linear then the Kalman
filter (KF) is an approximation. PF are also approximations,
but convergence can be improved with additional particles.
PF methods generate a set of samples that approximate the
filtering distribution ppxk|y1, . . . , ykq. If NP in the number
of samples, expectations under the probability measure are
approximated by equation (6).

ż

fpxkqppxk|y1, . . . , ykqdxk «
1

NP

NP
ÿ

L“1

fpx
pLq
k q (6)

Sampling Importance Resampling (SIR) is the most com-

Algorithm 4 RESAMPLE(w)
Require: array of weights wN1
Ensure: array of weights wM1 resampled

1: u0 „ Ur0, 1{M s
2: for m “ 1 to N do
3: ipmq Ð

Y

pw
pmq
n ´ upm´1qmq

]

` 1

4: upmq “ upmq ` ipmq

M ´ w
pmq
n

5: end for

monly used PF algorithm, which approximates the proba-
bility measure ppxk|y1, . . . , ykq via a weighted set of NP
particles

´

w
pLq
k , x

pLq
k

¯

: L “ 1, . . . , NP (7)

The importance weights w
pLq
k are approximations to the

relative posterior probability measure of the particles such
that

řP
L“1 w

pLq
k “ 1. SIR is a essentially a recursive version

of importance sampling. Like in IS, the expectation of a
function fp¨q can be approximated like described in equation
(8).

ż

fpxkqppxk|y1, . . . , ykqdxk «
NP
ÿ

L“1

wpLqfpx
pLq
k q (8)

The algorithm performance is dependent on the choice of
the proposal distribution πpxk|x1:k´1, y1:kq with the optimal
proposal distribution being πpxk|x0:k´1, y0:kq in equation
(9).

πpxk|x1:k´1, y1:kq “ ppxk|xk´1, ykq (9)

Because it is easier to draw samples and update the weight
calculations the transition prior is often used as importance
function.

πpxk|x1:k´1, y1:kq “ ppxk|xk´1q

The technique of using transition prior as importance func-
tion is commonly known as Bootstrap Filter and Condensa-
tion Algorithm. Figure 3 gives an illustration of the algorithm
just described. Note that on line 5 of algorithm 5, ŵpLqk ,
simplifies to w

pLq
k´1ppyk|x

pLq
k q, when πpx

pLq
k |x

pLq
1:k´1, y1:kq “

ppx
pLq
k |x

pLq
k´1q.
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Algorithm 5 SMC(w)

Require: array of weights wNp , πpxk|x
pLq
1:k´1, y1:kq

Ensure: array of weights wNp resampled

1: for L “ 1 to NP do
2: x

pLq
k „ πpxk|x

pLq
1:k´1, y1:kq

3: end for
4: for L “ 1 to NP do
5: ŵ

pLq
k “ w

pLq
k´1

ppyk|x
pLq
k qppx

pLq
k |x

pLq
k´1q

πpx
pLq
k |x

pLq
1:k´1,y1:kq

6: end for
7: for L “ 1 to NP do
8: w

pLq
k “

ŵ
pLq
k

řP
J“1 ŵ

pJq
k

9: end for
10: N̂eff “

1
řP

L“1

´

w
pLq
k

¯2

11: if N̂eff ă Nthr then
12: resample: draw NP particles from the current par-

ticle set with probabilities proportional to their
weights. Replace the current particle set with this
new one.

13: for L “ 1 to NP do
14: w

pLq
k “ 1{NP .

15: end for
16: end if

2) Resampling Methods: Resampling methods are usually
used to avoid the problem of weight degeneracy in our
algorithm. Avoiding situations where our trained probability
measure tends towards the Dirac distribution must be avoided
because it really does not give much information on all the
possibilities of our state. There exists many different resam-
pling methods, Rejection Sampling, Sampling-Importance
Resampling, Multinomial Resampling, Residual Resampling,
Stratified Sampling, and the performance of our algorithm
can be affected by the choice of our resampling method.
The stratified resampling proposed by Kitagawa [53] is
optimal in terms of variance. Figure 3 gives an illustration
of the Stratified Sampling and the corresponding algorithm
is described in algorithm 4. We see at the top of the figure
3 the discrepancy between the estimated pdf at time t with
the real pdf, the corresponding CDF of our estimated PDF,
random numbers from r0, 1s are drawn, depending on the
importance of these particles they are moved to more useful
places.

3) Importance Sampling : Importance sampling (IS) was
first introduced in [69] and was further discussed in several
books including in [38]. The objective of importance sam-
pling is to sample the distribution in the region of importance
in order to achieve computational efficiency via lowering
the variance. The idea of importance sampling is to choose
a proposal distribution qpxq in place of the true, harder to
sample probability distribution ppxq. The main constraint is
related to the support of qpxq which is assumed to cover that

of ppxq. In equation (10) we write the integration problem
in the more appropriate form.

ż

fpxqppxqdx “

ż

fpxq
ppxq

qpxq
qpxqdx (10)

In IS the number, Np, usually describes the number of
independent samples drawn from qpxq to obtain a weighted
sum to approximate f̂ in equation (11).

f̂ “
1

Np

Np
ÿ

i“1

W
´

xpiq
¯

f
´

xpiq
¯

(11)

where W pxpiqq is the Radon-Nikodym derivative of ppxq
with respect to qpxq or called in engineering the importance
weights (equation (12)).

W
´

xpiq
¯

“
p
`

xpiq
˘

q
`

xpiq
˘ (12)

If the normalizing factor for ppxq is not known, the impor-
tance weights can only be evaluated up to a normalizing
constant, as equation (13).

W
´

xpiq
¯

9p
´

xpiq
¯

q
´

xpiq
¯

(13)

To ensure that
řNp

i“1W px
piqq “ 1, we normalize the impor-

tance weights to obtain equation (14).

f̂ “

1
Np

řNp

i“1W
`

xpiq
˘

f
`

xpiq
˘

1
Np

řNp

i“1W
`

xpiq
˘

“
1

Np

Np
ÿ

i“1

W̃
´

xpiq
¯

f
´

xpiq
¯

(14)
where W̃

`

xpiq
˘

“
Wpxpiqq

řNp
i“1Wpx

piqq
are called the normalized

importance weights. The variance of importance sampler
estimate [12] in equation (14) is given:

V arqrf̂ s “
1

Np
V arqrfpxqW pxqs

“
1

Np
V arqrfpxqppxq{qpxqs

“
1

Np

ż

r
fpxqppxq

qpxq
´ Eprfpxqss2qpxqdx

“
1

Np

ż

rp
pfpxqppxqq2

qpxq
q

´2ppxqfpxqEprfpxqssdx

`
pEprfpxqsq2

Np

“
1

Np

ż

rp
pfpxqppxqq2

qpxq
qsdx´

pEprfpxqsq2

Np

The variance can be reduced when an appropriate qpxq
is chosen to either match the shape of ppxq so as to
approximate the true variance; or to match the shape of
|fpxq|ppxq so as to further reduce the true variance.
Proof: BV arqrf̂s

Bqpxq “ ´ 1
Np

ş

rp
pfpxqppxqq2

qpxq2 qsdx “

´ 1
Np

ş

rp
pfpxqppxqq2

qpxqqpxq qsdx. qpxq having the constraint of

being a probability measure that is
ş`8

´8
ppxqdx “ 1, we find

that qpxq must match the shape of ppxq or of |fpxq|ppxq.
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Chap. 2 : Literature Review

2.1.4 Resampling Methods

Resampling methods are usually used to avoid the problem of weight degeneracy in our algorithm.

Avoiding situations where our trained probability measure tends towards the Dirac distribution

must be avoided because it really does not give much information on all the possibilities of our

state. There exists many different resampling methods, Rejection Sampling , Sampling-Importance

Resampling , Multinomial Resampling , Residual Resampling , Stratified Sampling, and the per-

formance of our algorithm can be affected by the choice of our resampling method. The stratified

resampling proposed by Kitagawa [9] is optimal in terms of variance. Figure 2.3 gives an illustration

of the Stratified Sampling and the corresponding algorithm is described in algorithm 13 . The aim

CDF F

UNp ∼ (
Np−1
Np

, 1]

U2 ∼ ( 1
Np
, 2
Np

]

(
Np−1
Np

, 1]

Xk

Xi
k

Xi
k

resampling

sampling

sampling

real pdf

estimated pdf at time k (before resample)

a particle

Xk

U1 ∼ (0, 1
Np

]

lucky useless particle stays at the same spot

estimated pdf at time k + 1 (after resample)

another seemingling useless particle is realocated as expected at a more useful place

Xk

moved here

(0, 1
Np

]

( 1
Np
, 2
Np

]

Figure 2.3: Resampling illustration

of figure 2.3 is to talk, we hope, louder than words. It illustrates the Stratified Sampling. We see

32

Fig. 3. Stratified Sampling illustration

D. Scenario Tracking Algorithm

1) Context: Recently, SMC methods [17], [18], [58],
especially when it comes to the data association issue, have
been developed. Particle Filters (PF) [31], [52], have recently
become a popular framework for Multi Target Tracking
(MTT), because able to perform well even when the data
models are nonlinear and non-Gaussian, as opposed to linear
methods used by the classical methods like the KF/EKF [39].
Given the observations and the previous target state infor-
mation SMC can employ sequential importance sampling
recursively and update the posterior distribution of our target
state. The Probability Hypothesis Density (PHD) filter [97],
[99], [67], which combines the Finite Set Statistics (FISST),
an extension of Bayesian analysis to incorporate comparisons
between different dimensional state-spaces, and the SMC
methods, was also proposed for joint target detection and
estimation [79]. The M-best feasible solutions is also a new
useful finding in SMC [79], [54], [8], [55], [9]. Articles [98],
[100] were proposed to cope with both the multitarget detec-
tion and tracking scenario but according to Ng, Li, Godsill,
and Vermaak [78] they are not robust if the environment
becomes more noisy and hostile, such as having a higher
clutter density and a low probability of target detection. To
cope with these problems a hybrid approach and it extensions
[78] were implemented. The aim of these methods is to
stochastically estimate the number of targets and therefore

the multitarget state. The soft-gating approach described in
[80] is an attempt to address the complex measurement-to-
target association problem. To solve this issue of detection
in the presence of spurious objects a new SMC algorithm is
presented in [56]. That method provided a solution to deal
with both time-varying number of targets, and measurement-
to-target association issues.

2) Time-varying number of targets & measurement-to-
target association: Currently, tracking for multiple targets
has a couple of major challenges that are yet to be answered
efficiently. The first of these two main challenges is the
modelling of the time-varying number of targets in an
environment high in clutter density and low in detection
probability (hostile environment). To some extend the PHD
filter [68], [98], [100], based on the FISST , has proved
ability in dealing with this problem with unfortunately a
significant degradation of its performance when the envi-
ronment is hostile [78]. The second main challenge is the
measurement-to-target association problem. Because there is
an ambiguity between whether the observation consists of
measurements originating from a true targets or a clutter
point, it becomes obviously essential to identify which one
is which. The typical and popular approach to solve this
issue is the Joint Probabilistic Data Association (JPDA) [6],
[25]. Its major drawback though is that its tracks tend to
coalesce when targets are closely spaced [24] or intertwined.

8



This problem has been, however, partially studied. Indeed the
sensitivity of the track coalescence may be reduced if we
use a hypothesis pruning strategy [10], [40]. Unfortunately
the track swap problems still remain. Also performance of
the EKF [39] is known to be limited by the linearity of
the data model on the contrary to SMC based tracking
algorithms developed by [44], [34], [33], [41]. This issue
of data association can also be sampled via Gibbs sampling
[41]. Also because target detection and initialization were
not covered by this framework algorithms developed in [107]
were suggested in order to improve detection and tracking
performance. The algorithm suggested in [107] combines
a deterministic clustering algorithm for the target detection
issue. This clustering algorithm enabled to detect the number
of targets by continuously monitoring the changes in the
regions of interest where the moving targets are most likely
located. Another approach in [92] combines the track-before-
detect (TBD) and the SMC methods to perform joint target
detection and estimation, where the observation noise is
Rayleigh distributed but, according to [92], this algorithm
is currently applicable only to single target scenario. Solu-
tions to the data association problem arising in unlabelled
measurements in a hostile environment and the curse of
dimensionality arising because of the increased size of the
state-space associated with multiple targets were given in
[107]. In [107], a couple of extensions to the standard known
particle filtering methodology for MTT was presented. The
first extension was referred to as the Sequential Sampling
Particle Filter (SSPF), sampled each target sequentially by
using a factorisation of the importance weights. The second
extension was referred by the Independent Partition Particle
Filter (IPPF), makes the hypothesis that the associations are
independent. Real world MTT problems are usually made
more difficult because of couple of main issues. First realistic
models have usually a very non-linear and non-Gaussian
target dynamics and measurement processes therefore no
closed-form expression can be derived for the tracking recur-
sions. The most famous closed form recursion leads to the
KF [2] and arises when both the dynamic and the likelihood
model are chosen to be linear and Gaussian. The second
issue with real world problem is due to the poor sensors
targets measurements labeling which leads to a combinatorial
data association problem that is challenging in a hostile
environment. The complexity of the data association problem
may be enhanced by the increase in probability of clutter
measurements in lieu of a target in areas rich in multi-path
effects. We have seen that the KF is limited in modeling
non linearity because of its linear properties but it is still
an interesting tool as an approximation mean like it has
been done with the EKF [2] which capitalizes on linearity
around the current state in non linear models. Logically
the performance of the EKF decreases as the non-linearity
increases. The Unscented Kalman Filter (UKF) [46] was
created to answer this problem. The method maintains the
second order statistics of the target distribution by recursively
propagating a set of carefully selected sigma points. The ad-
vantage of this method is that it does not require linearisation

as well as usually yields more robust estimates. Models with
non-Gaussian state and/or observation noise were initially
studied and partially solved by the Gaussian Sum Filter
(GSF) [1] . That method approximates the non-Gaussian
target distribution with a mixture of Gaussians but suffers
when linear approximations are required similarly to the
EKF. Also, over time we experience a combinatorial growth
in the number of mixture components which ultimately leads
to eliminate branches to keep control of an exponential
explosion as iterations go forward. Another option that does
not require any linear approximations like it is the case
with the EKF or the GSF was proposed [51]. In this case
the non-Gaussian state is approximated numerically with a
fixed grid, using Bayes’ rule, the prediction step is integrated
numerically. Unfortunately because the computational cost of
the integration explodes with the dimension of the state-space
the method becomes useless for dimensions larger than four
[107]. For non-linear and non-Gaussian models, generally
speaking SMC’s have become popular user friendly numer-
ical techniques that approximate Bayesian recursions for
MTT. Its popularity is mainly due to flexibility, relative sim-
plicity as well as efficiency. The method models the posterior
distribution with a set of particles with an associated weights
more or less big relative to the particle importance and
are propagated and adjusted throughout iterations. The very
big advantage with SMC method is that the computational
complexity does not become exorbitant with an increase in
the dimension of the state-space [51]. It has been defined in
[107] that there exists numerous strategies available to solve
the data association problem but they could be categorized
as either single frame assignment methods, or multi-frame
assignment methods. The multi-frame assignment problem
can be solved using Lagrangian relaxation [87]. Another
algorithm the Multiple Hypotheses Tracker (MHT) [88] tries
to keep track of all the possible association hypotheses over
time which makes it awkward as the number of associations
hypotheses grows exponentially with each iteration.

3) The problem of pruning: The Nearest Neighbor Stan-
dard Filter (NNSF) [6] links each target with the closest
measurement in the target space. This simplistic method has
the flaws that one may assume it has, that is the method
suppresses many feasible hypotheses. The Joint Probabilistic
Data Association Filter (JPDAF) [6], [25] is more interesting
in this respect as it does not do as much pruning or pruning
only infeasible hypotheses. The parallel filtering algorithm
goes through the remaining hypotheses and adjusts the corre-
sponding posterior distribution. Its principal deficiency is that
the final estimate looses information because, to maintain
tractability, the corresponding estimate is distorted to a single
Gaussian. This problem however has been identified and
strategies have been suggested to address this shortcoming.
For example [83], [93] proposed strategies to instead reduce
the number of mixture components in the original mixture to
a tractable level. This algorithm unfortunately only partially
solved the problem as many feasible hypotheses may still be
pruned away. The Probabilistic Multiple Hypotheses Tracker
(PMHT) [28], [104] takes as hypothesis that the association
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variables to be independent and avoids the problems of
reducing our state space. This leads to an incomplete data
problem that, however may be solved using the Expectation
Maximisation (EM) algorithm [16]. Unfortunately the PMHT
is not suitable for sequential applications because considered
a batch strategy. Moreover [109] has shown that the JPDA
filter outperforms the PMHT and we have seen earlier the
shortcomings of the JPDAF. Recently strategies have been
proposed to combine the JPDAF with particle techniques
to address the general non-linear and non-Gaussian models
[96], [95], [26], [49] issue of approximation of linearity fail-
ing when the dynamic of measurement functions are severly
non-linear. The feasibility of multi-target tracking with SMC
has first been described in [3], [32] but the simulations dealt
only with a single target. In the article [42] the distribution
and the hypotheses of the association is computed using a
Gibbs sampler, [29] at each iterations. This method, similar
to the one described in [15], uses MCMC [30] to compute
the associations between image points within the framework
of stereo reconstruction. Because they are iterative in nature
and take an unknown number of iterations to converge. These
MCMC strategies though, are not always suitable for on-
line applications. Doucet [33] presents a method where the
associations are sampled from a well chosen importance
distribution. Although intuitivly appealing it is, however,
reserved to Jump Markov Linear Systems (JMLS) [19].
The follow up of this strategy, based on the UKF and the
Auxiliary Particle Filter (APF) [85], so that applicable to
Jump Markov Systems (JMS) is presented in [20]. Similar
in [44], particles of the association hypotheses are generated
via an optimal proposal distribution. SMC have also been
applied to the problem of MTT based on raw measurements
[11], [94]. We have seen that the MTT algorithms suffers
from exponential explosion that is as the number of targets
increases, the size of our state spaces increases exponentially.
Because pruning is not always efficient it may commonly
occur that particles contain a mixture of good estimates
for some target states, and bad estimates for other target
states. This problem has been first acknowledged in [82],
and where a selection strategy is addressed to solve this
problem. In [107] a number of particle filter based strategies
for MTT and data association for general non-linear and non-
Gaussian models is presented. The first, is referred to as the
Monte Carlo Joint Probabilistic Data Association Filter (MC-
JPDAF) and presented by the authors as a generalization of
the strategy proposed in [96], [95] to multiple observers and
arbitrary proposal distributions. Two extensions to the stan-
dard particle filtering methodology for MTT is developed.
The first strategy is presented by the authors as an exact
methodology that samples the individual targets sequentially
by utilizing a factorization of the importance weights, called
the Sequential Sampling Particle Filter (SSPF). The second
strategy presented in [107] assumes the associations to be
independent over the individual target, similar to the approx-
imation made in the PMHT, and implies that measurements
can be assigned to more than one target. This assumption
claims that it effectively removes all dependencies between

the individual targets, leading to an efficient component-wise
sampling strategy to construct new particles. This approach
was named Independent Partition Particle Filter (IPPF). Their
main benefit is that as opposed to the JPDAF, neither
approach requires a gating procedure like in [44].

III. RELEVANT THEORETICAL BIOLOGY REVIEW

Our first few simulations [65] are unfortunately non
conclusive because some of the computing and statistical
optimality elements were dismissed in order to keep intuition
high.

A. Theoretical Biology & Predator/Prey models

More specifically few elements of our simulations resem-
bled well know biological models. To bring context it was
discussed in the 1960s [36] that complexity in an ecosystem
insures its stability or to keep the same jargon “communities
not being sufficiently complex to damp out oscillations”
[23], [43] have a higher likelihood of vanishing. It also is
widely accepted, in the context of ecosystem simulation, that
complexity should always arise from simplicity [70], [14].
The diversity-stability debate in the context of ecosystem
modeling has been ongoing since the 1950s [71] with no
consensus being ever reached. It was initially believed [71],
[62], [22] nature was infinitely complex and therefor more
diverse ecosystem should insure more stability. This asser-
tion was however ultimately challenged through rigorous
mathematical specification [70], [110], [84] in the 1970s
and 1980s by using Lotka-Volterra’s Predator/Prey model
initially published in the 1920’s [108], [61] with similar
“non-intuitive” results. More recently the work has been
extended to small ecosystems of three-species food chain
[13]. The intuitive 3 species example we have chosen to
discuss is the one containing Sharks (chosen to be the z
parameter), Tuna (chosen to be the y parameter) and Small
Fishes (chosen to be the x parameter), the idea being that
tunas eat small fishes which in turn are eaten by sharks.
Without loss of generality sharks are assumed to die of
natural causes and their decomposing bodies go on to feed
the small fishes. The set of differential equations has been
summarized in equation (15).

$

’

&

’

%

dx
dt “ ax´ bxy
dy
dt “ ´cy ` dxy ´ eyz
dz
dt “ ´fz ` gyz

(15)

where a is the natural growth rate of species x in the absence
of predator, d the one of y in the absence of z. We also have b
representing the negative predation effect of y on a and e the
one of z on y. We also have g which mirrors the efficiency
of reproduction of z in the presence of prey y. Note that we
assume that x never dies of natural causes (if it’s too old
then it can’t run fast enough to outrun predator y) but this is
not the case for z since it is an alpha predator and therefore
needs some natural death rate which is symbolized by f . This
relatively simple system of three equations has been studied
extensively [71] for stability. For example figure 5 represents
a particular instance in which the system is unstable. Indeed,
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we can notice that the oscillations between the 3 species
increases to the point, here not shown, where the amplitudes
are so big that z goes instinct and at which point x and y start
oscillating, with however a constant amplitude. We refer the
motivated reader back to the original papers [71] for the other
cases and interesting idiosyncratic properties. One interesting
point to notice is that in cases of “relative best stability”, in
which a “ b “ c “ d “ e “ f “ g “ 1% from figure 4,
we have oscillation which are stable through time with the
highest peek from the ultimate prey (x) coming first with
the highest peek and the the one of the ultimate predator (z)
coming last but with the smallest amplitude. This suggest
that sophisticated working trading strategies16 need enough
prey like strategies17 in the same ecosystem to get them to
be profitable. One other interesting observation is that the
total ecosystem population as depicted in the thick black line
from the same figure suggest that it itself oscillates which
may not necessarily be intuitive. Indeed one could have
speculated that the loss of a species directly benefits the other
and that therefore the total population should stay constant.
This interesting observation suggest that the oscillations of a
financial market may likewise be subject of similar dynamics:
a financial ecosystem may go through periods in which it
thrives followed by period in which it declines, the economy
itself is cyclical with, some may argue oscillations which are
more and more important like one depicted by the unstable
ecosystem from figure 5. The stunning similarities of the
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Fig. 4. The Lotka-Volterra three-species food chain equation 15 with x1 “
0.5, y1 “ 1, z1 “ 2 and a “ b “ c “ d “ e “ f “ g “ 1%

competitive resource driven biological ecosystem along with
some compelling similarities in some of its cyclical behavior
makes the Lotka-Volterra n-species food chain equation an
interesting candidate when it comes to studying the stability
of the financial market in the context of the HFTE because
of its systematic rule based approach and zero sum game like
roots. However, these are hypothesis that we need to check
more rigorously.

1) Regulatory Implications: The second and last imme-
diate application we will take a look at in the context of

16perhaps from top algorithmic desks in top tier investment banks?
17perhaps the retail clients of the world?

this paper is the one of systemic risk. Given that this paper
proposes that the fluctuations of the markets are linked to
the frequency of the strategies composing the ecosystem of
the market, we propose a model which would take advantage
of this assumptions to build original high level regulations.
The exercise would consist of monitoring these strategies
interactions and flag the market when necessary. Suppose
now that we label strategies of figure 13, 14 and 18 by
respectively x, y and z and we use equation (15). If we can
somehow infer what the frequency of x, y and z are in the
ecosystem, then we can study whether or not the ecosystem
is stable [13]. Returning to the actual mathematical study of
the stability of the financial market, determining a market
composed of 3 strategies is stable requires studying the
Jacobian matrix J from equation (16).

Jpx, y, zq “

»

–

a´ by ´xb 0
yd ´c` dx´ ez ´ye
0 ´zg ´f ` gy

fi

fl (16)

By examining the eigenvalues of Jpx, y, zq we can indirectly
gain information around the equilibrium of our financial
system at the regulatory level18. More specifically if all
eigenvalues of Jpx, y, zq have negative real parts then our
system is asymptotically stable. Figure 5 gives an illustration
of a situation in which one of the eigenvalues is negative.
Many questions could be raised here: how can the regulators
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Fig. 5. The Lotka-Volterra three-species food Chain equation 15 with
x1 “ 0.5, y1 “ 1, z1 “ 2, a “ b “ c “ d “ e “ f “ 1% and
g “ 1.6%

gain information on the parameters composing systems of
equation (15)? Also the market has surely more than 3 types
of strategies, how many exactly? Are these strategies easily
classifiable in terms of prey, predator and super predator or
can you find more subtle instances? It is very likely that
trading desks especially in the high frequency domain refuse
to provide their sets of strategies for the regulators to study
the Jacobian matrix in order to take the relevant actions19.

18we assume for the sake of this example that we only have 3 strategies
19instruct the trading desks to increase or decrease their notionals so as

to enforce a manual intervention for the sake of the market’s stability
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B. Optimal Control Theory

The Hamilton-Jacobi-Bellman (HJB) partial differential
equation [7] was developed in 1954 and is widely considered
as a central theme of optimal control theory. Its solutions
is the value function giving the minimum cost for a given
dynamical system and its associated cost function. Solved
locally, the HJB is a necessary condition, but when over
the entire of state space, it is referred to as necessary and
sufficient for an optimum. Its method can be generalized to
stochastic systems. Its discrete version is referred to as the
Bellman equation and its continuous version, the Hamilton-
Jacobi equation.

1) Optimal Control Formalization: Formally we consider
the problem in deterministic optimal control over the time
period r0, T s:

V pxp0q, 0q “ min
u

#

ż T

0

Crxptq, uptqs dt`DrxpT qs

+

(17)

where Crs is the scalar cost rate function, Drs is the utility at
the final state, xptq the system state vector with xp0q usually
given, and finally uptq where 0tT is called the control vector
we aim at finding. The system of equation is also subject to
9xptq “ F rxptq, uptqs where F rs is a deterministic vector
describing the evolution of the state vector over time.

2) Partial Differential Equation Specification: The HJB
partial differential equation is given by:

9V px, tq `min
u
t∇V px, tq ¨ F px, uq ` Cpx, uqu “ 0 (18)

subject to the terminal condition V px, T q “ Dpxq. V px, tq,
commonly known as the Bellman value function (our un-
known scalar) represents the cost incurred from starting in
x at time t and controlling the system optimally until T .

3) Equation derivation: V pxptq, tq is the optimal cost-
to-go function, then by Bellman’s principle of optimal-
ity from time t to t ` dt, we have V pxptq, tq “

minu

!

V pxpt` dtq, t` dtq `
şt`dt

t
Cpxpsq, upsqq ds

)

. The
Taylor expansion of the first term is V pxpt` dtq, t` dtq “
V pxptq, tq` 9V pxptq, tq dt`∇V pxptq, tq¨ 9xptq dt`opdtq where
poqpdtq denotes the higher order terms of the Taylor expan-
sion. Canceling V pxptq, tq on both sides and dividing by dt,
and taking the limit as dt approaches zero, we obtain the HJB
equation. Its resolutions is done backwards in time which
can be extended to its stochastic version. In this latter case

we have min
u

E

#

ż T

0

Cpt,Xt, utq dt`DpXT q

+

, with this

time pXtqtPr0,T s being stochastic and needing optimization
and putqtPr0,T s the control process. By first using Bellman
and then expanding V pXt, tq with Ito’s rule, one finds the
stochastic HJB equation minu tAV px, tq ` Cpt, x, uqu “ 0
where A represents the stochastic differentiation operator,
and subject to the terminal condition V px, T q “ Dpxq20.

20the randomness has disappeared.

C. Game Theoretical Approach

Another area of investigation is the one of Game Theory.
Broadly speaking the prisoner’s dilemma (PD) can be for-
malized into a matrix21 of 2 by 2 with CC, CD, DC and
DD with respective payoffs (2,2), (0,3), (3,0) and (1,1). The
reason why this game theory concept is within the family of
dilemmas is because although the prisoners clearly should
cooperate here, given that they do not know what the other
is going to do, by expectation (with equal probability for a
C and a D) any user should deceit given that the expectation
of the payoff for a deceit is 2 as opposed to a 1 for a
cooperation.

1) Axelrod’s computer tournament: however this dilemma
presented in the previous subsection proved to shuffle the
rules of payoff strategy optimality when the game became
iterative, Robert Axelrod main contribution to the field.
Indeed Axelrod [4], [5] designed a computer tournament
which aim was to take a look at what strategy would
prevail in an iterative format. In that occasion he invited
few Mathematicians, Computer Scientists, Economists and
Political Scientists to code a strategy they believed could
win such tournament with the constraints of a PD rules in
which it is not known when the tournament will stop22.
Many strategies were thrown into this ecosystem in form
of a tournament ranging from being simplistic like “Always
Deceit” (AD) strategy23 to many other more complicated
strategies which generic representation can be looked at in
Figure 6b). Surprisingly the Tit For Tat (TFT) strategy came
at the top of this tournament. The TFT is considered in the
literature to be a nice strategy, meaning that it is never the
first to deceit (its first move is by design to be a C), but it is
also a strategy that is able to retaliate in situation in which
it was previously deceited. Finally, it is a strategy that is
able to forgive meaning that if it sees that the adversary has
decided to cooperate after a deceit, then he switches back to
a C.

2) Evolutionary Dynamics: Martin Nowak [81] recently
enhanced some of Axelrod’s work by introducing new
strategies and further developing the concepts of inva-
sion/dominance24 within a competitive strategic ecosystem.
For instance as we can see from Figure 6d) that some
strategies invade others but these latter strategies can be in
turn invaded by other ones which in turn can be invaded
by the very first strategy mentioned and induce cycles25.
Indeed an ecosystem composed of a set of unbiased random
strategies (that would randomly C or D) would invite the
invasion of an ALLD (always defect) kind. In term the

21Figure 6a)
22eg: it is by expectation best to deceit if one plays the PD only once.

By iteration he should always deceit on the last move, but knowing this, the
adversary should also deceit. Using this logic each player should deceit on
the next to the last move and the same logic kicks in and very quickly one
is led to arrive to the conclusion that he/she should deceit from the very
first move.

23or its mirror: the AC “Always Cooperate” (AC) strategy
24by extension when applied to finance some strategies may dominate

and invade others.
25economical cycles for example when applied to our primary problem
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frequency of ALLD would take the ecosystem which would
invite the TFT strategy which would benefit from the mutual
cooperation when within the same proximity etc ... Figure
(6) exposes how some of these strategies may interact with
each other. The following additional information may help
in refreshing what some of these acronyms mean:

‚ TFT (Tit of Tat) developed in the previous section
‚ GTFT (Generous Tit of Tat) which makes it slightly less

grudge prone compared to the TFT as it only deceits for
2 successive D’s from the opponent.

‚ WSLS (Win-Stay, Lose-Shift) that outperforms tit-for-tat
in the Prisoner’s Dilemma game [81], [101]

‚ ALLD (Always Deceits) which is self explanatory
‚ ALLC (Always Cooperates) which is also self explana-

tory
‚ rand (Random Strategy) which outputs a C or a D with

equal probability.

The main takeaway from this parallel was to expose how the
rise and fall of strategies can easily be engineered through
simple systematic rules based on an ecosystem and how
complexity can be induced from simple rules.

IV. HIGH FREQUENCY TRADING ECOSYSTEM

Recently, the concept of ecosystems of strategies [50] was
introduced. Though the idea had great potential, the paper
assumes a set of static strategies which does offer to some
extent an interesting snapshot of the market but does not
offer:

‚ a history for this snapshot,
‚ an inspiring future for the field,
‚ a topology for these strategies (in the form of a DNA),
‚ a sense of how to study the stability of the ecosystem,
‚ insight about how this should impact the regulatory

horizon,
‚ a connection to other fields26 with concepts and prop-

erties that could be used to increase our mathematical
weaponry.

Definition We call HFTE the High Frequency Trading
Ecosystem model which attempt is to answer the points
raised.

A. Network & learning potential

Two important milestones in Machine Learning are worth
remembering, as they shed light on why the core building
blocks of our HFTE model is a certain way. First, Warren
McCulloch and Walter Pitts [86] introduced their threshold
logic model in 1943 which is agreed to have guided the
research in network topology as it relates to artificial intel-
ligence for more or less a decade. Second, Rosenblatt [90],
formally introduced the perceptron concept in 1962 though
some early stage work had started in the 1950s. The idea
of the perceptron was one in which the inputs x1 and x2

26eg: Game Theory, Mathematical Biology, Signal Processing

could act as separators27 and therefore a direct equivalence
could be made to the multi-linear regression which we will
elaborate on more in details is section IV-B.2. One observed
limitation of the perceptron as described by Rosenblatt, in
1969, was that a simple yet critical well known functions
such as the XOR function could not be modeled [74]. This
resulted in a loss of interest in the field until it was shown that
a Feedforward Artificial Neural Network (ANN) with two
or more layers could in fact model these functions. Added,
to this we have the well known overfitting [102] problems
when it comes to supervised learning which has been there
since inception though regular progress is being made in that
domain without real breakthrough.

B. The Funnel

The Funnel, introduced by Martin Nowak [81], represents
the simplest possible network to model (therefore which
minimizes overfitting) the key functions of our application.
The area of evolutionary graph theory is quite rich, and
graphs provide interesting properties. We can formalize the
learning process from all of our strategies using the topology
of Figure 7 by providing a set T , as described by equation
(19) of weights corresponding to all the possible weights of
this particular figure.

T ,

$

’

’

&

’

’

%

YjPr1,9sw
i
s̄,j YjPr1,9sw

i
s,j ,

YjPr1,9s,iPr1,3sw
h1
s̄,i,j YjPr1,9s,iPr1,3sw

h1
s,i,j ,

YjPr1,3sw
h2
s̄,j YjPr1,3sw

h2
s,j ,

wos̄,jPr1,9s wos,jPr1,9s

,

/

/

.

/

/

-

(19)
with wi, wh and wo, respectively the weights associated to
the input, hidden and output layers.

Remark Note that in the context of this paper we have
chosen to work with Martin Nowak’s [81] funnel, as Figure
7. This topological structure offers the advantage of making
some interesting bridges between the worlds of:
‚ information theory since it also resembles the classic

structure of a Neural Network and can therefore easily
accommodate the mapping of classic and less classic
financial strategies,

‚ evolutionary dynamics since Moran-like Processes [75]
can easily be formalized,

‚ biology since it is a potent amplifier of selection [81]28.

We will conclude this subsection by providing a definition
of the High Frequency Financial Funnel.

Definition We define the High Frequency Financial Funnel
(HFFF) to be a network structure with 9 inputs, 3 hidden
layers and 1 output layer. Each node connects to the next

27the exact research was one in which the methodology acted as a 1, 0
through a logistic activation function fpxq “ 1

1`e´x as opposed to a linear
one. However that small distinction is not significant enough in the context
to delve too much into it but deserved a clarification in the footnotes.

28Indeed, as we will see in section IV-B.1 its simplest structure (the
EWMA) serves as pillar to the section IV-B.2 (MLR) which itself does
the same for the XOR strategy. So we have this incremental complexity in
the network that corresponds to an incremental complexity in information
processed.
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Fig. 7. The High Frequency Financial Funnel

layer and to itself. Each self connection will be labelled by
ws and the others by ws̄. We will admit that ws̄ „ Ur´1, 1s
and that ws „ Ur0, 1s hence:

wx „ Ur´1x“s̄, 1s (20)

1) The Trend Following Topology: a very common trading
strategy is trend following (TF). The idea of TF is that if the
price has been going a certain way (eg: up or down) in the
recent past, then it is more likely to follow the same trend
in the immediate future.

Definition The mathematical formulation of TF can be di-
verse but in the context of this paper we use an exponentially
weighted moving average (EWMA), formally described by
equation (21),

x̂t “ p1´ λqxt ` λx̂t´1, λ P r0, 1s (21)

in which λ represents the smoothness parameter with λ P
r0, 1s.

Remark The lower the magnitude of λ, the more the next
value will be conditional to the previous value. Conversely,
the higher λ, the more the future value will be function to
the long term trend. The idea being that through a simple

filtering process, the noise is extracted from the signal which
then returns a clean time series x̂t.

Proposition The HFFF can model trend following strategies.

Proof: Simply set YjPr1,4swis̄,j “ 0, YjPr1,4swis,j “ 0,
YjPr6,9sw

i
s̄,j “ 0, YjPr6,9swis,j “ 0 YjPr1,4s,iPr1,3sw

h1
s̄,i,j “ 0,

YjPr1,4s,iPr1,3sw
h1
s,i,j YjPr6,9s,iPr1,3sw

h1
s̄,i,j “ 0,

YjPr6,9s,iPr1,3sw
h1
s,i,j , w

h
s̄,3 “ 0, whs,1 “ 0 and whs,3 “ 0.

Remark The proof is visually illustrated by Figure 13 (the
weight equal to 0 have not been represented).

2) Multi Linear Regression Topology: the Multi Linear
Regression (MLR) is another well known strategy traders
have been using for a time in the industry.

Definition Given a data set tyi, xi´1,1, . . . , xi´1,9u
n
i“1,

where n is the sample size, tβiu9i“1, the weight of the
explanatory variables and yi the output, then our MLR is
formalized by

yi “ β1xi´1,1 ` ¨ ¨ ¨ ` β9xi´1,9 ` εi (22)
“ xT

i´1β ` εi, i “ 1, . . . , n

Proposition The HFFF can model multi linear regression
like strategies.

Proof: Simply set YjPr1,4swis̄,j “ 0, YjPr1,4swis,j “ 0,
YjPr6,9sw

i
s̄,j “ 0, YjPr6,9swis,j “ 0, whs̄,1 “ 0, whs̄,3 “ 0,

whs,1 “ 0, whs,3 “ 0.

Remark We will make 4 remarks:
‚ MLR is illustrated in Figure 14 (weights equal to 0 have

not been represented).
‚ Logistic or weighted MLR can be modelled through the

topology of Figure 14 by simply changing respectively
the activation function (from linear to logistic) and the
weights.

3) XOR Topology: How is the XOR function relevant to
HFT? Let’s look at the following known HF rational.

Definition If we define the Open Interest (OI) as being the
total volume left on the order book then it is known that
when:
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‚ the price and the OI are rising then the market is bullish,
‚ the price is rising but the OI is falling then the market

is bearish,
‚ the price is falling but the OI is rising then the market

is bearish,
‚ the price and OI are both falling then the market is

bullish.

Remark These 4 market situations can be summarized by
table IV-B.3.

Open Interest Price Combined Symbol Signal

Rising Rising � Buy

Rising Falling Ö Sell

Falling Rising Œ Sell

Falling Falling � Buy

TABLE I
THE RELATIONSHIP BETWEEN OPEN INTEREST (OI), PRICE (I) &

SIGNAL FOR XOR STRATEGY [65]

Proposition The HFFF can model XOR like strategies.

Proof: Simply set YjPr1,4swis̄,j “ 0, YjPr1,4swis,j “ 0,
YjPr6,9sw

i
s̄,j “ 0, YjPr6,9swis,j “ 0, whs̄,1 “ 0, whs̄,3 “ 0,

whs,1 “ 0, whs,3 “ 0.

Remark We will make the following 2 observations:

‚ The preceding proof is visually illustrated by Figure 15
(the weights equal to 0 have not been represented).

‚ The XOR topology can be designed in various ways.

4) Execution strategy: to make the problem more realistic,
one needs to formalize an execution strategy which would
apply to all strategies, but still be rule based and function of
its topology. In this paper we will take the simple approach
in which all strategies have that same execution strategy.The
idea of this algorithm will be that:

‚ the execution strategy will be subject to a certainty-like
function,

‚ certainty will be decided by the historical returns from
the relevant topology split into intervals,

‚ since the decision needs to be made and that data comes
regularly a rolling percentile function should be used.

In this context our algorithm returns a value between 0 and 9,
the 9 explanatory variables of our HFFF and corresponding
to all of the admissible actions in our order book. The tested
input is compared against the current output as it compares
to the historical outputs and returns the corresponding per-
centile which then goes on populating the order-book. Given
that no history exists in the first iteration and that the first
few iterations are not significant, we will randomize the first
Rn iterations.

C. Genetic Algorithm as a means to study the market
through time

We will take a look at a couple of methods to study the
market through time. We first take, in this subsection, an
approach with the objective to gain intuition in order to
strategize with respect to future research and then a second
method which is mathematically more optimal in lieu of
the RJ-MCMC mentioned in the literature review from the
“Report Format Document”.In this “intuitive” section we
specify the genetic algorithm which we have used to study
our problem with intuition in mind as opposed to optimality.

1) Looping & Fitting Function: Throughout this subsec-
tion we will refer to Micro and Macro increments.

Definition We will define two types of iterations:
‚ the first type being Micro corresponding to an infinitesi-

mal increment in our environment, namely an increment
in which a strategy S analyses and in turn changes the
order book by placing a order itself.

‚ the second type being Macro, corresponding to a gener-
ational increment in our environment, namely a certain
equal number of Micro increments per strategy leading
to a calculation of a Profit and Loss (P&L) and a
survival process29 based on this P&L.

We will label as Nk the number of total live strategies, Ne
k

the number of trend following like strategies, Nm
k the number

of multi-linear regretion like strategies, Nr
k the number of

xor like strategies and No
k the number of other unclassified

strategies30. The relationship between these entities can be
summarized by equation (23).

Nk “ Ne
k `N

m
k `N

r
k `N

o
k (23)

A strategy S will consist of a topology T , a rolling P&L P
and a common orderbook O as shown by equation (24).

S , tP, T ,Ou . (24)

2) Survival & birth processes: the survival, death & birth
processes are a set of processes which impact the number of
live strategies Nk at any time k the following way. If we call
SNk

“ Sp1q, Sp2q, . . ., Spnq, Spn`pq, . . ., SpNkq, the strategies
ranked with respect to their P&L from highest to lowest, we
will admit the following definitions:

Definition The Survivor set31 is the set of strategies with
a positive P&L. Namely if Sa “ Sp1q, Sp2q, . . ., Spsq with
Spsq ě 0 and Sps`1q ă 0. We will subdivide this set by
distinguishing:
‚ secondary survivors set with cardinality a2 “

X

s
2

\

,
survive without reproducing

‚ primary survivors set with cardinality a1 “ s ´ a2,
survive and have one offspring with a “slightly different
DNA” in form of a conditional resampling of their
topology.

29explained next
30This label will be the same in section III-A.
31or alternatively alive process
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Definition We will call the Birth process, the set of rules
conducting the selection of top strategies and their repro-
duction with mutations. The protocol starts by selecting the
ranked first half of survived strategies. Namely, if a1 “ b “
X

s
2

\

the strategies S1 . . .Sa1 will both survive and reproduce
and create a set of equal size but with a slightly different
topology and with cardinality b “ a1.

Definition We define the Death process, the set of proto-
cols aiming at eliminating part of the strategies from our
ecosystem, more specifically, the set of strategies with a
negative P&L. Namely if Sd “ Sps`1q, Sps`2q, . . ., SpNkq

will disappear from the market at Macro iteration k ` 1.

Remark We can easily see that s “ a1 ` a2, a1 ě a2,
a1 “ b. Figure 8 illustrates these definitions.

3) Inheritance with Mutations : the intuition about the
mutation process is that each birth is a function of a
successful strategy (the positive P&L of parents S1 . . .Sa1 )
and should resemble the single parent32 which produced it.
We have seen in section IV that the DNA of our strategies
is essentially their topology T (which is itself a combination
of weights). We will therefore concentrate on performing the
re-sampling on the weights of the offspring. The reason why
this distribution is interesting33 is that:
‚ is defined in a closed interval [0,1] and can therefore

32no crossover in this model
33though, again not optimal

be rescaled easily through a change of variable to [-
1,1], an interval which is a basic way of formalizing
a normalized importance of each node in the topology
decision making of Figure 7.

‚ on the contrary to the uniform distribution, it is more
flexible and offers a broad range of interesting shapes
allowing the possibility to code a conditional resampling
model and therefore make clever proximity changes
around the symbolic levels: ´1, 0 and 1. This way
we can prevent too large deviations and rather select
small incremental changes and intuitively follow the
principles of selection. We can see that the Betapx, 1, 7q
or Betap1 ´ x, 1, 7q both concentrate a great deal of
the distribution towards 0 and 1 respectively. Likewise
Betapx, 3, 7q and Betapx, 5, 7q provide a more Gaus-
sian like distribution towards in between zones which
is what we want.

D. Preliminary results

1) Classification Issue: One of the very first issues we
came across was the problem of strategy classification.
Indeed besides the obvious pitfalls associated to resampling
on continuous distribution we also have several instances
where different networks give the very same results. Few
examples of this problem are given by Figures 16, 17, and
18.

2) Simulation issues: Besides the classification issues just
mentioned which, to an extend was already a show stopper,
as a mean of rigorous proof, we faced a great deal of
programming issues mainly associated to the complexity of
the computing object oriented exercise.

3) Few encouraging notes: Few of the simulations
seemed to indicated a positive correlation between TF and
MLR strategies on strictly increasing or strictly decreasing
markets. When the market trend happened to be less clear the
correlation between their growth rate seemed less significant
and perhaps even negative. It was difficult to make a proper
quantification of these observations due to the low speed of
each simulation and also because the observation conditional
to market tendencies came a posteriori of the simulations.
Not enough simulations were performed to really be able to
assert the mentioned relationship definitively. Similar results
were found as for the relationship between XOR and MLR
strategies, though with even less significance. Few simula-
tions were actually such that, the results remind us to the
Lotka-Volterra 3-predator-prey model with however a great
deal of noise and unclassified strategies. These limitations
forced us to review and simplify the problem in such a way
as to improve the chance of computation, to decipher the
relationship between these strategies at the ecosystem level
and try to prove our results with more rigor.

4) hypothesis: Our seminal paper exposed some of the
relationship between traditional strategies in the financial
markets and speculated through incomplete simulations the
theory of strategy invasion for which couple of example have
be summarized in figure 9 which acronyms are reminded in
table IV-D.4. Finally our first paper [65] ended with the
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Name Meaning Summary

rand random buy or sale randomly

TF Trend Following Follow trend with small lag

MLR Multi-Linear-Regression buy/sell according to the betas

XOR XOR follow table IV-B.3

farm farmer strategy with self awareness

OIP Open Interest Price 4 joint cases (�, Ö, Œ, �)

TABLE II
ACRONYMS & THEIR MEANING FOR THE MAIN STRATS DESCRIBED [65]

proposed a “Diversity & the Financial Markets” conjecture
below.

Conjecture Diversity in financial strategies in the market
leads to its instability.

Remark Note this conjecture can be studied indirectly or at
least intuitively using some of the finding in mathematical
biology. More specifically the one associated with diversity
in ecosystem and stability34.

V. CONCLUSION

A. Summary

We have started this paper by pointing to a puzzling obser-
vation from the newly born high frequency commodities mar-
ket which because of its extreme youth and therefore imma-
turity makes it a great case study for a high frequency market
at inception and therefore for our purpose. More specifically
as we have seen with Figure 1, on 06/08/2011, fascinating
patterned oscillations occurred in the commodities market.
We have proposed in this paper that these oscillations are
due to the interactions of the different strategies participating
in the market and contributing to the fluctuations of the
market. We have done a literature review of mathematical
methods for tracking in section II and of predator/prey and
evolutionary dynamics results in section III. We propose to
use these two fields as leverage keys to help us decipher the
dynamics of the HFTE model for which we have summarized
the main results in section IV. Finally we have discussed
some of the current open problems and ideas we have to
developing this paper further in section V-B.

34Though no consensus is reached there either.

PTF	->	MLR

PMLR	->	TF

PXOR	->	randPrand ->	TF

MLR XORTF

PXOR	->	MLR

PMLR	->	XOR

rand

Fig. 10. MCMC for our 4 states rand, TF, MLR & XOR organized in
terms incremental architectural complexity

B. Current & Future Research

Our first few simulations opened our eyes up to issues
associated to optimality and need for more scientific rigor.

1) Classification Simplification: As mentioned before the
direct simulation approach is too challenging and the results
perhaps too convoluted to filter out the essence of the paper.
For this reason we propose to study the problem using fixed
topologies, of Figures 13 14 and 15, but with possibility
to transition into each other and also a random state, with
a “jump” as opposed to small incremental changes in the
network topology of section IV-C. This will be done via a
transition probability as illustrated by figure 10. The rational
of this choice is that the incremental change in topology
between states also corresponds to an increased subtlety in
the information processed.

Remark It has been speculated that the need for a bigger
brain in men is partly due to the need for human to elaborate
deceitful strategies with their rivals and cooperative strategies
with their allies. It is therefore not entirely ridiculous to
associate increased neural network branching (to be roughly
understood as increase in cranial size) with increased strat-
egy complexity. However, increased intelligence does not
necessarily equate to survival as we can see in the shark
population, considered like an apex predator but with a
relatively small brain that has not evolved for millennia.

2) Invasion flow charts: One way to control our simula-
tion dimensionality issue is to try to express our strategies
in win/lose matrix leading to an invasion, Nowak’s [81]
proposed methodology for versions of strategies battling in
the context of the Tit for Tat like summarized in Figure 6.
In order to do this rigorously. Let’s first go through few
definitions.

Definition We will call an dynamic mini order-book o, the
sequence of static snapshots of the order-book a2,a1Mb1,b2 of
asked and bid volumes ai/bi where i corresponds to the depth
of the order book and M its mid price.

Definition We will call an environment of size i a set of
strategy, S “ sa, sb, . . . , si of topology spanning the one
from figure 7 composed of an order-book, a2,a1Mb1,b2 .

Definition We will call an HFTE Game the sequence of
environments composed of 2 strategies, S “ sa, sb, . . . , si

of topology spanning the one from figure 10 with a dynamic
mini order-book and P&L.
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The tables from appendix III give few examples of HFTE
Games.

Definition We will call a strategy, s invasive with respect to
an environment, e when the P&L of s increases in an HFTE
Game.

Proposition The MLR strategy is invasive with respect to
TF.

Proof: The way to prove this assertion is to test it
through the 4 possible order-book seeds. The iterations from
each steps have been included in appendixes II.

Definition We will call a strategy, s self-fulfilling when it
is invasive with respect to itself.

Proposition The TF strategy is self-fulfilling.

Proof: The way to prove this assertion is to test it
through the 4 possible order-book seeds. The iterations from
each steps have been included in appendixes I.

Remark The intuition we had [65] around the TF acting like
a prey increasing exponentially in the absence of predator is
arguably confirmed.

Definition We will call a strategy, sa weakly dominant with
respect to a strategy sb in an environment when, with the 4
seeds, the average P&L of sa is bigger to the one of sb.

Conjecture The XOR strategy is weakly dominant com-
pared to strategy MLR.

Remark The dominance relationship between the following
strategies is not yet fully understood:
‚ MLR with XOR when MLR takes actions first,
‚ XOR with MLR when XOR takes actions first,
‚ TF with XOR when TF takes actions first,
‚ XOR with TF when XOR takes actions first,

One of the objectives of future research is to rigorously
formalize these 4 open problems like we have done with
tables of appendixes I, II or III.

3) New Simulation: In this new approach we try to sub-
stitute our GA by a MCMC and assume that each successful
strategy makes 2 copies in each macro iteration35, one of
itself and one following an incremental complexity described
by figure 10. For example a random strategy which is
successful becomes a TF. A TF which is successful becomes
a MLR and so on. In order to close the system we will
assume like it was the case in the seminal paper that the
ecosystem also contains random strategies which have the
property to:
‚ invite the invasion of TF strategies but
‚ XOR strategies, assumed the most advanced turn into

so much complexion that they can be considered back
to a random state.

These assumptions are summarized by the Markov Chain
of figure 11. Note that this is consistent with the increased

35Please see our original simulation [65] if you are unfamiliar with the
jargon.

architectural complexity spanning from the HFFF for each of
these strategies. For example like we have seen in figure 13
and 14, the MLR uses the TF architecture with additional
OI information. Similarly figures 14 and 14 show that the
XOR strategy uses an additional layer on top of the MLR
architecture. We try here to understand whether increased ar-
chitectural complexity translates into P&L success especially
in a dynamic environment. Like we have seen in section II-A,
another variant of the Metropolis-Hastings, and perhaps most
promising methodology when it comes to our application
is the Reversible-jump MCMC (RJ-MCMC) developed by
Green [35] and Roberts [89]. One key factor of RJ-MCMC
is that it is designed to address changes of dimensionality
issues. In our case, we face a dual type issues around
change of dimensionality. The first being the frequency of
each strategy in an ecosystem and the second element being
the HFFF which branching structure and size changes as a
function of the strategy. In order to illustrate this point, the
reader may want to take a look at Figures 7, 13, 14 and 15.
The details of the simulations haven’t yet been formalized.
An idea we currently have is to reduce the types of ecosystem
to a collection of at least 13 spaces illustrated by figure 11.

MLR

XOR

TF1/3

1/3

1/3

MLR

XOR

TF2/3

1/6

1/6

MLR

XOR

TF1

0

0

MLR

XOR

TF1/6

2/3

1/6

MLR

XOR

TF1/6

1/6

2/3

MLR

XOR

TF0

1

0

MLR

XOR

TF0

0

1

P(1/3, 1/3, 1/3)->(2/3,	1/6,	1/6)

P(0,	1,	0)->(1/6,	1/6,	2/3)

MLR

XOR

TF2/3

1/3

0

MLR

XOR

TF2/3

0

1/3

MLR

XOR

TF1/3

2/3

0

MLR

XOR

TF0
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1/3

MLR

XOR

TF1/3

0

2/3

MLR

XOR

TF0

1/3

2/3

Fig. 11. Incomplete Space of boxed ecosystems scenarios defined by a
triplet of strategies with an associated proportion in an ecosystem with few
examples of transition probabilities symbolized by an arrow in anticipation
of a future Reversible jump MCMC simulation.

4) The regulatory aspect: as we have seen in section III-
A.1 the regulatory implications from this research naturally
invites us to explore a research project in which we would try
to guess36 the frequency of each types of strategies using the
LotkaVolterra multi species models as likelihood functions.
We propose to use a particle filter on scenarios to achieve this
point. We will discuss this particular point in a subsequent
paper.

36given that we cannot ask the market participants to provide us with
their strategies

18



� �+ଵ௜,௝
 

��௜,௝−ଵ
 

��௜,௝+ଵ
 

��௜+ଵ,௝
 

��௜,௝  
��௜−ଵ,௝

 

      

  

Multi-Linear Regression zone 

Potential for XOR zone 

Mean Reverting zone 

Fig. 12. Illustration of an ANN aiming at predicting the price of an option
based on its adjacent points.

5) The options market: we have recently introduced a
new parametrisation of the implied volatility surface [64],
[66] and have established that de-arbing is a convoluted
mathematical optimization.

For the sake of making the notation a bit more intuitive,
we use the notation of equation (25).

P i´1,j
t :“ CtpKe

´r2∆, T ´∆q

P i,j´1
t :“ CtpK ´∆qe´r∆, T q

P i,jt :“ CtpKe
´r∆, T q

P i,j`1
t :“ CtpK `∆qe´r∆, T q

P i`1,j
t :“ CtpK,T `∆q

(25a)

(25b)

(25c)

(25d)

(25e)

where Ctp.q representing the call price under the relevant
asset class assumption37. We aim at studying the Bayesian
probability problem of equation (26).

p
´

Pi,j ´ lpPi,jq
ˇ

ˇ

ˇ
lpFq

¯

(26)

where, F “ tPi,j ,Pi´1,j ,Pi,j´1,Pi,j`1,Pi`1,ju in the
discrete space, P “ PτPr1,ts and l represents the lag inducing
function such that lpPt`1q “ pPtq. The implied volatility is
a very different product than spot because it has a tendency
to mean revert, it is very much subject to what the adjacent
points are doing and reacts in a lower frequency than spot.
Our aim will be to study the HFTE in light of these
observations. However it is interesting to already notice that
these observations could be addressed by a modification of
the HFFF (Figure 12). Following the rational from section
IV we need to create an learning architecture that would
incorporate the following observations:
‚ Presumably the price point P i,jt can be best approxi-

mated by the 4 adjacent points, a simple MLR38 can be
used to model this idea (green part of Figure 12)

37eg: Log-Normal diffusion in Equities, Normal diffusion for rates and
Garman Kohlhagen for FX.

38yi “ β1xi´1,1 ` ¨ ¨ ¨ ` β9xi´1,9 ` εi from equation (22)

‚ The second point to notice is that each point of the
implied volatility is a mean reverting stochastic process
and this can be modeled in terms of network architecture
by a spread of EWMA39 (blue part of Figure 12)

‚ At least one hidden layer to address some of the
economical drivers leading to a need for an architecture
that could learn XOR like functions like we saw could
sometimes be necessary in algorithmic trading from
Table IV-B.3 (red part of Figure 12).

Remark Note that the XOR like functions may not be as
necessary as the dynamics of spot since vol may be driven by
economical factors that are different especially if we study
the problem at different timescales. This suggests that the red
part of Figure 12 may, at the end, be the identity function.
For the sake of keeping that door open though, we have left
it in our network topology.

We will also see how the parameters introduced in the newly
published IVP model [64] can contribute in fine tuning
the learning process as well as it execution strategy which
requires insight around liquidity. Following the rational from
section IV we need to create a learning architecture that
would incorporate:
‚ Presumably the price point P i,jt can be best approxi-

mated by the 4 adjacent points, a simple MLR40 can be
used to model this idea (green part of Figure 12)

‚ The second point to notice is that each point of the
implied volatility is a mean reverting stochastic process
and this can be modeled in terms of network architecture
by a spread of EWMA41 (blue part of Figure 12)

‚ At least one hidden layer to address some of the
economical drivers leading to a need for an architecture
that could learn XOR like functions like we saw could
sometimes be necessary in algorithmic trading from
Table IV-B.3 (red part of Figure 12).
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APPENDIX I
TF VS TF RELATIVE PERFORMANCE

Strategy Acting TF1 TF2 TF1 TF2

Iteration 1 2 3 4

Signal {+1,0} {+1,+1} {+2,+1} {+2,-1}
Order-book 1,0M1,1

0,0M1,1
1,0,0M1,1

0,0,0M1,1

∆OI ´1
4

´1
4

`1
4

´1
4

∆Price (bps) +1 +1 0 +1

P&LtTF,MLRu {+1,0} {2,1} {2,1} {4,2}

TABLE III
INTERACTION PATH FOR 2 TF STRATEGIES INTERACTING WITH SEED �

Strategy Acting TF1 TF2 TF1 TF2

Iteration 1 2 3 4

Signal {+1,0} {+1,+1} {+2,+1} {+2,-1}
Order-book 1,0M1,1

0,0M1,1
1,0,0M1,1

0,0,0M1,1

∆OI ´1
4

´1
4

`1
4

´1
4

∆Price (bps) +1 +1 0 +1

P&LtTF,MLRu {+1,0} {2,1} {2,1} {4,2}

TABLE IV
INTERACTION PATH FOR 2 TF STRATEGIES INTERACTING WITH SEED Ö

Strategy Acting TF1 TF2 TF1 TF2

Iteration 1 2 3 4

Signal {+1,0} {+1,+1} {+2,+1} {+2,-1}
Order-book 1,0M1,1

0,0M1,1
1,0,0M1,1

0,0,0M1,1

∆OI ´1
4

´1
4

`1
4

´1
4

∆Price (bps) +1 +1 0 +1

P&LtTF,MLRu {+1,0} {2,1} {2,1} {4,2}

TABLE V
INTERACTION PATH FOR 2 TF STRATEGIES INTERACTING WITH SEED Œ

Strategy Acting TF1 TF2 TF1 TF2

Iteration 1 2 3 4

Signal {+1,0} {+1,+1} {+2,+1} {+2,-1}
Order-book 1,0M1,1

0,0M1,1
1,0,0M1,1

0,0,0M1,1

∆OI ´1
4

´1
4

`1
4

´1
4

∆Price (bps) +1 +1 0 +1

P&LtTF,MLRu {+1,0} {2,1} {2,1} {4,2}

TABLE VI
INTERACTION PATH FOR 2 TF STRATEGIES INTERACTING WITH SEED �

APPENDIX II
TF VS MLR RELATIVE PERFORMANCE

Strategy Acting TF MLR TF MLR

Iteration 1 2 3 4

Signal {+1,0} {+1,+1} {+2,+1} {+2,-1}
Order-book 1,0M1,1

0,0M1,1
1,0,0M1,1

1,0,0M0,1

∆OI ´1
4

´1
4

`1
4

`1
4

∆Price (bps) +1 +1 0 +4

P&LtTF,MLRu {+1,0} {2,1} {2,1} {-4,1}

TABLE VII
INTERACTION PATH FOR A TF MEETING AN MLR WITH SEED �

Strategy Acting TF MLR TF MLR

Iteration 1 2 3 4

Signal {+1,0} {+1,+1} {+2,+1} {+2,-1}
Order-book 1,0M1,1

0,0M1,1
1,0,0M1,1

1,0,0M0,1

∆OI ´1
4

´1
4

`1
4

`1
4

∆Price (bps) +1 +1 0 +4

P&LtTF,MLRu {+1,0} {2,1} {2,1} {-4,1}

TABLE VIII
INTERACTION PATH FOR A TF MEETING AN MLR WITH SEED Ö

Strategy Acting TF MLR TF MLR

Iteration 1 2 3 4

Signal {-1,0} {-1,-1} {-2,-1} {-2,+1}
Order-book 1,1M0,1

1,1M0,0
1,1M0,0,1

1,0M0,0,1

∆OI `1
4

`1
4

´1
4

´1
4

∆Price (bps) -1 -1 0 -4

P&LtTF,MLRu {+1,0} {2,1} {2,1} {-4,1}

TABLE IX
INTERACTION PATH FOR A TF MEETING AN MLR WITH SEED Œ

Strategy Acting TF MLR TF MLR

Iteration 1 2 3 4

Signal {-1,0} {-1,-1} {-2,-1} {-2,+1}
Order-book 1,1M0,1

1,1M0,0
1,1M0,0,1

1,0M0,0,1

∆OI `1
4

`1
4

´1
4

´1
4

∆Price (bps) -1 -1 0 -4

P&LtTF,MLRu {+1,0} {2,1} {2,1} {-4,1}

TABLE X
INTERACTION PATH FOR A TF MEETING AN MLR WITH SEED �
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APPENDIX III
TF VS XOR RELATIVE PERFORMANCE

Strategy Acting TF XOR TF XOR

Iteration 1 2 3 4

Signal {+1,0} {+1,-1} {+2,+1} {+2,-1}
Order-book 1,0M1,1

1,0M0,1
1,0M0,0

0,0M0,0

∆OI ´1
4

`1
4

`1
4

´1
4

∆Price (bps) +1 -2 0 +4

P&LtTF,XORu {+1,0} {-2,+1} {-1,+2} {-2,+2}

TABLE XI
INTERACTION PATH FOR A TF MEETING AN XOR WITH SEED �

Strategy Acting TF XOR TF XOR

Iteration 1 2 3 4

Signal {+1,0} {+1,-1} {+2,+1} {+2,-1}
Order-book 1,0M1,1

1,0M0,1
1,0M0,0

0,0M0,0

∆OI ´1
4

`1
4

`1
4

´1
4

∆Price (bps) +1 -2 0 +4

P&LtTF,XORu {+1,0} {-2,+1} {-1,+2} {-2,+2}

TABLE XII
INTERACTION PATH FOR A TF MEETING AN XOR WITH SEED Ö

Strategy Acting TF XOR TF XOR

Iteration 1 2 3 4

Signal {-1,0} {-1,+1} {-2,-1} {-2,+1}
Order-book 1,1M0,1

1,0M0,1
0,0M0,1

0,0M0,0

∆OI `1
4

´1
4

´1
4

`1
4

∆Price (bps) +1 -2 0 +4

P&LtTF,XORu {+1,0} {-2,+1} {-1,+2} {-2,+2}

TABLE XIII
INTERACTION PATH FOR A TF MEETING AN XOR WITH SEED Œ

Strategy Acting TF XOR TF XOR

Iteration 1 2 3 4

Signal {-1,0} {-1,+1} {-2,-1} {-2,+1}
Order-book 1,1M0,1

1,0M0,1
0,0M0,1

0,0M0,0

∆OI `1
4

´1
4

´1
4

`1
4

∆Price (bps) +1 -2 0 +4

P&LtTF,XORu {+1,0} {-2,+1} {-1,+2} {-2,+2}

TABLE XIV
INTERACTION PATH FOR A TF MEETING AN XOR WITH SEED �

APPENDIX IV
MLR VS XOR RELATIVE PERFORMANCE

Strategy Acting MLR XOR MLR XOR

Iteration 1 2 3 4

Signal {+1,0} {+1,-1} {-1,+1} {0,+1}
Order-book 1,0M1,1

1,0M0,1
1,0M0,0

0,0M0,0

∆OI ´1
4

`1
4

`1
4

´1
4

∆Price (bps) +1 -1 -1 +2

P&LtTF,XORu {+1,0} {0,+1} {1,+2} {0,+1}

TABLE XV
INTERACTION PATH FOR A MLR MEETING AN XOR WITH SEED �

Strategy Acting MLR XOR MLR XOR

Iteration 1 2 3 4

Signal {+1,0} {+1,-1} {-1,+1} {0,+1}
Order-book 1,0M1,1

1,0M0,1
1,0M0,0

0,0M0,0

∆OI ´1
4

`1
4

`1
4

´1
4

∆Price (bps) +1 -1 -1 +2

P&LtTF,XORu {+1,0} {0,+1} {1,+2} {0,+1}

TABLE XVI
INTERACTION PATH FOR A MLR MEETING AN XOR WITH SEED Ö

Strategy Acting MLR XOR MLR XOR

Iteration 1 2 3 4

Signal {-1,0} {-1,+1} {+1,-1} {0,-1}
Order-book 1,1M0,1

1,0M0,1
0,0M0,1

0,0M0,0

∆OI `1
4

´1
4

´1
4

`1
4

∆Price (bps) -1 +1 +1 -2

P&LtTF,XORu {+1,0} {0,+1} {1,+2} {0,+1}

TABLE XVII
INTERACTION PATH FOR A MLR MEETING AN XOR WITH SEED Œ

Strategy Acting MLR XOR MLR XOR

Iteration 1 2 3 4

Signal {-1,0} {-1,+1} {+1,-1} {0,-1}
Order-book 1,1M0,1

1,0M0,1
0,0M0,1

0,0M0,0

∆OI `1
4

´1
4

´1
4

`1
4

∆Price (bps) -1 +1 +1 -2

P&LtTF,XORu {+1,0} {0,+1} {1,+2} {0,+1}

TABLE XVIII
INTERACTION PATH FOR A MLR MEETING AN XOR WITH SEED �
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APPENDIX V
EXAMPLE OF CLASSIC STRATEGIES IN HFFF FORMAT

4 3 2 1 0 1 2 3 4 

Fig. 13. The EWMA strategy translated in terms of network topology (the
weight equal to 0 have not been represented)

4 3 2 1 0 1 2 3 4 

Fig. 14. The MLR strategy translated in terms of network topology

4 3 2 1 0 1 2 3 4 

Fig. 15. Another XOR strategy translated in terms of network topology

APPENDIX VI
CLASSIFICATION & EQUIVALENCE PROBLEM EXAMPLES

4 3 2 1 0 1 2 3 4 

Fig. 16. The difference of two EWMAs strategies translated in terms of
network topology (the weights equal to 0 have not been represented)

4 3 2 1 0 1 2 3 4 

Fig. 17. Another MLR strategy translated in terms of network topology

4 3 2 1 0 1 2 3 4 

Fig. 18. The XOR strategy translated in terms of network topology
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