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Abstract— The aim of this technical document is threefold
with the bigger picture being to contribute, within the challeng-
ing regulatory environment, to bring closer together traditional
conflicting practices such as trading vs risk as well as risk
responsiveness vs stability. In order to achieve this goal, we
first expose some of the complexity associated to the risk factors
and arbitrage constraints associated with the options and the
high frequency markets by re-introducing the Implied Volatil-
ity Parametrization (IVP) [3], [11] and the High Frequency
Trading Ecosystem (HFTE) [41]. The exposed complexity is
then contrasted with the current obsolete Risk Methodologies
which are based on simplistic SDEs which we extent using
the Cointelation model [10], [13] in order to partially address
some of the complexity introduced by the challenging regulatory
environment such as scenario coherence. We then present a
simple Machine Learning clustering methodology which is
designed to address and mirror the enhancements of these SDEs
in a simpler fashion. We illustrate our findings by introducing
few new risk concepts such as the Anticipatible VaR which
aims at being a leading as opposed to a lagging (Responsive)
risk measure to a market regime change.

Keywords: Stochastic Differential Equation, Gaussian Pro-
cess, Cointelation, Value at Risk (VaR), Responsive VaR,
Stable VaR, Responsible VaR, Anticipative VaR, Anticipati-
ble VaR, Stochastic Differential Equations (SDE), Implied
Volatility Parametrization (IVP), High Frequency Trading
Ecosystem (HFTE), Variance reduction, Volatility surface,
SVI, gSVI, Arbitrage Free Volatility Surface, Ornstein-
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I. SCOPE

A. Market context

The financial crisis of 2009 and the resulting social uproar
pushed the Basel Committee on Banking Supervision to
revisit its policy on capital requirement [49]. Although quite
verbose in form the new capital requirement introduced
meant, in spirit, and in the context of this paper:
‚ Capital Requirement of each financial institution will be

linked to its VaR1 and the latter must be calculated with
historical data.

1babak.mahdavidamghani@oxford-man.ox.ac.uk
2steve.roberts@oxford-man.ox.ac.uk
1Later into Expected Shortfall, but this change is irrelevant in the context

of this paper as going from one to the other when one has the simulated
scenarios is relatively easy.

‚ VaR must take into account the procyclicality of the
market. Having from roots, the observation that a big
market move is likely to follow another big market
move, risk models must adapt quickly and adjust to the
sudden increase of volatility of the market.

‚ In order to eliminate the risk associated to liquidity
shortage and the resulting systemic risk, VaR should on
top of being Responsive remain as stable as possible.

‚ P&L associated to trading should be mapped to appro-
priate risk factors.

‚ Simulated scenarios must be coherent (example no
arbitrage allowed).

B. A few definitions

Before introducing the context of this paper, let us first in-
troduce few definitions which may not be necessarily known
by the reader even for the quantitative analytics community
as they are relatively new, Risk specific, practitioners focused
definitions.

Remark The concept of VaR and Expected shortfall will be
interchangeably used in this document as the use of either
of these risk measures can be interchangeably used in the
context of risk anticipativity and risk responsibility. Also
this technical document has been written for practitioners
and therefore the mathematics is tailored in such a way that
intuition is conserved at the cost of sometimes, unfortunately,
rigor.

Definition (Responsive VaR): A VaR model that will be
able to adapt, a posteriori, to increased volatility conditions
will be referred to Responsive VaR.

Definition (Anticipative VaR): A VaR model that will be
able to adapt, a priori, to increased volatility conditions will
be referred to Anticipative VaR.

Definition (Stable VaR): A VaR model that will be able to
remain robust will be referred to Stable VaR.

Definition (Responsible VaR): A VaR model that is both
Stable and Responsive will be referred to as Responsible.

Definition (Anticipatible VaR): A VaR model that is both
Stable and Anticipative will be referred to as Anticipatible.



C. Problem formulation

Besides exposing the contrast between market complexity
to risk models absurd simplicity, the objective of this paper
is really twofold:

‚ The current risk models available to practitioners are at
best Responsive and therefore lagging with respect to
regime changes which means that one (or few depending
on the quantile level) risk breaches is needed for the
mathematical model to be able to adjust to the changing
market condition. The first objective for this paper is
to lay down the mathematical specification for a risk
system that would be leading as opposed to lagging.

‚ It seems quite obvious a VaR model cannot be Stable
and Responsive at the same time. The second objec-
tive of this paper is to attempt to partially reconcile
these conflicting risk concepts which are, interestingly,
equally desirable model features for risk managers,
traders and financial mathematics practitioners despite
their apparent discordant properties.

D. Structure of this technical document

We re-introduce the IVP model in section II in order to
recall the complexity of the risk factors in what is commonly
referred to the low frequency domain. We then delve in
the complex constraints associated to non-linear product
especially when it comes to coherent scenario analysis in
the form of arbitrage creation in section III. Given that the
stakes are equally important for both the low and the high
frequency domain, we also re-introduce the HFTE model in
order to expose, in section IV, some of the complexity in
the latter domain as well. In section VI we introduce the
proposed enhancements.

II. COMPLEX LOW FREQUENCY RISK FACTORS

The objective of this section is to expose the complexity
of the risk factors associated to the simplest of the non linear
products, the vanilla options, which are the stepping stones
of more complex derivatives. This is done in order to con-
tribute at exposing the ridicule of the simplistic risk model
specifications that are used by practitioners. Studying vanilla
options can be done in couple of domains, the price domain
or the implied volatility domain which has been developed
to address the limitations of the Black-Scholes model. As it
happens, working on the implied volatility domain offers lots
of benefits that the price domain cannot replicate. The latter
ones, in the context of this paper, are the ones associated to
isolating the risk factors, relevant to risk management2. There
exists many parametrization of the implied volatility surface,
notably the Schonbucher and the SABR models [55], [27],
have had their share of practitioners. However, we will only
discuss the SVI [21], [23], [22], [24] model and its most
advanced extension, the IVP as it is currently the one which
has the most comprehensive number of risk factors.

2also relevant to pricing and trading

A. The Raw Stochastic Volatility Inspired (SVI) model

Remark In terms of notations, we use the traditional no-
tation [24] and in the foregoing, we consider a stock price
process pStqtě0 with natural filtration pFtqtě0, and we define
the forward price process pFtqtě0 by Ft :“ EpSt|F0q. For
any k P R and t ą 0, CBSpk, σ

2tq denotes the Black-
Scholes price of a European Call option on S with strike
Fte

k, maturity t and volatility σ ě 0. We shall denote the
Black-Scholes implied volatility by σBSpk, tq, and define the
total implied variance by

wpk, χRq “ σ2
BSpk, tqt.

The implied variance v shall be equivalently defined as
vpk, tq “ σ2

BSpk, tq “ wpk, tq{t. We shall refer to the two-
dimensional map pk, tq ÞÑ wpk, tq as the volatility surface,
and for any fixed maturity t ą 0, the function k ÞÑ wpk, tq
will represent a slice.

1) History: One advertised3 advantage of the SVI is that it
can be derived from Heston [31], [23], a model used by many
financial institutions for both risk, pricing and sometimes
statistical arbitrage purposes. One of the main advantages
of this parametrization is its simplicity. Advertised as being
parsimonious, its parametrization assumed linearity in the
wings (which yields a poor fit in the wings) because of
its inability to handle variance swaps, leading it to become
decommissioned couple of years after its birth. Another lim-
itation of the SVI became apparent after the subprime crisis
and the subsequent call for mathematical models that would
incorporate liquidity which the SVI did not incorporate [11].

2) Formula: For a given maturity slice, we shall use the
notation wpk, χRq where χR “ ta, b, ρ,m, σu represents a
set of parameters, and the t-dependence is dropped.

Remark Note that the term “parameters” and “risk factors”
can be used interchangeably in this section.

For a given parameter set. Then the raw SVI parameterization
of implied variance reads:

wpk, χRq “ a` brρpk ´mq `
a

pk ´mq2 ` σ2s (1)

with k being the log-moneyness (logpKF q with F being the
value of the forward).

Remark Note that there exist several other forms of the SVI
model which are equivalent to each other through a set of
transform functions [24]. The motivation of their existence
and the details of the transforms are out of scope but we
refer to the original papers [24] for the motivated reader.

The advantage of Gatheral’s model was that it was a paramet-
ric model that was easy to use, yet had enough complexity to
properly model the volatility surface and its dynamic. Figure
3 illustrates the change in the ρ parameter (the skew risk),
Figure 2 illustrates the change in the b parameter (the vol of
vol risk), Figure 1 illustrates the change in the a parameter

3One of the main point of this paper is to expose a small mistake that
was done in one particular paper [21] but for the sake of the introduction,
we will make this remark as a footnote.
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(the general volatility level risk), Figure 5 illustrates the
change in the σ parameter (the ATM volatility risk) and
finally Figure 4 illustrates the change in the m parameter
(the horizontal displacement risk).
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Fig. 1. Change in the a parameter in the rawSVI/gSVI/IVP model
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Fig. 2. Change in the b parameter in the rawSVI/gSVI/IVP model
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Fig. 3. Change in the ρ parameter in the rawSVI/gSVI/IVP model

B. Relation between IVP and raw SVI

Jim Gatheral developed the SVI model at Merrill Lynch
in 1999 and implemented in 2005. The SVI was subse-
quently decommissioned in 2010 because of its limitations
in accurately pricing out of the money variance swaps (for
example short maturity Var Swaps on the Eurostoxx are
overpriced when using the SVI). This is because the wings
of the SVI are linear and have a tendency to overestimate
the out of the money (OTM) variance swaps. Benaim, Friz
and Lee [5] gave a mathematical justification for this market
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Fig. 4. Change in the m parameter in the rawSVI/gSVI/IVP model
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Fig. 5. Change in the σ parameter in the rawSVI/gSVI/IVP model

observation. The paper suggests that the implied volatility
cannot grow asymptotically faster than

?
k but may grow

slower than
?
k when the distribution of the underlier does

not have finite moments (eg: has heavy tails). This suggest
that the linear wings of the SVI model may overvalue really
deeply OTM options which is observable in the markets.
In order to address the limitations of the SVI model in
the wings, while keeping its core skeleton intact, Mahdavi-
Damghani [3] proposed a change of variable which purpose
was to penalize the wings’s linearity. The additional relevant
parameter was called β and was later extended in order
to also address the liquidity constraints of the model [11]
especially given the challenging regulatory environment4.
Mahdavi-Damghani initially named the model “general-
ized SVI” (gSVI) [3] but renamed it “Implied Volatility
Parametrization” (IVP) [11] once the liquidity parameters
were incorporated. In order to keep the number of factor
limited, this β penalization functions was made symmetrical
on each wing5. The function needed to be increasing as it
gets further away from m and majored by a linear function
increasing in rm;`8r and decreasing in s ´ 8;ms and
increasing in concavity the further away it gets from the
center. Equation (2) summarizes the gSVI6. The penalization
was given by equation (2b). Figure 6 illustrates the change

4e.g. Fundamental Review of the Trading Book (FRTB)
5But induced geometrically more significant on the steepest wing: for e.g.

more significant on the left wing in the Equities market and more significant
on the right wing of the Commodities (excluding oil) market

6or alternatively IVP’s mid, model
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in the β parameter.

σ2
gSV I pkq “ a` b

„

ρ pz ´mq `

b

pz ´mq
2
` σ2



z “
k

β|k´m|
, 1 ď β ď 1.4

(2a)

(2b)
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Fig. 6. Change in the β parameter in the gSVI/IVP model

Remark The downside transform in the gSVI [3] was arbi-
trarily given by z “ k

β|k´m|
, 1 ď β ď 1.4. It is however,

important to note, that there are many ways of defining
the downside transform. One general approach would be to
define µ and η like it is done in equation (3a). That idea can
be prolonged to exp like function such as the one in equation
(3b). The idea is always the same: the further away you are
from the ATM, the bigger the necessary adjustment on the
wings.

z “
k

βµ`η|k´m|

z “ e´β|k´m|pk ´mq

(3a)

(3b)

Mahdavi-Damghani, in introducing the IVP model [11]
picked in equation (3a) a µ “ 1 and η “ 4 and have
the transformation in the form z “ k

β1`4|k´m| because it
yields better optimization results on the FX markets and also
because it relaxes the constraint on β but our intuition is
that the exp like function may work better when it comes to
showing convergence between the modified Heston and the
IVP model.

C. Risk factors associated to Liquidity

By incorporating the information on the gSVI, the ATM
Bid Ask spread and the curvature adjustment of the wings
Mahdavi-Damghani [3], [11] defines what he labeled the

Implied Volatility surface Parametrization (IVP) below:

σ2
IV P,o,τ pkq “

„

ρτ pzo,τ ´mτ q `

b

pzo,τ ´mτ q
2
` σ2

τ



ˆ bτ ` aτ

zo,τ “
k

β
1`4|k´m|
o,τ

σ2
IV P,`,τ pkq “

„

ρτ pz`,τ ´mτ q `

b

pz`,τ ´mτ q
2
` σ2

τ



ˆ bτ ` aτ ` ατ ppq

z`,τ “zo,τ r1` ψτ ppqs

σ2
IV P,´,τ pkq “

„

ρτ pz´,τ ´mτ q `

b

pz´,τ ´mτ q
2
` σ2

τ



ˆ bτ ` aτ ´ ατ ppq

z´,τ “zo,τ r1´ ψτ ppqs

ατ ppq “α0,τ ` paτ ´ α0,τ qp1´ e
´ηατ pq

ψτ ppq “ψ0,τ ` p1´ ψ0,τ qp1´ e
´ηψτ pq

The functions αppq (figure 7) and ψp (figure 8) model the
ATM and wing curvature of the Bid-Ask keeping in mind the
idea that the bigger the position size the bigger the market
impact and hence the wider the Bid-Ask. This market impact
parameter is controlled by p (figure 9). Finally, couple of
additional parameters model the elasticity of the liquidity:
ηψ (figure 10) and ηα (figure 11).
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Fig. 7. Change in the α parameter in the IVP model
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Fig. 9. Change in the p parameter in the IVP model
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Fig. 10. Change in the ηψ parameter in the IVP model

III. ARBITRAGE & THE OPTIONS MARKET

The way stress testing is assessed for the options market
is usually threefold. First, the performance as defined by
the difference between the number of exceptions as returned
from the back-testing exercise and the quantile level of our
VaR, is of central importance at the first glance. Having a
poor risk engine that does not take into account arbitrage
creation may distort many scenarios especially when the
shape of the implied volatility surface is highly skewed
or/and high. Second, many of the risk engines uses numerical
methods which break if an arbitrage is created on the implied
volatility surface. Finally, many of the risk engines whether
presented internally in the financial institution or outside
with the regulators is scrutinized and if arbitrage is not
seriously considered the reputation of the managers/bank
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Fig. 11. Change in the ηα parameter in the IVP model

is compromised and the likelihood of acceptance of the
corresponding risk model decreases as a result. We will see
in this section the constraints around the arbitrage frontiers
given by the conditions on the strike (section III-A) and tenor
(section III-B) spaces.

A. Condition on the strike

The model set up is the usual. Let us set up the probability
space pΩ, pfqptě0q,Qq, with pfqptě0q generated by the T ` 1
dimensional Brownian motion and Q is the risk neutral
probability measure under which the discounted price of
the underlier, rS, is a martingale. We also assume that
the underlier can be represented as a stochastic volatility
lognormal Brownian motion as represented by 4.

dSt “ rStdt` σtStdWt (4)

In order to prevent arbitrages on the volatility surface we will
start from basic principles and derive the constraints relevant
to the strike and tenor.

1) Theoretical form: Using Dupire’s work [16], [17],
we can write the price of a call the following way:
CpS0,K, T q “ e´rTEQrST ´ Ks` “ e´rT

ş`8

K
pST ´

KqφpST , T qdST with φpST , T q being the final probability
density of the call. Differentiating twice we find equation
(5).

B2C

BK2
“ φpST , T q ą 0. (5)

Proof: We write our call price CpS0,K, T q “

e´rTEQrST ´ Ks` which, using integration gives
e´rT

ş`8

K
pST ´ KqφpST , T qdST

BC
BK which we simplify to

´e´rT
ş`8

K
φpST , T qdST “ ´e´rTEpST ą Kq. Also we

know that 0 ď ´e´rT BC
BK ď 1. Differentiating a second

time and setting r “ 0 we find φpST , T q “ B
2C
BK2 .

Using numerical approximation we get equation (6) which
is known in the industry as the arbitrage constraint of the
positivity of the butterfly spread [60].

@∆, CpK ´∆q ´ 2CpKq ` CpK `∆q ą 0 (6)

Proof: Given that the probability density must be
positive we have B

2C
BK2 ě 0, using numerical approximation,

we get

B2C

BK2
“ lim

∆Ñ0

rCpK ´∆q ´ CpKqs ´ rCpKq ´ CpK `∆qs

∆2

“ lim
∆Ñ0

CpK ´∆q ´ 2CpKq ` CpK `∆q

∆2

therefore CpK ´∆q ´ 2CpKq ` CpK `∆q ě 0
Gatheral and Jacquier [24] proved that the positivity of
the butterfly condition comes back to making sure that the
function gpq below is strictly positive.

gpkq :“

ˆ

1´
Kw1pkq

2wpkq

˙2

´
w1pkq2

4

ˆ

1

wpkq
`

1

4
`
w2pkq

2

˙

Proof: We have shown in equation (5) that B
2C
BK2 “ φpq.

Applying this formula to the Black-Scholes equation gives
for a given tenor φpkq “ gpkq?

2πwpkq
exp

´

´
d2pkq

2

2

¯

where
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wpk, tq “ σ2
BSpk, tqt is the implied volatility at strike K

and where d2pkq :“ ´k?
wpkq

´
a

wpkq.

Function gpkq yields a polynomial of the second degree with
a negative highest order which suggest that the function is
inverse bell curve like and potentially only positive given
two constraints which may appear as contradicting some of
the initial slides Gatheral presented back in 2004. If ge1 and
ge2 happens to be the exact roots of gpkq “ 0 with ge2 ě ge1
then the volatility surface is arbitrage free with respect to the
butterfly constraint if wpkq ď ge2 and wpkq ě ge1.

2) Necessary but not sufficient Practical form: There ex-
ists another version of this butterfly (equation (5)) condition
that is a necessary but not sufficient condition to make a
volatility surface arbitrage free but remains useful when one
has a more practical objective which will be illustrated with
an example in section II. This condition is given by equation
(7).

@K,@T, |TBKσ
2pK,T q| ď 4 (7)

Proof: The intuition behind the proof is taken from
Rogers and Tehranchi [53] but is somewhat simplified for
practitioners. Assuming r “ 0, let us define the Black-
Scholes call function f : R ˆ r0,8q ÝÑ r0, 1q in terms
of the tail of the standard Gaussian distribution Φpxq “

1?
2Π

ş`8

x
expp´y

2

2 qdy and given by:

fpk, νq “

$

&

%

Φp
k
?
ν
´

?
ν

2
q ´ ekΦp

k
?
ν
`

?
ν

2
q if ν ą 0

p1` ekq` if ν “ 0

Let us call Vtpk, τq the implied variance at time t ě 0 for
log-moneyness k and time to maturity τ ě 0. Let’s now
label our Kappa and Vega, with the convention that φpxq “

1?
2Π

expp´x
2

2 q.

fkpk, νq “ ´e
kΦp

k
?
ν
`

?
ν

2
q

fνpk, νq “ φp
k
?
ν
`

?
ν

2
q{2
?
ν

Now define the function I : tpk, cq P Rˆr0,8q : p1`ekq` ď
c ă 1u ÝÑ r0, 1q implicitly by the formula:

fpk, Ipk, cqq “ c

Calculus gives Ic “ 1
fν

and Ik “ ´ fk
fν

, from here using the
chain rule, designating Bk`V as the right derivative. We have

Bk`V “ Ik ` IcBkErpSτ ´ ekq`s

Bk`V “ ´
fk
fν
´

PpSτ ą ekq

fν

ă ´
fk
fν
“ 2

?
ν

Φp k?
ν
`
?
ν

2 q

φp k?
ν
`
?
ν

2 q

Now using the bounds of the Mills’ ratio 0 ď 1 ´ xΦpxq
φpxq ”

εpxq ď 1
1`x2 , we have:

Bk`V ď
4

k{V ` 1
ă 4

Similarly we can show [53] that Bk´V ą ´4, therefore we
have |BkV | ă 4
One can think of the boundaries of the volatility surface,
as extrapolated by equation (7), as more relaxed boundaries
(but still ”close”) in the strike space compared to the exact
solution from gpkq set to 0 which are both necessary and suf-
ficient conditions for the volatility surface to be arbitrage free
for the butterfly condition. Formally if ga1 and ga2 happens to
be the exact roots of |TBKσ2pK,T q| ´ 4 “ 0, with ga2 ě ga1
then we have ga1 ď ge1 ď wpkq ď ge2 ď ga2 . The reason
why equation (7) is practical is because in de-arbitraging
methodologies (as we will see more in details in section
II), there exist for the pricers, a component of tolerance
anyways (the pricers are stable if the volatility surface is
slightly away of its arbitrage frontier). This suggests that
finding a close enough solution but building on top of that
an iterative methodology to get closer and closer to the
practical arbitrage frontier is almost equally fast, but with
less computing trouble, than having the exact theoretical
solution (and building an error tolerance finder on top of it
anyways). This is because there is less probability to make
a typo mistakes in typing the exact solution of gpkq (or
its numerical approximation) especially if your parametrized
version of the volatility surface is complex which is the case
in most banks (tga1 , g

a
2u are easier to find than tge1, g

e
2u). Also

as we will see in section II that given that we would like a
liquidity component around a mid price, having a simple
”close enough” constraint on the mid becomes very useful
especially if we are happy to allow the mid to have arbitrages
on it, something which happens to be the case from time
to time on the mid vol of the market anyways. Figure 12
represents a counter example of |TBKσ2pK,T q| ď 4 applied
to the Raw SVI parametrisation7 in which pa, b,m, ρ, σq “
p0.0410, 0.1331, 0.3586, 0.3060, 0.4153q respect the bp1 `
|ρ|q ď 4

T inequality but for which the probability density
function at expiry in negative around moneyness of 0.8
yielding a butterfly arbitrage.

B. Condition on the tenor

The model setup is the same as in section III-A, that is let
us set up the probability space pΩ, pfqptě0q,Qq, with pfqptě0q

generated by the T ` 1 dimensional Brownian motion and
Q is the risk neutral probability measure under which the
discounted price of the underlier, rS, is a martingale. We also
assume that the underlier can be represented as a stochastic
volatility lognormal Brownian motion as represented by
equation (4). In order to prevent arbitrages on the volatility
surface on the tenor space we will split this subsection in its
theoretical form in section III-B.1 and III-B.2 for its practical
form.

7which we discuss more in details in section II.
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Remark 3.2. By a careful study of the minima and the shapes of the two slices w(·, t1)
and w(·, t2), it is possible to determine a set of conditions on the parameters ensuring no
calendar spread arbitrage. However these conditions involve tedious combinations of the
parameters and will hence not match the computational simplicity of the lemma.

For a given slice, we now wish to determine conditions on the parameters of the raw
SVI formulation (3.1) such that butterfly arbitrage is excluded. By Lemma 2.1, this is
equivalent to showing (i) that the function g defined in (2.1) is always positive and (ii)
that call prices converge to zero as the strike tends to infinity. Sadly, the highly non-linear
behaviour of g makes it seemingly impossible to find general conditions on the parameters
that would eliminate butterfly arbitrage. We provide below an example where butterfly
arbitrage is violated. Notwithstanding our inability to find general conditions on the
parameters that would preclude arbitrage, in Section 4, we will introduce a new sub-class
of SVI volatility surface for which the absence of butterfly arbitrage is guaranteed for all
expiries.

Example 3.1. (From Axel Vogt on wilmott.com) Consider the raw SVI parameters:

(a, b,m, ρ, σ) = (−0.0410, 0.1331, 0.3586, 0.3060, 0.4153) , (3.8)

with t = 1. These parameters give rise to the total variance smile w and the function g
(defined in (2.1)) on Figure 1, where the negative density is clearly visible.
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Figure 1: Plots of the total variance smile w (left) and the function g defined in (2.1)
(right), using the parameters (3.8).

4 Surface SVI: A surface free of static arbitrage

We now introduce a class of SVI volatility surfaces—which we shall call SSVI (for ‘Surface
SVI’)—as an extension of the natural parameterization (3.2). For any maturity t ≥ 0,

10

Fig. 12. Axel Vogt [62] counter-example for bp1` |ρ|q ď 4
T

being arbitrage free

1) Theoretical form: The condition on the tenor axis
which insures the volatility surface to be arbitrage free is
that the calendar spread should be positive:

CpK,T `∆q ´ CpKe´r∆, T q ě 0 (8)

Proof: One application of Dupire’s formula [16],
[17] is that the pseudo-probability density must satisfy the
Fokker-Planck [20], [52] equation. This proof is taken from
El Karoui [34]. Let us apply Itô to the semi-martingale
. This is formally done by introducing the local time
ΛKT : e´rpT`εq pST`ε ´Kq

`
´ e´rpT q pST ´Kq

`
“

şT`ε

T
re´ru pSu ´Kq

`
du `

şT`ε

T
e´ru1tSuěKudSu `

1
2

şT`ε

T
e´rudΛKu . Local times are introduced in mathematics

when the integrand is not smooth enough. Here the
call price is not smooth enough around the strike
level at expiry. Now we have: E

`

e´ru1tSuěKuSu
˘

“

C pu,Kq `Ke´ruP pSu ě Kq “ C pu,Kq ´K BC
BK pu,Kq.

The term of the form E
´

şT`ε

T
e´rudΛKu

¯

is found due to
the formula of local times, that is:

E

˜

ż T`ε

T

e´rudΛKu

¸

“

ż T`ε

T

e´ruduE
`

ΛKu
˘

“

ż T`ε

T

e´ruduσ2 pu,KqK2φ pu,Kq

“

ż T`ε

T

σ2 pu,KqK2 B
2C

BK2
pu,Kq du

Plugging these results back into the first equation we get:

C pT ` ε,Kq “C pT,Kq ´

ż T`ε

T

rC pu,Kq du` pr ´ qq

ˆ

ż T`ε

T

ˆ

C pu,Kq ´K
BC

BK
pu,Kq

˙

du

`
1

2

ż T`ε

T

σ2 pu,KqK2 B
2C

BK2
pu,Kq du

If we want to give a PDE point of view of this problem we
can notice that φ pT,Kq “ e´rT B

2C
BK2 pT,Kq verifies the dual

forward equation:

φ
1

T pT,Kq “
1

2

B2
`

σ2 pT,KqK2φ pT,Kq
˘

BK2

´
B2 ppr ´ qqKφ pT,Kqq

BK

Integrating twice by part, we find:

Be´rTC pT,Kq

BT
“

1

2
σ2 pT,KqK2erT

B2C pT,Kq

BK2

´

ż `8

K

pr ´ qqKerT

ˆ
B2C pu,Kq

BK2
BK pT,Kq du

Now integrating by part again and setting dividends to 0 we
find the generally admitted relationship:

BC

Bt
“
σ2

2
K2 B

2C

BK2
´ rK

BC

BK

and therefore we have:

σ “

d

2
BC
Bt ` rK

BC
BK

K2 B2C
BK

From this formula and from the positivity constraint on
equation (5) we find that BC

Bt `rK
BC
BK ě 0. Note that for very

small ∆, we have CpKe´r∆, T q « CpK´Kr∆, T q. Using
Taylor expansion we get CpK ´ Kr∆, T q “ CpK,T q ´

Kr∆ BC
BK ` . . . and therefore rK BC

BK «
CpK,T q´CpKe´r∆,T q

∆ .
Using forward difference approximation we also have BC

BK “
CpK,T`∆q´CpK,T q

∆ and from Fokker-Planck we have BC
Bt `

rK BC
BK ě 0. Substituting, we obtain CpK,T`∆q´CpK,T q

∆ `
CpK,T q´CpKe´r∆,T q

∆ ě 0. Simplifying further we find
CpK,T `∆q ´ CpKe´r∆, T q ě 0.
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2) Practical form: Similarly to section III-A there exists a
more practical equivalent to the calendar spread criteria. This
equivalent criteria is known as the falling variance criteria
which states that if S is a martingale under the risk neutral
probability measure Q,

@t ą s, e´rtEQpSt ´Kq
` ě e´stEQpSs ´Kq

` (9)

Proof: e´rtEQpSt ´ Kq` ě e´rsEQpSs ´ Kq` ñ

e´rtEQpSt ´ Kq` ´ e´rsEQpSs ´ Kq` ě 0 ñ Calendar
Spread ě 0 ñ CpK,T `∆q ´ CpKe´r∆, T q ě 0

C. Arbitrage Frontiers and de-arbitraging

As we have seen from equations (6) and (8) there are cou-
ple of arbitrages types, the calendar and butterfly arbitrage
as summarized my equation (10b).

@∆, CpK ´∆q ´ 2CpKq ` CpK `∆q ą 0

@∆,@T,CpK,T `∆q ´ CpKe´r∆, T q ě 0

(10a)

(10b)

A new wave of risk methodologies with the objective of mak-
ing incoherent scenarios like the ones allowing an arbitrage
is currently being developed [3], [24], and though promissing
few questions remain to be addressed [11].

Remark Note that once Bid Ask has been incorpo-
rated, we care a bit less about the mid in the con-
text of vanilla options market making. Though the mid
may have arbitrages at the portfolio level, the Bid-
Ask relaxes the butterfly spread equations. We get,
in the context of the IVP mode described in section
II: @∆, CpK ´ ∆, σIV P,`,tpkqq ´ 2CpK,σIV P,´,tpkqq `
CpK ` ∆, σIV P,`,tpkqq ą 0 which gives: CpK,T `

∆, σIV P,`,tpkqq ´ CpKe
´r∆, T, σIV P,´,tpkqq ě 0.

IV. COMPLEX HIGH FREQUENCY RISK FACTORS

In this section we will expose the complexity of risk
factors at the high frequency domain, which is by definition
a highly fast market in which the decisions are taken by
rule based methods which then go on impacting the order
books which other robots read and act upon, in a systematic
fashion and at a lightning speed. To illustrate this latter point
we summarize the HFTE model, recently introduced [41].

A. Market Observation

1) Introduction: After the subprime crisis of 2008 and
the resulting social uproar, governments strongly pushed
the regulators to develop more efficient risk monitoring
systems8. The new candidate sector under question was that
of algorithmic systematic trading which led to the flash
crash of May 6, 2010, in which the Dow Jones Industrial
Average lost almost 10% of its value in matter of minutes.
However, the current state of the art risk models are the
ones inspired by the last subprime crisis and are essentially
models of networks in which each node can be impacted
by the connected nodes through contagion [29] and is
better suited to lower frequency, linear models. Indeed, on
06/08/2011 a seemingly relatively unnoticed event occurred

8In this context risk is viewed as a mixture or Market and Reputation.

on the natural gas commodities market. We say “relatively
unnoticed” simply because the monetary impact was limited
and finance is unfortunately an industry in which warning
signs are usually dismissed until it is too late. We can see
from Figure 1 in [41] that clearly something non-random is
occurring. This feeling is exacerbated by the strong intuition
that only interacting agents falling into some sort of quagmire
could yield such series of increasing oscillations followed by
a mini crash. Indeed, commodities has historically been seen
as a physical market, this in turn meaning that the prices are
driven by supply and demand of commodities which can be
consumed, stored and/or produced. This particular point is
a unique feature compared to the other markets (Equities,
FX, or Rate). Also this suggests that the common, though
perhaps a bit lazy view, that crashes occur through totally
unpredictable [59] events may not be true for algorithmic
trading.

2) Rational: The HFTE is currently a model under con-
struction which formalism and conclusions need to be ironed
out in a more rigorous fashion [41]. Despite its seemingly
unfinished aspect, it still exposes through the bridge-fields it
connects with, to the complexity of doing proper risk man-
agement at the high frequency level. In order to understand
the latter model though, we propose to go over a relevant
literature review of theoretical biology (in section IV-B),
more specifically Predator/Prey models, as the latter can
be seen as a very rough deterministic and perfectly visible
simplification of what would be required in order to study
an ecosystem of strategies. We will also see in subsection
IV-C an Optimal Control Theory review and in subsection
IV-D a relevant Game Theoretical review. As the reader will
notice the added relative complexity of these fields is to be
understood as only a lower deterministic band of what it
would be required to study risk at the stochastic level.

B. Theoretical Biology & Predator/Prey models

1) Review: To bring context it was discussed in the 1960s
[28] that complexity in an ecosystem insures its stability or
to keep the same jargon “communities not being sufficiently
complex to damp out oscillations” [19], [32] have a higher
likelihood of vanishing. It also is widely accepted, in the con-
text of ecosystem simulation, that complexity should always
arise from simplicity [44], [8]. The diversity-stability debate
in the context of ecosystem modeling has been ongoing since
the 1950s [45] with no consensus being ever reached. It
was initially believed [45], [40], [18] nature was infinitely
complex and therefor more diverse ecosystem should in-
sure more stability. This assertion was however ultimately
challenged through rigorous mathematical specification [44],
[64], [50] in the 1970s and 1980s by using Lotka-Volterra’s
Predator/Prey model initially published in the 1920’s [63],
[39] with similar “non-intuitive” results. More recently the
work has been extended to small ecosystems of three-species
food chain [7]. The intuitive 3 species example we have
chosen to discuss is the one containing Sharks (chosen to
be the z parameter), Tuna (chosen to be the y parameter)
and Small Fishes (chosen to be the x parameter), the idea
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being that tunas eat small fishes which in turn are eaten by
sharks. Without loss of generality sharks are assumed to die
of natural causes and their decomposing bodies go on to feed
the small fishes. The set of differential equations has been
summarized in equation (11).

$

’

&

’

%

dx
dt “ ax´ bxy
dy
dt “ ´cy ` dxy ´ eyz
dz
dt “ ´fz ` gyz

(11)

where a is the natural growth rate of species x in the
absence of predator, d the one of y in the absence of z.
We also have b representing the negative predation effect of
y on a and e the one of z on y. We also have g which
mirrors the efficiency of reproduction of z in the presence
of prey y. Note that we assume that x never dies of natural
causes (if it’s too old then it can’t run fast enough to outrun
predator y) but this is not the case for z since it is an
alpha predator and therefore needs some natural death rate
which is symbolized by f . This relatively simple system of
three equations has been studied extensively [45] for stability.
For example figure 14 represents a particular instance in
which the system is unstable. Indeed, we can notice that
the oscillations between the 3 species increases to the point,
here not shown, where the amplitudes are so big that z
goes instinct and at which point x and y start oscillating,
with however a constant amplitude. We refer the motivated
reader back to the original papers [45] for the other cases
and interesting idiosyncratic properties. One interesting point
to notice is that in cases of “relative best stability”, in which
a “ b “ c “ d “ e “ f “ g “ 1% from figure 13,
we have oscillation which are stable through time with the
highest peek from the ultimate prey (x) coming first with
the highest peek and the the one of the ultimate predator (z)
coming last but with the smallest amplitude. This suggest
that sophisticated working trading strategies9 need enough
prey like strategies10 in the same ecosystem to get them to
be profitable. One other interesting observation is that the
total ecosystem population as depicted in the thick black line
from the same figure suggest that it itself oscillates which
may not necessarily be intuitive. Indeed one could have
speculated that the loss of a species directly benefits the other
and that therefore the total population should stay constant.
This interesting observation suggest that the oscillations of a
financial market may likewise be subject of similar dynamics:
a financial ecosystem may go through periods in which it
thrives followed by period in which it declines, the economy
itself is cyclical with, some may argue oscillations which are
more and more important like one depicted by the unstable
ecosystem from figure 14. The stunning similarities of the
competitive resource driven biological ecosystem along with
some compelling similarities in some of its cyclical behavior
makes the Lotka-Volterra n-species food chain equation an
interesting candidate when it comes to studying the stability
of the financial market in the context of the HFTE because

9perhaps from top algorithmic desks in top tier investment banks?
10perhaps the retail clients of the world?
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Fig. 13. The Lotka-Volterra three-species food chain equation 11 with
x1 “ 0.5, y1 “ 1, z1 “ 2 and a “ b “ c “ d “ e “ f “ g “ 1%

of its systematic rule based approach and zero sum game like
roots. However, these are hypothesis that we need to check
more rigorously.

2) Regulatory Implications: The second and last imme-
diate application we will take a look at in the context of
this paper is the one of systemic risk. Given that this paper
proposes that the fluctuations of the markets are linked to
the frequency of the strategies composing the ecosystem of
the market, we propose a model which would take advantage
of this assumptions to build original high level regulations.
The exercise would consist of monitoring these strategies
interactions and flag the market when necessary. Suppose
now that we label strategies of figure 17, 18 and 19 by
respectively x, y and z and we use equation (11). If we
can somehow infer what the frequency of x, y and z are
in the ecosystem, then we can study whether or not the
ecosystem is stable [7]. Returning to the actual mathematical
study of the stability of the financial market, determining a
market composed of 3 strategies is stable requires studying
the Jacobian matrix J from equation (12).

Jpx, y, zq “

»

–

a´ by ´xb 0
yd ´c` dx´ ez ´ye
0 ´zg ´f ` gy

fi

fl (12)

By examining the eigenvalues of Jpx, y, zq we can indirectly
gain information around the equilibrium of our financial
system at the regulatory level11. More specifically if all
eigenvalues of Jpx, y, zq have negative real parts then our
system is asymptotically stable. Figure 14 gives an illustra-
tion of a situation in which one of the eigenvalues is negative.
Many questions could be raised here: how can the regulators
gain information on the parameters composing systems of
equation (11)? Also the market has surely more than 3 types
of strategies, how many exactly? Are these strategies easily
classifiable in terms of prey, predator and super predator or
can you find more subtle instances? It is very likely that
trading desks especially in the high frequency domain refuse

11we assume for the sake of this example that we only have 3 strategies
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Fig. 14. The Lotka-Volterra three-species food Chain equation 11 with
x1 “ 0.5, y1 “ 1, z1 “ 2, a “ b “ c “ d “ e “ f “ 1% and
g “ 1.6%

to provide their sets of strategies for the regulators to study
the Jacobian matrix in order to take the relevant actions12.

C. Optimal Control Theory

The Hamilton-Jacobi-Bellman (HJB) partial differential
equation [4] was developed in 1954 and is widely considered
as a central theme of optimal control theory. Its solutions
is the value function giving the minimum cost for a given
dynamical system and its associated cost function. Solved
locally, the HJB is a necessary condition, but when over
the entire of state space, it is referred to as necessary and
sufficient for an optimum. Its method can be generalized
to stochastic systems. Its discrete version is referred to
as the Bellman equation and its continuous version, the
Hamilton-Jacobi equation. Formally we consider the problem
in deterministic optimal control over the time period r0, T s:

V pxp0q, 0q “ min
u

#

ż T

0

Crxptq, uptqs dt`DrxpT qs

+

(13)

where Crs is the scalar cost rate function, Drs is the utility at
the final state, xptq the system state vector with xp0q usually
given, and finally uptq where 0tT is called the control vector
we aim at finding. The system of equation is also subject to
9xptq “ F rxptq, uptqs where F rs is a deterministic vector
describing the evolution of the state vector over time. The
HJB partial differential equation is given by:

9V px, tq `min
u
t∇V px, tq ¨ F px, uq ` Cpx, uqu “ 0 (14)

subject to the terminal condition V px, T q “ Dpxq.
V px, tq, commonly known as the Bellman value func-
tion (our unknown scalar) represents the cost incurred
from starting in x at time t and controlling the sys-
tem optimally until T . V pxptq, tq is the optimal cost-
to-go function, then by Bellman’s principle of optimal-
ity from time t to t ` dt, we have V pxptq, tq “

minu

!

V pxpt` dtq, t` dtq `
şt`dt

t
Cpxpsq, upsqq ds

)

. The

12instruct the trading desks to increase or decrease their notionals so as
to enforce a manual intervention for the sake of the market’s stability

Taylor expansion of the first term is V pxpt` dtq, t` dtq “
V pxptq, tq` 9V pxptq, tq dt`∇V pxptq, tq¨ 9xptq dt`opdtq where
poqpdtq denotes the higher order terms of the Taylor expan-
sion. Canceling V pxptq, tq on both sides and dividing by dt,
and taking the limit as dt approaches zero, we obtain the HJB
equation. Its resolutions is done backwards in time which
can be extended to its stochastic version. In this latter case

we have min
u

E

#

ż T

0

Cpt,Xt, utq dt`DpXT q

+

, with this

time pXtqtPr0,T s being stochastic and needing optimization
and putqtPr0,T s the control process. By first using Bellman
and then expanding V pXt, tq with Ito’s rule, one finds the
stochastic HJB equation minu tAV px, tq ` Cpt, x, uqu “ 0
where A represents the stochastic differentiation operator,
and subject to the terminal condition V px, T q “ Dpxq13.

D. Game Theoretical Review

Another area of investigation is the one of Game Theory.
Broadly speaking the prisoner’s dilemma (PD) can be for-
malized into a matrix14 of 2 by 2 with CC, CD, DC and
DD with respective payoffs (2,2), (0,3), (3,0) and (1,1). The
reason why this game theory concept is within the family of
dilemmas is because although the prisoners clearly should
cooperate here, given that they do not know what the other
is going to do, by expectation (with equal probability for a
C and a D) any user should deceit given that the expectation
of the payoff for a deceit is 2 as opposed to a 1 for a
cooperation.

1) Axelrod’s computer tournament: however this dilemma
presented in the previous subsection proved to shuffle the
rules of payoff strategy optimality when the game became
iterative, Robert Axelrod main contribution to the field.
Indeed Axelrod [1], [2] designed a computer tournament
which aim was to take a look at what strategy would
prevail in an iterative format. In that occasion he invited
few Mathematicians, Computer Scientists, Economists and
Political Scientists to code a strategy they believed could
win such tournament with the constraints of a PD rules in
which it is not known when the tournament will stop15.
Many strategies were thrown into this ecosystem in form
of a tournament ranging from being simplistic like “Always
Deceit” (AD) strategy16 to many other more complicated
strategies which generic representation can be looked at in
Figure 15b). Surprisingly the Tit For Tat (TFT) strategy came
at the top of this tournament. The TFT is considered in the
literature to be a nice strategy, meaning that it is never the
first to deceit (its first move is by design to be a C), but it is
also a strategy that is able to retaliate in situation in which
it was previously deceited. Finally, it is a strategy that is

13the randomness has disappeared.
14Figure 15a)
15eg: it is by expectation best to deceit if one plays the PD only once.

By iteration he should always deceit on the last move, but knowing this, the
adversary should also deceit. Using this logic each player should deceit on
the next to the last move and the same logic kicks in and very quickly one
is led to arrive to the conclusion that he/she should deceit from the very
first move.

16or its mirror: the AC “Always Cooperate” (AC) strategy
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able to forgive meaning that if it sees that the adversary has
decided to cooperate after a deceit, then he switches back to
a C.

2) Evolutionary Dynamics: Martin Nowak [48] recently
enhanced some of Axelrod’s work by introducing new
strategies and further developing the concepts of inva-
sion/dominance17 within a competitive strategic ecosystem.
For instance as we can see from Figure 15d) that some
strategies invade others but these latter strategies can be in
turn invaded by other ones which in turn can be invaded
by the very first strategy mentioned and induce cycles18.
Indeed an ecosystem composed of a set of unbiased random
strategies (that would randomly C or D) would invite the
invasion of an ALLD (always defect) kind. In term the
frequency of ALLD would take the ecosystem which would
invite the TFT strategy which would benefit from the mutual
cooperation when within the same proximity etc ... Figure
(15) exposes how some of these strategies may interact with
each other. The following additional information may help
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WSLS:	CDDDDDDDD	…
ALL	C:	CCCCCCCCCCC	…

vs.

WSLS:	CDCDCDCDCD	…
WSLS:	CDCDCDCDCD	…

vs.

WSLS:	CDCDCDCDCD	…
ALLD	:	DDDDDDDDD	…

vs.

GTFT:	CCCCDCCCCCC	…
GTFT:	CCCCCCCCCCC	…

vs.

ALLC:	CCCCCCCCCCC	…
ALLD:	DDDDDDDDD		…

vs.

TFT:	CCCDCDCDCDCD …
TFT:	CCCCDCDCDCDC	…

vs.
ALLD ALLC

TFT GTFT

WSLSrand

d)	War	&	Peace	
Chart

TFT:		CCCCCCDCCCC	…
GTFT:	CCCCCCCCCC	…

vs.

GTFT:		CCCCCCDCCCC	…
ALLC:		CCCCCCCCCC	…vs.

C

D

Fig. 15. Some classic Game theory representations [48].

in refreshing what some of these acronyms mean:
‚ TFT (Tit of Tat) developed in the previous section
‚ GTFT (Generous Tit of Tat) which makes it slightly less

grudge prone compared to the TFT as it only deceits for
2 successive D’s from the opponent.

‚ WSLS (Win-Stay, Lose-Shift) that outperforms tit-for-tat
in the Prisoner’s Dilemma game [48], [57]

‚ ALLD (Always Deceits) which is self explanatory
‚ ALLC (Always Cooperates) which is also self explana-

tory
‚ rand (Random Strategy) which outputs a C or a D with

equal probability.
The main takeaway from this parallel was to expose how the
rise and fall of strategies can easily be engineered through

17by extension when applied to finance some strategies may dominate
and invade others.

18economical cycles for example when applied to our primary problem

simple systematic rules based on an ecosystem and how
complexity can be induced from simple rules.

E. Review of the HFTE model

Recently, the concept of ecosystems of strategies [35] was
introduced. Though the idea had great potential, the paper
assumes a set of static strategies which does offer to some
extent an interesting snapshot of the market but does not
offer:
‚ a history for this snapshot,
‚ an inspiring future for the field,
‚ a topology for these strategies (in the form of a DNA),
‚ a sense of how to study the stability of the ecosystem,
‚ insight about how this should impact the regulatory

horizon,
‚ a connection to other fields19 with concepts and prop-

erties that could be used to increase our mathematical
weaponry.

Definition (HFTE): We call HFTE the High Frequency
Trading Ecosystem model which attempt is to answer the
points raised.

F. Network & learning potential

Two important milestones in Machine Learning are worth
remembering, as they shed light on why the core building
blocks of our HFTE model is a certain way. First, Warren
McCulloch and Walter Pitts [51] introduced their threshold
logic model in 1943 which is agreed to have guided the
research in network topology as it relates to artificial intel-
ligence for more or less a decade. Second, Rosenblatt [54],
formally introduced the perceptron concept in 1962 though
some early stage work had started in the 1950s. The idea
of the perceptron was one in which the inputs x1 and x2

could act as separators20 and therefore a direct equivalence
could be made to the multi-linear regression which we will
elaborate on more in details is section IV-G.2. One observed
limitation of the perceptron as described by Rosenblatt, in
1969, was that a simple yet critical well known functions
such as the XOR function could not be modeled [46]. This
resulted in a loss of interest in the field until it was shown that
a Feedforward Artificial Neural Network (ANN) with two
or more layers could in fact model these functions. Added,
to this we have the well known overfitting [58] problems
when it comes to supervised learning which has been there
since inception though regular progress is being made in that
domain without real breakthrough.

G. The Funnel

The Funnel, introduced by Martin Nowak [48], represents
the simplest possible network to model (therefore which
minimizes overfitting) the key functions of our application.
The area of evolutionary graph theory is quite rich, and

19eg: Game Theory, Mathematical Biology, Signal Processing
20the exact research was one in which the methodology acted as a 1, 0

through a logistic activation function fpxq “ 1
1`e´x

as opposed to a linear
one. However that small distinction is not significant enough in the context
to delve too much into it but deserved a clarification in the footnotes.
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graphs provide interesting properties. We can formalize the
learning process from all of our strategies using the topology
of Figure 16 by providing a set T , as described by equation
(15) of weights corresponding to all the possible weights of
this particular figure.

T ,
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(15)
with wi, wh and wo, respectively the weights associated to
the input, hidden and output layers.

△m   △  △  △  △  

  … + △  + △  △  + △  + … △  △  

4 3 2 1 0 1 2 3 4 

Input layer  

Hidden Layer  

Output Layer  

Fig. 16. The High Frequency Financial Funnel

Remark Note that in the context of this paper we have
chosen to work with Martin Nowak’s [48] funnel, as Figure
16. This topological structure offers the advantage of making
some interesting bridges between the worlds of:
‚ information theory since it also resembles the classic

structure of a Neural Network and can therefore easily
accommodate the mapping of classic and less classic
financial strategies,

‚ evolutionary dynamics since Moran-like Processes [47]
can easily be formalized,

‚ biology since it is a potent amplifier of selection [48]21.

We will conclude this subsection by providing a definition
of the High Frequency Financial Funnel.

Definition We define the High Frequency Financial Funnel
(HFFF) to be a network structure with 9 inputs, 3 hidden
layers and 1 output layer. Each node connects to the next
layer and to itself. Each self connection will be labelled by
ws and the others by ws̄. We will admit that ws̄ „ Ur´1, 1s
and that ws „ Ur0, 1s hence:

wx „ Ur´1x“s̄, 1s (16)
21Indeed, as we will see in section IV-G.1 its simplest structure (the

EWMA) serves as pillar to the section IV-G.2 (MLR) which itself does
the same for the XOR strategy. So we have this incremental complexity in
the network that corresponds to an incremental complexity in information
processed.

1) The Trend Following Topology: a very common trading
strategy is trend following (TF). The idea of TF is that if the
price has been going a certain way (eg: up or down) in the
recent past, then it is more likely to follow the same trend
in the immediate future.

Definition The mathematical formulation of TF can be di-
verse but in the context of this paper we use an exponentially
weighted moving average (EWMA), formally described by
equation (17),

x̂t “ p1´ λqxt ` λx̂t´1, λ P r0, 1s (17)

in which λ represents the smoothness parameter with λ P
r0, 1s.

Remark The lower the magnitude of λ, the more the next
value will be conditional to the previous value. Conversely,
the higher λ, the more the future value will be function to
the long term trend. The idea being that through a simple
filtering process, the noise is extracted from the signal which
then returns a clean time series x̂t.

Proposition The HFFF can model trend following strategies.

Proof: Simply set YjPr1,4swis̄,j “ 0, YjPr1,4swis,j “ 0,
YjPr6,9sw

i
s̄,j “ 0, YjPr6,9swis,j “ 0 YjPr1,4s,iPr1,3sw

h1
s̄,i,j “ 0,

YjPr1,4s,iPr1,3sw
h1
s,i,j YjPr6,9s,iPr1,3sw

h1
s̄,i,j “ 0,

YjPr6,9s,iPr1,3sw
h1
s,i,j , w

h
s̄,3 “ 0, whs,1 “ 0 and whs,3 “ 0.

4 3 2 1 0 1 2 3 4 

Fig. 17. The EWMA strategy translated in terms of network topology (the
weights equal to 0 have not been represented)

Remark The proof is visually illustrated by Figure 17 (the
weight equal to 0 have not been represented).

2) Multi Linear Regression Topology: the Multi Linear
Regression (MLR) is another well known strategy traders
have been using for a time in the industry.

Definition Given a data set tyi, xi´1,1, . . . , xi´1,9u
n
i“1,

where n is the sample size, tβiu9i“1, the weight of the
explanatory variables and yi the output, then our MLR is
formalized by

yi “ β1xi´1,1 ` ¨ ¨ ¨ ` β9xi´1,9 ` εi (18)
“ xT

i´1β ` εi, i “ 1, . . . , n
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Proposition The HFFF can model multi linear regression
like strategies.

Proof: Simply set YjPr1,4swis̄,j “ 0, YjPr1,4swis,j “ 0,
YjPr6,9sw

i
s̄,j “ 0, YjPr6,9swis,j “ 0, whs̄,1 “ 0, whs̄,3 “ 0,

whs,1 “ 0, whs,3 “ 0.

4 3 2 1 0 1 2 3 4 

Fig. 18. The MLR strategy translated in terms of network topology

Remark We will make 4 remarks:
‚ MLR is illustrated in Figure 18 (weights equal to 0 have

not been represented).
‚ Logistic or weighted MLR can be modeled through the

topology of Figure 18 by simply changing respectively
the activation function (from linear to logistic) and the
weights.

3) XOR Topology: How is the XOR function relevant to
HFT? Let’s look at the following known HF rational.

Definition If we define the Open Interest (OI) as being the
total volume left on the order book then it is known that
when:
‚ the price and the OI are rising then the market is bullish,
‚ the price is rising but the OI is falling then the market

is bearish,
‚ the price is falling but the OI is rising then the market

is bearish,
‚ the price and OI are both falling then the market is

bullish.

Remark These 4 market situations can be summarized by
table IV-G.3.

Proposition The HFFF can model XOR like strategies.

Proof: Simply set YjPr1,4swis̄,j “ 0, YjPr1,4swis,j “ 0,
YjPr6,9sw

i
s̄,j “ 0, YjPr6,9swis,j “ 0, whs̄,1 “ 0, whs̄,3 “ 0,

whs,1 “ 0, whs,3 “ 0.

Remark We will make the following 2 observations:
‚ The preceding proof is visually illustrated by Figure 19

(the weights equal to 0 have not been represented).
‚ The XOR topology can be designed in various ways.

Open Interest Price Combined Symbol Signal

Rising Rising � Buy

Rising Falling Ö Sell

Falling Rising Œ Sell

Falling Falling � Buy

TABLE I
THE RELATIONSHIP BETWEEN OPEN INTEREST (OI), PRICE (I) &

SIGNAL FOR XOR STRATEGY [41]

4 3 2 1 0 1 2 3 4 

Fig. 19. The XOR strategy translated in terms of network topology

4) Execution strategy: to make the problem more realistic,
one needs to formalize an execution strategy which would
apply to all strategies, but still be rule based and function of
its topology. In this paper we will take the simple approach
in which all strategies have that same execution strategy.The
idea of this algorithm will be that:
‚ the execution strategy will be subject to a certainty-like

function,
‚ certainty will be decided by the historical returns from

the relevant topology split into intervals,
‚ since the decision needs to be made and that data comes

regularly a rolling percentile function should be used.
In this context our algorithm returns a value between 0 and 9,
the 9 explanatory variables of our HFFF and corresponding
to all of the admissible actions in our order book. The tested
input is compared against the current output as it compares
to the historical outputs and returns the corresponding per-
centile which then goes on populating the order-book. Given
that no history exists in the first iteration and that the first
few iterations are not significant, we will randomize the first
Rn iterations.

H. Genetic Algorithm as a means to study the market
through time

We will take a look at a couple of methods to study the
market through time. We first take, in this subsection, an
approach with the objective to gain intuition in order to
strategize with respect to future research and then a second
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method which is mathematically more optimal in lieu of
the RJ-MCMC mentioned in the literature review from the
“Report Format Document”.In this “intuitive” section we
specify the genetic algorithm which we have used to study
our problem with intuition in mind as opposed to optimality.

1) Looping & Fitting Function: Throughout this subsec-
tion we will refer to Micro and Macro increments.

Definition We will define two types of iterations:
‚ the first type being Micro corresponding to an infinitesi-

mal increment in our environment, namely an increment
in which a strategy S analyses and in turn changes the
order book by placing a order itself.

‚ the second type being Macro, corresponding to a gener-
ational increment in our environment, namely a certain
equal number of Micro increments per strategy leading
to a calculation of a Profit and Loss (P&L) and a
survival process22 based on this P&L.

We will label as Nk the number of total live strategies, Ne
k

the number of trend following like strategies, Nm
k the number

of multi-linear regretion like strategies, Nr
k the number of

xor like strategies and No
k the number of other unclassified

strategies23. The relationship between these entities can be
summarized by equation (19).

Nk “ Ne
k `N

m
k `N

r
k `N

o
k (19)

A strategy S will consist of a topology T , a rolling P&L P
and a common orderbook O as shown by equation (20).

S , tP, T ,Ou . (20)

2) Survival & birth processes: the survival, death & birth
processes are a set of processes which impact the number of
live strategies Nk at any time k the following way. If we call
SNk “ Sp1q, Sp2q, . . ., Spnq, Spn`pq, . . ., SpNkq, the strategies
ranked with respect to their P&L from highest to lowest, we
will admit the following definitions:

Definition The Survivor set24 is the set of strategies with
a positive P&L. Namely if Sa “ Sp1q, Sp2q, . . ., Spsq with
Spsq ě 0 and Sps`1q ă 0. We will subdivide this set by
distinguishing:
‚ secondary survivors set with cardinality a2 “

X

s
2

\

,
survive without reproducing

‚ primary survivors set with cardinality a1 “ s ´ a2,
survive and have one offspring with a “slightly different
DNA” in form of a conditional resampling of their
topology.

Definition We will call the Birth process, the set of rules
conducting the selection of top strategies and their repro-
duction with mutations. The protocol starts by selecting the
ranked first half of survived strategies. Namely, if a1 “ b “
X

s
2

\

the strategies S1 . . .Sa1 will both survive and reproduce

22explained next
23This label will be the same in section IV-B.
24or alternatively alive process
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Fig. 20. Illustration for the Death and Birth processes in our GA

and create a set of equal size but with a slightly different
topology and with cardinality b “ a1.

Definition We define the Death process, the set of proto-
cols aiming at eliminating part of the strategies from our
ecosystem, more specifically, the set of strategies with a
negative P&L. Namely if Sd “ Sps`1q, Sps`2q, . . ., SpNkq
will disappear from the market at Macro iteration k ` 1.

Remark We can easily see that s “ a1 ` a2, a1 ě a2,
a1 “ b. Figure 20 illustrates these definitions.

3) Inheritance with Mutations : the intuition about the
mutation process is that each birth is a function of a
successful strategy (the positive P&L of parents S1 . . .Sa1

)
and should resemble the single parent25 which produced it.
We have seen in section IV that the DNA of our strategies
is essentially their topology T (which is itself a combination
of weights). We will therefore concentrate on performing the
re-sampling on the weights of the offspring. The reason why
this distribution is interesting26 is that:

‚ is defined in a closed interval [0,1] and can therefore
be rescaled easily through a change of variable to [-
1,1], an interval which is a basic way of formalizing
a normalized importance of each node in the topology
decision making of Figure 16.

‚ on the contrary to the uniform distribution, it is more
flexible and offers a broad range of interesting shapes
allowing the possibility to code a conditional resampling

25no crossover in this model
26though, again not optimal
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model and therefore make clever proximity changes
around the symbolic levels: ´1, 0 and 1. This way
we can prevent too large deviations and rather select
small incremental changes and intuitively follow the
principles of selection. We can see that the Betapx, 1, 7q
or Betap1 ´ x, 1, 7q both concentrate a great deal of
the distribution towards 0 and 1 respectively. Likewise
Betapx, 3, 7q and Betapx, 5, 7q provide a more Gaus-
sian like distribution towards in between zones which
is what we want.

I. Preliminary results

There are issues related to handling classification scopes
as well as bespoke simulation issues but those are outside
the scope of this paper. However, few of the simulations
seemed to indicated a positive correlation between TF and
MLR strategies on strictly increasing or strictly decreasing
markets. When the market trend happened to be less clear the
correlation between their growth rate seemed less significant
and perhaps even negative. It was difficult to make a proper
quantification of these observations due to the low speed of
each simulation and also because the observation conditional
to market tendencies came a posteriori of the simulations.
Not enough simulations were performed to really be able to
assert the mentioned relationship definitively. Similar results
were found as for the relationship between XOR and MLR
strategies, though with even less significance. Few simula-
tions were actually such that, the results remind us to the
Lotka-Volterra 3-predator-prey model with however a great
deal of noise and unclassified strategies. These limitations
are currently motivations for additional work associated to
the HFTE model. Finally our first paper [41] ended with the
conjecture below:

Conjecture Diversity in financial strategies in the market
leads to its instability.

J. Tracking the High Frequency Ecosystem

To be able to appreciate the complexity of tracking the
high frequency market, which simplification is perhaps the
HFTE, Mahdavi-Damghani [42] recently proposed a method-
ology to track the ecosystem through time. In order to
appreciate the complexity of the tracking task let us first
recall some results from Sequential Monte Carlo (SMC)
methods.

1) Sequential Monte Carlo Methods: SMC methods [15],
[38] known alternatively as Particle Filters (PF) [26], [36] or
also seldom CONDENSATION [33], are statistical model
estimation techniques based on simulation. They are the
sequential (or ’on-line’) analogue of Markov Chain Monte
Carlo (MCMC) methods and similar to importance sampling
methods. If they are elegantly designed they can be much
faster than MCMC. Because of their non linear quality
they are often an alternative to the Extended Kalman Filter
(EKF) or Unscented Kalman Filter (UKF). They however
have the advantage of being able to approach the Bayesian
optimal estimate with sufficient samples. They are techni-
cally more accurate than the EKF or UKF. The aims of

the PF is to estimate the sequence of hidden parameters,
xk for k “ 1, 2, 3, . . ., based on the observations yk.
The estimates of xk are done via the posterior distribution
ppxk|y1, y2, . . . , ykq. PF do not care about the full posterior
ppx1, x2, . . . , xk|y1, y2, . . . , ykq like it is the case for the
MCMC or importance sampling (IS) approach. Let’s assume
xk and the observations yk can be modeled in the following
way:
‚ xk|xk´1 „ pxk|xk´1

px|xk´1q and with given initial
distribution ppx1q.

‚ yk|xk „ py|xpy|xkq.
‚ equations (21) and (22) gives an example of such

system.

xk “ fpxk´1q ` wk (21)
yk “ hpxkq ` vk (22)

It is also assumed that covpwk, vkq “ 0 or wk and vk
mutually independent and iid with known probability density
functions. fp¨q and hp¨q are also assumed known functions.
Equations (21) and (22) are our state space equations. If we
define fp¨q and hp¨q as linear functions, with wk and vk both
Gaussian, the KF is the best tool to find the exact sought
distribution. If fp¨q and hp¨q are non linear then the Kalman
filter (KF) is an approximation. PF are also approximations,
but convergence can be improved with additional particles.
PF methods generate a set of samples that approximate the
filtering distribution ppxk|y1, . . . , ykq. If NP in the number
of samples, expectations under the probability measure are
approximated by equation (23).

ż

fpxkqppxk|y1, . . . , ykqdxk «
1

NP

NP
ÿ

L“1

fpx
pLq
k q (23)

Sampling Importance Resampling (SIR) is the most com-

Algorithm 1 RESAMPLE(w)
Require: array of weights wN1
Ensure: array of weights wM1 resampled

1: u0 „ Ur0, 1{M s
2: for m “ 1 to N do
3: ipmq Ð

Y

pw
pmq
n ´ upm´1qmq

]

` 1

4: upmq “ upmq ` ipmq

M ´ w
pmq
n

5: end for

monly used PF algorithm, which approximates the proba-
bility measure ppxk|y1, . . . , ykq via a weighted set of NP
particles

´

w
pLq
k , x

pLq
k

¯

: L “ 1, . . . , NP (24)

The importance weights w
pLq
k are approximations to the

relative posterior probability measure of the particles such
that

řP
L“1 w

pLq
k “ 1. SIR is a essentially a recursive version

of importance sampling. Like in IS, the expectation of a
function fp¨q can be approximated like described in equation
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(25).
ż

fpxkqppxk|y1, . . . , ykqdxk «
NP
ÿ

L“1

wpLqfpx
pLq
k q (25)

The algorithm performance is dependent on the choice of
the proposal distribution πpxk|x1:k´1, y1:kq with the optimal
proposal distribution being πpxk|x0:k´1, y0:kq in equation
(26).

πpxk|x1:k´1, y1:kq “ ppxk|xk´1, ykq (26)

Because it is easier to draw samples and update the weight
calculations the transition prior is often used as importance
function.

πpxk|x1:k´1, y1:kq “ ppxk|xk´1q

The technique of using transition prior as importance func-
tion is commonly known as Bootstrap Filter and Condensa-
tion Algorithm. Figure 21 gives an illustration of the algo-
rithm just described. Note that on line 5 of algorithm 2, ŵpLqk ,
simplifies to w

pLq
k´1ppyk|x

pLq
k q, when πpx

pLq
k |x

pLq
1:k´1, y1:kq “

ppx
pLq
k |x

pLq
k´1q.

Algorithm 2 SMC(w)

Require: array of weights wNp , πpxk|x
pLq
1:k´1, y1:kq

Ensure: array of weights wNp resampled

1: for L “ 1 to NP do
2: x

pLq
k „ πpxk|x

pLq
1:k´1, y1:kq

3: end for
4: for L “ 1 to NP do
5: ŵ

pLq
k “ w

pLq
k´1

ppyk|x
pLq
k qppx

pLq
k |x

pLq
k´1q

πpx
pLq
k |x

pLq
1:k´1,y1:kq

6: end for
7: for L “ 1 to NP do
8: w

pLq
k “

ŵ
pLq
k

řP
J“1 ŵ

pJq
k

9: end for
10: N̂eff “

1
řP
L“1

´

w
pLq
k

¯2

11: if N̂eff ă Nthr then
12: resample: draw NP particles from the current par-

ticle set with probabilities proportional to their
weights. Replace the current particle set with this
new one.

13: for L “ 1 to NP do
14: w

pLq
k “ 1{NP .

15: end for
16: end if

2) Resampling Methods: Resampling methods are usually
used to avoid the problem of weight degeneracy in our
algorithm. Avoiding situations where our trained probability
measure tends towards the Dirac distribution must be avoided
because it really does not give much information on all the
possibilities of our state. There exists many different resam-
pling methods, Rejection Sampling, Sampling-Importance
Resampling, Multinomial Resampling, Residual Resampling,
Stratified Sampling, and the performance of our algorithm

can be affected by the choice of our resampling method. The
stratified resampling proposed by Kitagawa [37] is optimal
in terms of variance. Figure 21 gives an illustration of
the Stratified Sampling and the corresponding algorithm is
described in algorithm 1. We see at the top of the figure
21 the discrepancy between the estimated pdf at time t with
the real pdf, the corresponding CDF of our estimated PDF,
random numbers from r0, 1s are drawn, depending on the
importance of these particles they are moved to more useful
places.

3) Importance Sampling : Importance sampling (IS) was
first introduced in [43] and was further discussed in several
books including in [30]. The objective of importance sam-
pling is to sample the distribution in the region of importance
in order to achieve computational efficiency via lowering
the variance. The idea of importance sampling is to choose
a proposal distribution qpxq in place of the true, harder to
sample probability distribution ppxq. The main constraint is
related to the support of qpxq which is assumed to cover that
of ppxq. In equation (27) we write the integration problem
in the more appropriate form.

ż

fpxqppxqdx “

ż

fpxq
ppxq

qpxq
qpxqdx (27)

In IS the number, Np, usually describes the number of
independent samples drawn from qpxq to obtain a weighted
sum to approximate f̂ in equation (28).

f̂ “
1

Np

Np
ÿ

i“1

W
´

xpiq
¯

f
´

xpiq
¯

(28)

where W pxpiqq is the Radon-Nikodym derivative of ppxq
with respect to qpxq or called in engineering the importance
weights (equation (29)).

W
´

xpiq
¯

“
p
`

xpiq
˘

q
`

xpiq
˘ (29)

If the normalizing factor for ppxq is not known, the impor-
tance weights can only be evaluated up to a normalizing
constant, as equation (30).

W
´

xpiq
¯

9p
´

xpiq
¯

q
´

xpiq
¯

(30)

To ensure that
řNp
i“1W px

piqq “ 1, we normalize the impor-
tance weights to obtain equation (31).

f̂ “

1
Np

řNp
i“1W

`

xpiq
˘

f
`

xpiq
˘

1
Np

řNp
i“1W

`

xpiq
˘

“
1

Np

Np
ÿ

i“1

W̃
´

xpiq
¯

f
´

xpiq
¯

(31)
where W̃

`

xpiq
˘

“
Wpxpiqq

řNp
i“1 Wpx

piqq
are called the

normalized importance weights. The variance of
importance sampler estimate [6] in equation (31)
is given by V arqrf̂ s “ 1

Np
V arqrfpxqW pxqs “

1
Np
V arqrfpxqppxq{qpxqs. Using the integration format we
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2.1.4 Resampling Methods

Resampling methods are usually used to avoid the problem of weight degeneracy in our algorithm.

Avoiding situations where our trained probability measure tends towards the Dirac distribution

must be avoided because it really does not give much information on all the possibilities of our

state. There exists many different resampling methods, Rejection Sampling , Sampling-Importance

Resampling , Multinomial Resampling , Residual Resampling , Stratified Sampling, and the per-

formance of our algorithm can be affected by the choice of our resampling method. The stratified

resampling proposed by Kitagawa [9] is optimal in terms of variance. Figure 2.3 gives an illustration

of the Stratified Sampling and the corresponding algorithm is described in algorithm 13 . The aim

CDF F

UNp ∼ (
Np−1
Np

, 1]

U2 ∼ ( 1
Np
, 2
Np

]

(
Np−1
Np

, 1]

Xk

Xi
k

Xi
k

resampling

sampling

sampling

real pdf
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Xk

U1 ∼ (0, 1
Np

]
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estimated pdf at time k + 1 (after resample)

another seemingling useless particle is realocated as expected at a more useful place

Xk

moved here

(0, 1
Np

]

( 1
Np
, 2
Np

]

Figure 2.3: Resampling illustration

of figure 2.3 is to talk, we hope, louder than words. It illustrates the Stratified Sampling. We see

32

Fig. 21. Stratified Sampling illustration

have 1
Np

ş

”

fpxqppxq
qpxq ´ Eprfpxqs

ı2

qpxqdx which simplifies

to 1
Np

ş

”´

pfpxqppxqq2

qpxq

¯

´ 2ppxqfpxqEprfpxqs
ı

dx `

pEprfpxqsq2
Np

“ 1
Np

ş

rp
pfpxqppxqq2

qpxq qsdx ´
pEprfpxqsq2

Np
. The

variance can be reduced when an appropriate qpxq is chosen
to either match the shape of ppxq so as to approximate the
true variance; or to match the shape of |fpxq|ppxq so as to
further reduce the true variance.
Proof: BV arqrf̂s

Bqpxq “ ´ 1
Np

ş

rp
pfpxqppxqq2

qpxq2 qsdx “

´ 1
Np

ş

rp
pfpxqppxqq2

qpxqqpxq qsdx. qpxq having the constraint of

being a probability measure that is
ş`8

´8
ppxqdx “ 1, we find

that qpxq must match the shape of ppxq or of |fpxq|ppxq.
In essence each particle, in yellow (Figure 21), will represent
an ecosystem in which the study of the risk and stability
can be partially done using some of the methodology used
in section IV-B. This latter problem is currently an open
problem in quantitative finance.

V. CURRENT MARKET RISK MODEL LIMITATIONS

After exposing some of the complexities associated with
the low frequency vanilla options27 market and the high
frequency trading systematic trading market28, we summa-
rize, in this section, some of the absurd simplifications and

27In sections III and II.
28In section IV.

therefore limitations of the current risk models as used by
practitioners. More specifically we examine stressed scenario
generation using historical distributions in section V-A, the
differences between an Anticipative and Responsive VaR
models in section V-B and the opposition between a Re-
sponsive VaR and a Stable VaR in section V-C.

A. Current Modeling Issues with Historical Distributions

Depending on whether one wants to allow the risk factor
to go below 0 or not, most responsive VaR models take for
assumption drift-less diffusions like normality or log nor-
mality as specified in equations (32a) and (32b) in which we
let pΩ, pFqptě0q,Qq be our probability space, with pFqptě0q

generated by the T ` 1 dimensional Brownian motion and
Q is the risk neutral probability measure.

dXt “ 0dt` σtdWt

dXt

Xt
“ 0dt` σtdWt

(32a)

(32b)

Conceptually, we can observes that risk factors of different
financial products are widely diverse:
‚ futures or shares seem to follow more of a traditional

lognormal diffusion,
‚ basis risk or spread mean reverts but have not boundary

constraints
‚ implied ATM vol mean reverts and remains positive,
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‚ rates mean reverts and, up to recently were, bounded
below by 0.

‚ implied vol skew mean reverts and remains bounded
between r´1, 1s [3], [11].

However the current traditional Risk methodologies assume
consistently “symmetric” diffusions (relative or absolute).
Some of the pitfall of these models are that:
‚ Bumping volatility when vols are high using relative

bumps overestimates the upward moves,
‚ when vols are low using absolute moves can yield

negative vols,
‚ relative bumps underestimate the potential upward

moves,
‚ using either proportional moves or absolute moves on

vol increases the probability of creating arbitrages
on the stressed scenarios (or/and negative risk factors
undesirable for vol).

Remark Note that in this section we take the example of
interest rates as an asset class but the latter can easily be
replaced by more complex financial concepts such as the
implied volatility risk factor that we have mentioned in
details in section II. Also we may chose the term “bump”
from time to time, which is an industry jargon used to
describe a stress testing methodology without more details.

The issues with proportional moves applied to interest rates
(IR) when interest rates are high is that we grossly over-
estimate their risk but when rates are low historically we
wanted to avoid interest rates going negative so we would
use proportional stress testing in these situation. Whether it
makes sense to use either of these methodology to asses the
risk of IR is not the point of this subsection but rather how
we can reconcile practitioners culture with these 2 market
observable phenomenon. Equation (33) is a proposal that
reconcile partially these issues. The rational is that when
rt ąą µt where µt is its historical rolling mean, then most of
the contribution to the bumps should come in absolute term
( lim
ljhn

rtÑ8

exp´θtprt´µtq “ 0, so we get lim
ljhn

rtÑ8

λprt, θt, µtq “ 1).

Similarly when rt ăă µt we get lim
ljhn

rtÑ8

λprt, θt, µtq “ 0 and

we get proportional moves. However, this idea needs to be
backtested and the argument of the function studied a bit
more in depth for special situations29.

drt “ λprt, θt, µtqdr
a
t ` r1´ λprt, θt, µtqsdr

p
t

λprt, θt, µtq “ 1
1`exp´θtprt´µtq

(33)
In this mixture model, µt is some sort of rolling mean
that may want to rescale using a EWMA or not and which
timsescale of relevance may be also optimized like is cur-
rently done by practitioners. Similarly, θt is optimized so
as to get good backtesting results and may also have to

29Note that when µt “ rt, λprt, θt, µtq “ 1
2

so the contribution of
proportional bumps to absolute bumps is the same in terms of determining
future potential IR scenarios.

go through a EWMA which decay factor we guess will
have to be far less responsive than the µ30. Absolute and
relative mixture models are therefore convoluted and not
entirely convincing. We will see next that using stochastic
calculus one may actually come up with a much more elegant
solution. Once the underlying assumptions of normal and
log-normality (or mixture) have been decided the stressed
scenarios need to be adjusted in order to address the market
change of volatility, so as to get the label of “responsiveness”.
There are few ways to conceptually address this concept and
they all rely in the industry with a scaling of a long term
volatility compared to a recent volatility. For instance if we

define σh “

d

řN
i“1pxi ´ xq

2

N ´ 1
as being the standard devia-

tion over our entire history of relevant data r1, . . . , N s, and

σc “

d

řN
i“ppxi ´ xq

2

N ´ p´ 1
the standard deviation over more

recent history, with N ą p ą 1, the responsive VaR formula
is given by:

RVaRαpXq “
σc
σh

VaRαpXq

“
σc
σh

inftx P R : P pX ` x ă 0q ď 1´ αu

“
σc
σh

inftx P R : 1´ FXp´xq ě αu

where X is the underlying and α the quantile level.

Remark Note that p is an ongoing parameter for debate
which is usually the result of an optimization by constraints
problem in which, the financial institution calculating its
VaR tries to minimizes its capital requirement31 with the
constraints being set by the regulators in order to make the
relevant statistics significant32.

Note that another elegant way to address this idea of most
recent data must have the most to say about σc, an EWMA
is often used as a solution since the latter does not have
an arbitrary cutting point but rather the older data set
contribution in the calculation of σc decreases exponentially.
In this situation the unnormalized weights are calculated
using w1 “ 1 and wt “ λwt´1 and the normalized weights
are given by w̃t “ wt

řN
i“1 wi

with λ chosen in order to make
řN
i“1 wi bigger than 2 years of data.

B. Anticipative Vs Responsive VaR

Most of the options’ risk models currently used by market
practitioners are drift-less. By drift-less we mean that most
if not all the known used diffusion are solely split between
Log-Normal33 as described, in continuous time, by equation
(32b) or alternatively Normal34 as described by equation

30if the intuition is not clear, try to think of the following: θ needs a lot
more data away from its mean to be calibrated and r moves slowly so it
does not make sense to make it overly responsive

31and choses the best p to minimize that VaR.
32the Basel committee usually likes to see 2 years of data, therefore N´p

needs to be at least 2 years.
33we use historical ”proportional” bumps to stress our scenarios.
34we use historical ”absolute” bumps to stress our scenarios.
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(32a). Whether we use either of these models, the family
of responsive VaR can be described as one in which the
dynamic adjustment in the VaR model is lagging with
respect to the sudden change in market behavior35. The most
responsive type of VaR one can define while abiding by
the rules of the current challenging regulatory environment,
would be one in which, the weights of your stressed scenarios
be scaled according to an EWMA model, which decay factor
would be tailored such that on average your returns point to
a minimum of 6 months [49]. This constraint comes from
the requirement that any VaR model should have at least
1 year of historical data [49]. However, this methodology
on top of being unable to reconcile VaR Responsiveness to
VaR stability suffers from an even bigger issue which is that
it needs to endure a big move in order to adjust (a big loss
which is blind with respect to the model guidelines and needs
a dangerous breach in its Risk model before adjusting to its
model requirements). The reader can perhaps already guess
that if a Responsive VaR is lagging, an Anticipative VaR
must be leading. Indeed, an Anticipative VaR is essential a
conditional probability model which can be used on any VaR
engine where the underlying risk process is Mean Reverting
(eg: implied Vol, Rates etc ...). For instance, equations (32b)
and (32a) in an Anticipative VaR are changed, in continuous
time, into equations (35a) and (35b) which are derived
from the celebrated Ornstein-Uhlenbeck [25]. It is perhaps
interesting to note that in equation (35a), the Xt in from of
the stochastic part can be replaced by

?
Xt and we get the

CIR model [9].

C. Responsive Vs. Stable VaR

there is a plethora of technical documents from practi-
tioners [65], [56] available on the web which attempt to
expose the conflicting properties of Responsive and Stable
VaR. Youngman’s [65] is a simple enough and stereotypical
example of how the duality between between Responsive
and Stable VaR are understood and used by practitioners.
Indeed figure 22 plots 3 graphs for the 99% VaR of BBB
corporate bonds (so a linear product) using 3 different
lookback periods. The VaR model in this situation is in terms
of complexity the introductory model used in the industry in
which we assume that the underliers follows a rolling log-
normal distribution in which the rolling windows are, in this
example 1 (in green), 3 (in red) and 5 (in blue) years. What
we can see is that the green graph which is the one with the
shortest rolling window happens to be the most responsive
to market events whereas the blue graph (the biggest rolling
window) happen to be the most stable. The rational is that
for VaR stability aficionados the green graphs fluctuates too
much and can create liquidity congestion in the case where
the market would get used to low VaR market environment.
For VaR responsiveness aficionados, the blue line is too
conservative in low vol environment and not reactive enough
in situations of increased volatility. This interesting market

35the reason we have added the enigmatic 0dt is more a tactical pedagogic
strategy to break some of the market practice misconception that we will
introduce in sectionVI-A.3.

observation is the second problem we will attempt at solving
by introducing to the concept of Responsible VaR which is
a portmanteau neologism in finance, designed to signify a
hybrid method between Responsive and Stable VaR.

RepoRts  
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properties generate destabilizing effects in financial 
markets, whereby declines in asset prices cause vaRs 
to increase, which, in turn, leads to breaches of the vaR-
based risk limits. institutions respond to the limit breaches 
by closing out the risky positions, thus exacerbating the 
initial price decline and causing more volatility. thus, the 
use of risk-sensitive measures that reduce risk for indi-
vidual firms can create more risk in the system as a whole. 
while it is unlikely, at least in the short run, that firms react 
mechanistically to increases in vaR, there is some evidence 
that this dynamic was at work during the current crisis 
(longworth 2009).

Another observation from Charts 1 and 2 is that a longer 
lookback period produces more stable vaR estimates that 
do not fall as quickly in quiet times, nor rise as sharply in 
crisis periods. the use of a longer lookback period may 
reduce short-run forecasting accuracy, but could reduce 
systemic risk by discouraging an excessive buildup of 
trading positions during quiet periods in the markets. with 
smaller trading positions, volatile periods in the markets 
would not be as damaging.

other criticisms of vaR models centre on the difficulties in 
modelling financial asset prices, especially in the tail of the 
distribution, which is particularly relevant for risk manage-
ment. while vaR models can be improved to better account 
for the statistical properties of financial time series, no 
model is perfect. 

the mRA adjusted for some of the weaknesses discussed 
above. setting the capital requirement on the average vaR 
over the past 60 days, instead of on yesterday’s vaR, tends 
to smooth sharp changes in vaR coming from changes in 
market volatility (jorion 2002). multiplying the vaR by three 
is an adjustment that may account for the fact that most 
financial times series are known to have “fat tails,” and that 

the proCyCliCality oF Var models

value-at-risk models have several widely recognized short-
comings and have been heavily criticized by academics and 
practitioners. while banks have developed many variants of 
vaR models, all of them still rely on historical data to esti-
mate the probability distribution of future outcomes. most 
banks use a relatively short period of data (the “lookback 
period”) to estimate the probability distribution of market 
factors, and some use weighting schemes, whereby within 
the lookback period, more recent data points are given a 
higher weight. these techniques can ensure that estimated 
vaRs accurately reflect the stylized fact that many financial 
time series exhibit time-varying volatility. in this sense, such 
vaR models are “risk sensitive,” in that they relate capital 
to current estimates of risk. this risk sensitivity results in 
vaRs that are cyclical: rising and falling with market vola-
tility. Charts 1 and 2 show daily vaR estimates for Canadian 
equity and corporate bond markets, estimated with dif-
ferent lookback periods.2

Note the sharp rise in vaRs since late 2008. A bank using 
vaR to set trading limits would use an increase in vaR as 
a signal to reduce its trading positions. From the perspec-
tive of that bank, the reduction in trading positions during a 
high-volatility period will reduce risk.

this type of dynamic is troubling if many market partici-
pants react to increased volatility in the same way. the 
herding hypothesis (persaud 2001) holds that when many 
financial institutions use vaR to set risk limits, its cyclical 

2 The historical simulation approach was used to compute the VaR used in the 
charts. This is one of the methods commonly used by banks. The VaR com-
puted for the S&P TSX Index assumes a long position; the VaR for corporate 
bonds uses the Merrill Lynch BBB corporate bond index and assumes a long 
position in spreads versus Government of Canada bonds.

Sources: Bloomberg, Merrill Lynch, author’s calculations
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Fig. 22. Youngman’s [65] 99% VaR BBB corporate bonds’ example

VI. PROPOSED ENHANCEMENTS

In this section we try to address the dual limitations
associated to model distribution selection36 and the model
reactivity37 with one stone. In doing so we first examine
the problem using the traditional SDE approach and finally
propose a Machine Learning equivalent.

A. Anticipative VaR

1) The Stochastic Differential Approach: A better bump-
ing methodology would be to apply a conditional scenario
cleanser in which the stressed scenario distributions of our
risk factors (eg: implied vol, short term interest rates) going
up or down are as much influenced by historical data than
by a metaphoric elastic which would pull that historical
distribution back to its historical mean and which would
prevent the risk factor going too high or going too far below
0. Couple of models that would capture this idea are the
OU process [25] or alternatively the Cox Ingersoll Ross
model [9]38. Equations (35b) and (35a) are the mirrors of
equations(32a) and (32b) in an Anticipative VaR settings.
Equation (35b) is essential the OU process [25], and equation
(35a) a modified CIR model[9]. Equation (35c) in a mean
reverting SDE bounded by r´1,`1s [12].

dXt “ θpµ´Xtqdt`XtσtdWt

dXt “ θpµ´Xtqdt` σtdWt

dXt “ θpµ´Xtqdt` σtp1´X
2
t qdWt

(35a)
(35b)

(35c)

Equation (36) represents the cointelation model [13], which
is the most complex of the mentioned mean reverting SDE
is the core inspiration of the Anticipative VaR model as it

36selecting normal vs log-normal assumptions
37selecting an enhancement that would be anticipative rather than respon-

siveness.
38this latter option would enforce positive IR while still capturing the

essence of mean reversion
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exposes like we can see in figure 23 the dangers of working
with correlation when dealing with mean reverting SDEs
[10].

dSt
St

“ σdW 1
t

dSg,t “ θpSt ´ Sg,tqdt` σSg,tdW
2
t

d ăW 1
t ,W

2
t ą“ ρdt

(36a)

(36b)

(36c)

In the generalized bumping methodology in which we
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Figure 2: Example of cointelated pairs spanning all the measured correlation spectrum conditional on the assigned time scale.
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St

Sg,t

�̂� = 𝔼[
dSl,t − �̂�(St − Sl,t)dt

(𝜌1dWt +
√

1 − 𝜌21dW
⊥
t )

]. Similarly to the variance reduction meth-

odology described in [2], we will define B+ = |max(St − Sl,t , t ∈ [0, T ])
2

| and 

B− = | inf(St − Sl,t , t ∈ [0,T ])
2

|. We note that the estimation of q  is noised when 

Z𝜎 = B+ > |St − Sl,t | > B− where s, in contrast, has quality samples. The reverse is 

true when Z𝜃 = |St − Sl,t | > B+
⋃|St − Sl,t | < B− . We will therefore sample q  in 

Zq and s in Zs . Figure 6 gives a representation of these sampling zones.

6.2 Estimating p  via the inferred correlation formula
Damghani and co-workers [2, 5] showed a way to reduce the variance for the q 
parameter in the cointelation model (or more generally in the OU process infamous 
for being slow to converge10 in the industry). From eqn (6), it is tempting to rearrange 

Fig. 23. Example of Cointelation model with a ρ “ ´1 and it’s resulting
mirror measured correlation [10]

disregard the secondary parameters39, we assume that any
risk factor Xt follows the modified cointelation model [10],
[13], [12] given by equation (37). This stochastic process
essential can model:
‚ Proportional bump (log-normal diffusion). Simply en-

force θ “ 0, α “ 1, β “ 0 and we get equation (32b).
‚ Absolute bumps (normal diffusion). Simply enforce θ “

0, α “ 0, β “ 0 and we get equation (32a),
‚ Mean reverting bumps where we enforce positivity (like

in the case of the CIR [9] diffusion),
‚ Mean reverting bumps where we do not enforce posi-

tivity (like in the case of the OU [25] diffusion),
‚ Mean reverting bumps bounded in r´1, 1s. For example

the dynamics of the ρ parameter in the SVI/gSVI/IVP
[24], [12], [11] implied volatility parametrization.

dXt “ θt,τ pµt,τ ´Xtqdt` σX
α
t p1´X

2
t q
βdWt (37)

We will call the following parameters the primary ones:
‚ θt, the rolling speed of mean reversion,

‚ µt, the long term rolling mean,

39explained next.

‚ α the positivity flag enforcer,

‚ β, the r´1,`1s boundary flag enforcer.

‚ and t
Ť

dWiu
t
i“t´τ , the set of historical deviation of

your assumed model’s distribution (eg: all the historical
absolute bumps in the context of a normal diffusion).

We will call the following parameters the secondary ones:
‚ τ , the rolling window length (eg: 3 years), meaning

that all of the primary parameters will now be function
of this rolling window,

‚ κθ, the speed of mean reversion dampener,

‚ κW , the variance enhancer.
Incorporating the secondary parameters into the equation
(37) we get the final generalized bumping in the form of
equation (38).

dXt “
θt
κθ
pµt ´Xtqdt` κWσX

α
t p1´X

2
t q
βdWK

t (38)

with µt function of a constant drift µ and stochastic part dWt

with ă dWt, dW
K
t ą“ ρdt. There are multiple benefits in

choosing such generalized bumping formula:
‚ It is versatile: it models all the known risk models on

top of new ones,
‚ It is deployable and robust: once the calibration has been

performed the same code works for every risk factor,
‚ It is leading: it allows for anticipation in the regime

change as opposed to waiting passively for responding
to a regime change,

‚ It is more realistic: when Vols (or interest rates) are high
applying relative shifts overestimates the moves on the
upside but underestimate the moves on the downside,

‚ It deceases arbitrages scenarios: since the diffusion of
equation (37) is more realistic with respect to market
observable phenomenon which are in turn function of
arbitrage conditions that can occur at the portfolio level
(implied vol mean reverts), the number of arbitrage
opportunities in the stressed scenario generations de-
creases drastically when the generalized methodology
is used as opposed to relative shifts especially when it
comes to skew like strategies (eg: butterfly, call spreads
etc ...).

2) The Machine Learning Approach: In section VI-A.1
we have seen that the selection of the parameters, and it
will be detailed in section VI-B, their calibration and the
culture associated to the this way of doing Risk Management
presents challenges on multi level which benefits to complex-
ity ratio is often such that these methodologies are rejected
by practitioners of average to low quantitative knowledge.

Lemma 1a Let R “ tx1, . . . , xnu be a set of empirical
random variables taken from equation 37 with cumulative
distribution function F pxq and density fpxq. Let’s call O “
txp1q, . . . , xpnqu the ordered set of R such that xp1q ă xp2q ă
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. . . ă xpnq and Oip “ txprnppi´1q`1q{psq, . . . , xptnpiq{puqu.
Then the empirical distribution function for an SDE of the
form of equation (37) can be approximated by a union of
band-wise Bernoulli process given by:

F̂npxi|Ftq “
1

n

p
ÿ

j“1

ζ
ÿ

i“η

1xiPOjp (39)

with η “ rnppi´ 1q ` 1q{ps and ζ “ tnpiq{pu.

Remark In the case p “ 3, using a a Gaussian Mixture
such that F̂npxi|Ftq “ N p´3, 1q1xtPO1

3
`N p0, 1q1xtPO2

3
`

N p3, 1q1xtPO3
3
, we get the approximate stratification of fig-

ure 26. The stratification in our case being made so that the
carnality in each Ojp region remains approximately the same,
as opposed to being the result of a geometrical separation
function of xp1q and xpnq. Figure 24 illustrates this remark.
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Fig. 24. Gaussian distribution in 3 different size homogeneous zones
mimicking approximately figure 26.

Lemma 1b The distribution given by equation 39 converges
towards a p-Gaussian Mixture.

Proof: 1xiPOjp is a Bernoulli random variable with
parameter p, and since the sum of Bernoulli random vari-
able is also Bernoulli, F̂npxi|Ftq “ 1

n

řp
j“1

řζ
i“η 1xiPOjp

is Bernoulli distributed. We can also see that in equa-
tion (37) limnÑ8,pÑ8pµt,τ ´ Xtq “ λt,τ and there-
fore dXt ´ λt,τ “ σXα

t p1 ´ X2
t q
βdWt becomes a

locale martingale. Using Glivenko-Cantelli theorem [61],
[14], }Fn ´ F }8 “ sup

xPR
|Fnpxq ´ F pxq|

a.s.
ÝÑ 0. Distribution

from equation (37) can therefore be approximated by
Y
p
i“1N pλi, σiq.

Remark We can see how increasing p can lead to a
smoothing probability distribution function by looking at the
difference between figure 24 and figure 25.
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Fig. 25. Gaussian distribution in 5 different zones

Theorem 1 Let pΩ, pFqptě0q,Qq be our probability space,
with pFqptě0q generated by the T `1 dimensional Brownian
motion and Q is the risk neutral probability measure. The
probability distribution fpx|Ftq induced by the Stochastic
Differential Equation dXt “ θt,τ pµt,τ ´Xtqdt ` σXα

t p1 ´
X2
t q
βdWt converges almost surely towards a p-Gaussian

mixture as n and p converge towards 8.

Proof: The proof can be split in 2 steps using Lemma
1a and Lemma 1b.

3) Margining under the classic and the Anticipa-
tive methodology: Market participant call full revaluation
methodology the following. If we call N the total number
of risk factors relevant to a portfolio P and Ri each of
the relevant risk factors (eg: exchange rate, interest rate,
skew, vol of vol, ATM vol etc ...) of this portfolio, then
we will define f , the function that takes all the bumped
historical scenarios set YNi“1 Y

T
τ“1 Ri,t ` ∆

Ri,τ
t´τ as input

into f and would revalue the portfolio40 and would return
for example the worst scenario or the average of the worst
w scenarios in the case of the expected shortfall. The best

40Note that τ P r0, T s with T being the length of the available relevant
data (eg: 10 years)
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way to describe the margining methodology is to see how
it works with the currently understood models in the market
changing a bit the format the models are presented and use
this new format to expose the way the margining in done
under Anticipative VaR. Table II is a good visual aid in
understanding how the scenarios are generated taking into
account the ”co-movement” of spot (assuming a log-normal
diffusion41), with, for the lack of a better tools ”normal”
diffusion42 chosen for the relevant vol point risk factors. The
resulting returns at the portfolio level would be given by
P&Lt,τ “ f

´

Stp1 ` ∆Sτ q,ΣE,K,t ` ∆ΣE,K,τ , ¨ ¨ ¨
¯

. Note
that in the function f , we have incorporated the symbol ”¨ ¨ ¨ ”
to signify that the same methodology is used for all the
relevant vol points for all the relevant tenors. The stressed

Date τ dSt “ StdŴa
t dΣE,K,τ “ dŴ b

t ¨ ¨ ¨ P&Lt,τ

t´ 1
∆St´1

St´1
∆ΣE,K,t´1 ¨ ¨ ¨ ´1.7%

t´ 2
∆St´2

St´2
∆ΣE,K,t´2 ¨ ¨ ¨ + 0.7%

...
...

...
...

...

t´ 750
∆St´750

St´750
∆ΣE,K,t´750 ¨ ¨ ¨ ´1.4%

TABLE II
CLASSIC RISK MODEL FULL REVALUATION EXAMPLE

scenarios may be cleansed prior the revaluation using de-
arbitraging methodologies [12] but, in spirit table II would
be an intuitive enough representation to expose the way
Anticipative VaR is used as we will see next. Table III is the
corresponding visual aid to table II under the assumption of
mean reversion capability for ATM vol using the generalized
bumping methodology from equation (38). Usually the part
which is most misunderstood in this methodology is how
t
Ť

dWiu
t
i“t´τ behaves in either of the models. The key

in understanding this part is to realize that t
Ť

dWiu
t
i“t´τ

represent the ”deviations/error” from an assumed model
which errors maybe correlated to the other risk factors which
may or may not assume the same Stochastic Differential
Equation as when it comes to their diffusion. For instance
you could mix a model in which you try to capture the risk
of a call and try to define the corresponding risk factor. You
assume that the underlier follows a log normal distribution
(you enforce θ “ 0 but α “ 1), you assume that the ATM
vol is mean reverting and positive (you enforce θ ‰ 0 but
set α “ 1), you assume interest rates are mean reverting but
could go be negative (you enforce θ ‰ 0 but α “ 0). The
correlation at the infinitesimal level of these errors from these
models t

Ť

dWiu
t
i“t´τ will be concerved if the time stamp is

conserved. The resulting returns at the portfolio level would
be given by P&Lt,τ “ f

´

Stp1 ` ∆Sτ q,ΣE,K,t´1 ` θpµ̂ ´

ΣE,K,tq ` ∆Sτ , ¨ ¨ ¨
¯

. We invite the reader to take a look

41”we use proportional bumps”
42”we use absolute bumps”

at the anecdotal column labeled P&Lt,τ in both table II and
III. The numbers filled in table II one have been chosen
randomly but the ones from table III are chosen in terms of
what one would expect in terms of approximate difference
had the vol been different from its historical mean. So the
P&L is shifted because the risk is now asymmetric. If that
last sentence sounded convoluted, the reader should go back
to figure 27 and think about what the VaR would look like
depending on whether one is long or short a straddle under
Anticipative VaR and depending on which zone we are in
the figure 27.

B. Calibration

1) The SDE approach: As we will see in this section the
calibration of the parameters of our bumping model from
equation (38) comes in 3 steps:
‚ The choice of our assumption. This is where we decide

whether the risk factor ought to be mean reverting or
not, enforce positivity or not, enforce being in r´1,`1s
or not,

‚ Sequential estimation of the primary parameters,
‚ Intelligent fine tuning of the backtest thanks to the

secondary parameters.
‚ Adjustment of the λ parameter in the Responsible VaR

equation (43a) to fit the manager’s risk appetite.
We recommend the following flags to be enforced according
to the risk factor:
‚ For any, assumed, non mean reverting random process

which has to stay positive (eg: spot), simply enforce
θ “ 0, α “ 1, β “ 0 and we get equation (32b).

‚ For any volatility related mean reverting bumps where
we enforce positivity, simply enforce θ ‰ 0, α “ 1,
β “ 0,

‚ For interest rate assume, mean reverting bumps where
we do not enforce positivity (like in the case of the OU
[25] diffusion), simply enforce θ ‰ 0, α “ 0, β “ 0.

‚ For assigning a diffusion on correlation itself or the ρ
parameter in the SVI/gSVI/IVP [24], [12], [11], that
is mean reverting bumps bounded in r´1, 1s, simply
enforce θ ‰ 0, α “ 0, β “ 1,

‚ For assigning a diffusion on the minimum of the mon-
eyness axis in an implied Vol, we recommend a mean
reverting process which can go negative and positive,
simply enforce θ “ 0, α “ 0, β “ 0 and we get
equation (32a)43.

2) Calibration of the primary parameters: The calibration
of the model in the situation in which we do not enforce
mean reversion is trivial. If this is not clear we invite the
reader to go back to equation (37) and think a bit more
about what each parameter does. Once we are in the context
of mean reversion, we need to calibrate in sequence µ̂, θ̂

43Note that no suggest of product assuming absolute bumps (normal
diffusion) is disregarded. The reason is because this is the diffusion that
is most likely to be made obsolete as a result of this new proposed
methodology. However if you are still attached to this methodology (for
STIR’s for example)
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Date τ dSt “ StdŴa
t dΣE,K,τ “ θ̂pµ̂´ ΣE,K,tqdt` ΣE,K,τdŴ

b
t ¨ ¨ ¨ P&Lt,τ

t-1 ∆St´1

St´1
∆ΣE,K,t´1 ¨ ¨ ¨ -1.9%

t-2 ∆St´2

St´2
∆ΣE,K,t´2 ¨ ¨ ¨ `0.8%

...
...

...
...

...

t´ 750
∆St´750

St´750
∆ΣE,K,t´750 ¨ ¨ ¨ ´1.6%

TABLE III
EXAMPLE OF FULL REVALUATION TABLE UNDER ANTICIPATIVE RISK ENGINES

and finally the errors from the model t
Ť

dŴiu
t
i“t´τ . The

calibration of µ is straight forward, done by equation (40).

µ̂t,τ “ ErXt,τ |Ft,τ s “
1

N

t
ÿ

i“t´τ

Xi (40)

where N “ cardtτ, τ ` 1, ¨ ¨ ¨ , t ´ 1, tu44. The calibration
of θ happens to be tricky, indeed if one rearranges equation
(37), we get θt,τ “

dXt´σX
α
t p1´X

2
t q
βdWt

pµt,τ´Xtqdt
. However if one

was to take all the available samples for θ and perform
Erθt,τ |Ft,τ s like in equations (40), the estimation would
quickly be dominated by instances where µt,τ is very close
to Xt and where θ ”explodes” as a consequence and creates a
random bias in the estimation of θt,τ . The variance reduction
idea comes from noticing the explosion effect described
and deliberately choosing to neglect zones in which the
explosion is highly likely. In the original paper [13] in which
this technique was first introduced, the relevant zones were
B` “ |

maxpXi,iPrt´τ,tsq
2 |, and B´ “ |

infpXi,iPrt´τ,tsq
2 |45.

These zones can be visualized in figure 26. In this figure,
Zθ represents situation in which sampling θ is very likely to
be of high quality. When we apply the idea of the variance
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Figure 5: Comparative study of cointelated and correlated pairs through simulation of a very strong.
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Spread B+ B− Zσ Zθ

between oil and BP every 12 days, we get around 0.37 whereas if we do it every 70 
days, we get a correlation of 0.56. How do we explain this discrepancy? The differ-
ence is due to the fact that in the long run, oil and BP have the same drift but in the 
short run, we get a weaker perceived relationship due to the numerous noises that 
can only impact one of these assets and not the other (for example, the very tem-
porary impact of the Gulf of Mexico accident on the spread between oil and BP in 
Figure 7). For the physical reasons just described, the relationship between oil and 
BP is a good candidate for the cointelation model. In fact, with the current financial 
mathematics literature this duality between differences in the short-term relation-
ship and the long-term relationship can only be explained by the cointelation model. 
Using the variance reduction technique [2, 5], one can estimate q  (in the last 5 years, 

Fig. 26. Visual representation for the sampling zones for θ [13].

reduction technique we get equation (41) as for a proper
estimation of θ.

θ̂t,τ “
1

n

ÿ

iPZθ

∆Xi ´ σX
α
i p1´X

2
i q
β∆Wi

pµ̂t,τ ´Xiq
1XiPZθ (41)

44which is essentially the number of sample used to estimate µ.
45We note that the estimation of θ is noised when Zσ “ B` ą |Xi, i P

rt ´ τ, ts| ą B´. The reverse is true when Zθ “ |Xi, i P rt ´ τ, ts| ą
B`

Ť

|Xi, i P rt ´ τ, ts| ă B´, sampling θ is a good idea.We will
therefore sample θ in Zθ .

where n is the cardinality of the set of all instances in which
we sampled in the Zθ zone. In practice doing this average
over the 40th and 60th percentiles provides enough data
and filters out enough outliers to make a quality estimator.
Once µ and θ have been calibrated, we need to calibrate the
deviation from the model, this is done by isolating the dWt’s
in equation (37). The estimation for the errors becomes
equation (42).

∆Ŵi “
∆Xi ´ θ̂t,τ pµ̂t,τ ´Xiq

Xα
i p1´X

2
i q
β

(42)

3) Calibration of the secondary parameters in the Antici-
pative VaR context : As we have seen there are 3 secondary
parameters. The calibration of these secondary parameters
are, as we will see, very much qualitative in approach and
geared towards practitioners rather than pure probabilists.
‚ The first secondary parameter, τ , represents the ”rolling

window of interest”. This window can be chosen so as
to either satisfy the regulatory constraints on model se-
lection or/and based on how well your backtest performs
with respect to your risk appetite.

‚ The second secondary parameter as it can be seen from
equation (38) and (37) happens to be κθ which can be
understood as the ”elastic aging factor”. The bigger κθ
happens to be, the more the speed of mean reversion
calibrated by the assumed model would get weaker and
the more we converge towards a drift-less model. This is
particularly useful in situation in which the risk manager
believes that the long term mean fluctuates faster than
assumed by the model and with respect to the rolling
window.

‚ The third and last secondary parameter, κW , can be
thought of the ”returns beef-upper”. It was created so
as to more or less replicate the current, in my opinion
not ideal, market standard which re-levels the returns so
that the historical VaR matches the desired risk appetite.

We can observe how the historical deviations of equation (37)
behaves as a function of where the stochastic process stands
with respect to its long term mean. Indeed, in a situation
where one assign β “ 0, α “ 1 for the ATM implied vol
for the 2 years expiry we get figure 27. What this figure
attempts at exposing is the asymmetric/skewed behavior for
the distribution of the generated stressed scenarios as a
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function of where the risk factor stands with respect to its
long term mean46. Indeed, we can see in zones 3 and 4, that
the risk factor is biased towards the upside whereas in zones
1 and 5 in which the risk factor is above its historical rolling
mean, the simulated distribution is biased on the downside.
Note here that in a situation in which you are below your
historical mean, you can still have simulations that take
you below your current value (the reverse is true for the
symmetric situation in which you are above your historical
mean). A second interesting point to note is that the more
the risk factor is significantly above its historical mean, the
more skewed is the resulting distribution (for example the
distribution of zone 5 is more skewed towards the downside
compared to the one of zone 2 because the deterministic
side of the stochastic differential equation pressures the
simulations more on the downside, even though it still allows
moves on the upside). From these few zones, the reader can
now understand the terminology chosen (”Anticipative”) for
this new risk concept. For instance, depending on where
one stands with respect to the equilibrium point (eg: rolling
mean) a historically model calibrated ”view” is incorporated
on top of the traditional deviations from the model to adjust
a bit the distribution. This can be opposed to the concept
of Responsive VaR in which one always takes a symmetric
approach and rescales the risk factors returns once a big
market move has already occurred (so the VaR is Responsive
as opposed to Anticipative).
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Fig. 27. Example of distributions for the stressed scenarios under the
Anticipative VaR and statistical arbitrage hypothesis

4) The Machine Learning Approach:
A straightforward learning algorithm: The idea behind

the calibration of the Band-Wise Gaussian Mixture is similar,
though not exactly the same as to the variance reduction tech-
nique we saw earlier, more specifically of figure 26. Namely,
depending on the selected zone, the resulting approximated
distribution of the samples differ. The calibration algorithm
will then consist of creating as many zones as possible
trying to converge to the results from the theorem 1 page
21. Algorithm 3 is a rough pseudo-code for the calibration
process.

46We have assumed for display purposes that the mean will not be rolling
in this graph but fixed.

Algorithm 3 BAND-WISE GAUSSIAN MIXTURE(X, p)
Require: array X1:n and number of bands p
Ensure: Ωp1:pq, rB`

p1:pq, B
´

p1:pqs are returned.

Sorting state:
1: Xp1:nq Ð QuickSort(X1:n)
2: rB`

p1:pq, B
´

p1:pqs Ð FindPercentileBands(Xp1:nq, p)
3: Ωp1:rn{psq Ð rs

Allocation state:
4: for j “ 1 to p do
5: for i “ 1 to n do
6: if B´

pjq ď Xpiq ă B`
pjq then

7: Amend(Ωpjq, Xpiq)
8: end if
9: end for

10: end for

Checking Approximation state:
11: µ̂1:p Ð mean(Ωp1:pq)
12: σ̂1:p Ð stdev(Ωp1:pq)
13: Print(Ypi“1N pµ̂i, σ̂iq)

Return state:
14: Ωp1:pq, rB`

p1:pq, B
´

p1:pqs

Remark Note that in algorithm 3, we have used a QuickSort
which can be substituted by other sorting algorithm. We
invite the motivated readers to investigate on their own
this idiosyncratic issue. Also note that this algorithm has
neither been optimized nor checked for data quality (eg: the
combination of n and p should be such that each band has
enough data (eg: minimum 30) for the statistical estimators
to be significant.

5) A model that can dynamically accommodate regime
changes: One important point to note about the additional
benefits of the Machine Learning approach over the SDE
approach47 is to take a look at the example associated to
the bizarre world of interest rates. Indeed up to 2014, it was
assumed that interest rates could never become negative48.
It is reasonable to assume there a risk manager attracted to
prowess of equation 37 would have chosen a β “ 0 and
an α “ 1, the latter enforcing positivity for the simulated
scenarios of our risk factor. This very reasonable assumption
would have crashed the whole risk engine. The Machine
Learning approach would have however been able to con-
tinue its dynamical learning scenario without any problem.

C. Responsible VaR

1) Theory: In this section we introduce the concept of
Responsible VaR which is, the second new Risk term after

47beyond the obvious benefits associated to achieving the same results
though through a simpler channel and also bypassing convoluted SDE
calibration issues in the process.

48why would you pay to put your money in the bank? That would
essentially be the physical question one may ask oneself.
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”Anticipative”, that we aim at introducing in this paper.
Responsible is a portmanteau term that aims at signifying a
VaR model that is Responsive on the upside and Stable on the
downside. If we assume νt represents the VaR at the α level
at time t, then mathematically the concept of Responsible
VaR is jointly defined by the stochastic processes ν̃`t and
ν̃´t summarized in equation (43a).

α “

ż ν`t

´8

ptpxqdx

ν̃`0 “ ν`0

ν̃`t “ max
´

ν`t , λν̃
`
t´1 ` p1´ λqν

`
t

¯

1´ α “

ż `8

ν´t

ptpxqdx

ν̃´0 “ ν´0

ν̃´t “ min
´

ν´t , λν̃t´1 ` p1´ λqν
´
t

¯

(43a)

(43b)

(43c)

(43d)

(43e)

(43f)

Figures 28, 29, 30 and 31 expose how λ, which can be
intuitively understood as the stability coefficient impacts
how the Responsible VaR level for a portfolio, changes
as a function of λ. This methodology can in fact be used
independently of whether we are in a Responsive or an
Anticipative VaR context.

2) Practice: As the reader can see the concept of Respon-
sible VaR can be summarized by a system of two controlled
Snell envelopes of the VaR level at their respective quantile
level, which control is fined tuned by the λ parameter to
match essentially the practitioner risk appetite. In a practical
point of view one must record the VaR of a specific port-
folio49 in time and record the instantaneous Anticipative or
Responsive VaR and adjust it based on equation (43a). That
particular last point may be deterrent in direct use if the IT
constraints are not flexible or too slow. Figures 28, 29, 30
and 31 illustrate how Responsible VaR changes as a function
of λ. The model can be thought as, the more λ is close to 0,
the more the model is purely Responsive both on the up and
downside, and the more λ is close to , the more the model
is stable on the downside while being equally responsive on
the upside.

3) Calibrating the responsible VaR parameters: Finally,
the λ parameter can be chosen so as to fit the risk appetite
of the risk manager and the financial institution he/she
represents. Figures 28, 29, 30 and 31 provides an illustration
of how the risk measure changes as a function of different
values of λ.

D. Simulations

In this section we have chosen to only show the backtest
using the SDE approach, though the backtest using the
Machine Learning approach was similar but more straight-
forward. Also showing the performances of both approaches

49A portfolio of option’s keeping the same weights but decaying by one
day would not constitute a constant portfolio as defined in the context of
Responsible VaR

would have increased unnecessarily the number of graphs
without really exposing performance issues which are more
associated calibration issue and parameter model limitation.
We have chosen in this section to perform a backtest under
the margining context of the generalized bumping method-
ology of section VI-A.1. We have chosen, a straddle of 2
year expiry assuming spot follows a log normal diffusion
(θ “ 0, α “ 1, β “ 0) with implied vol points in the 10,
25, 50, 75 and 90 delta for the relevant expiry are bumped
following a mean reverting assumption in which positivity is
enforced (θ ‰ 0, α “ 1, β “ 0). Figures 28, 29, 30 and 31
exposes how the backtest performs as a function of λ. Figure
28 show few interesting points. First point to notice is that,
in 2008, the market experienced the kind of turmoil it never
experienced up to then. Given that we are in a context of
historical VaR, it is not surprising then to have few breaches
in 2008. The second point to notice is that when λ from the
Responsible VaR formula of equation (43a), the Anticipative
VaRs superpose the Anticipative Responsible VaRs of the
same quantile. Figure 29 exposes how increasing λ by not
a significant amount creates time series which are still more
stable on the downside compared to figure 28 but still too
responsive on the downside. It can be speculated from figure
29 that the VaR level although more stable on the downside
compared to figure 28, might still be overly responsive on
the downside. Adjusting the λ in equation (43a) allows to
improve a bit stability on the downside and avoid additional
breaches in 2009 and 2014 while still allowing the VaR level
to provide relief to market participants. Finally figure 31
exposes the relation between equation (43a) and the max
and min functions for the VaR at the relevant quantile level
when λ “ 1.

VII. CONCLUSION

We first exposed some of the complexity associated to
the risk factors and arbitrage constraints associated with the
options and the high frequency markets by re-introducing
the Implied Volatility Parametrization (IVP) [3], [11] and
the High Frequency Trading Ecosystem (HFTE) [41]. The
complexity was then contrasted with the current obsolete
Risk Methodologies which are based on simplistic SDEs.
We first extended the latter SDEs using the Cointelation
model [10], [13] in order to partially address some of
the complexity introduced by the challenging regulatory
environment such as scenario coherence. We then presented
a simple Machine Learning clustering methodology which
is designed to address and mirror the enhancements of these
SDEs in a simpler fashion. We have laid out the benefits of
such methodology which we organized in concepts such as
versatility, deploy-ability, robustness, leading as opposed to
lagging, realistic and partially non arbitrage-able. We finally
illustrated our findings by introducing few new risk concepts
such as the Anticipative VaR which aims at being a leading as
opposed to a lagging (Responsive) risk measure to a market
regime change, as well as found a way to reconcile the latter
to the concept of Stable VaR to formalize the concepts of
Anticipatible and Responsible VaR.
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Fig. 28. USD/EUR 2 years expiry straddle strategy backtest under Anticipative Responsible VaR with λ “ 0.000.
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Fig. 29. USD/EUR 2 years expiry straddle strategy backtest under Anticipative Responsible VaR of with λ “ 0.990.
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Fig. 30. USD/EUR 2 years expiry straddle strategy backtest under Anticipative Responsible VaR of with λ “ 0.999.
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Fig. 31. USD/EUR 2 years expiry straddle strategy backtest under Anticipative Responsible VaR with λ “ 1.000.
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