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Some of the IVP's Model Performance Criteria

o

o

Asset Class Polyvalent: Should work with different asset classes
(moneyness, log-moneyness, delta space ...).

Function Polyvalent: Trading, Pricing, Compliance & Risk should
find it useful.

Dimensionality: for reasons of computational speed and robustness,
the number of factors should be limited but not limiting.

Should be able to detect and handle arbitrages within both a
trading and risk management context.

Inline with today's challenging regulatory environment: FRTB
friendly, therefore a flexible liquidity component should be
engineered directly into the model.

The methodology should be easily implemented by IT, so ideally fast
& easily calibratable in (for example in closed form).

The model should enhance models that people are familiar with.
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Pricing Call Options Under Different Conventions

@ Classic Black & Scholes model (eg: for Equities)

C(So,t) =e"(T- t)[FN(dl) KN(dg)]
di :J\/lT__[In( )+(r—q+ 102 (T -1)] (1)
d =di-oVT -

@ Garman Kohlhagen model (eg: for FX)

C(So,t) =Spe " T-ON(dy) - Ke (T~ t)N(dz)
d1 = U\/(T—t[ln(SO/K)+(rd_rf+ )(T t)] (2)
do =di—o\/(T-1t)

© Options on Normal Underlyings (eg: for negative interrest rates)

C(So,t) =e " TD[(F-K)N(d)+oVT-tN'(d)]
d - K (3)

oV T-t
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Price to Implied Vol: Bisection, Newton Raphson, Brent

Algorithm 1 Bisection return o; given P,S;, K, rq,re,r,q, T

Ensure: P ~ Pricer(S¢,K,oi, T, rq,re,q,r, T)
1. €< 0.01; N=50; 0, < 3.0; 0_ < 0.01;
2: fori=1to N do

3 gj« 7%=

4:  if P> Pricer(S:,K,0, T, ry,rr,q,r) then

5: Oy < 0;

6: else

7: o_<«0

8 endif

9: if |P— Pricer(S¢,K,o0, T, rq,rf,q,r)| < € then
10: i<~ N

11:  end if

12: end for

13: Return o;
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Implied Volatility & Market Prices: Classic Representation
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Figure: Visualization for the core simple de-arbing idea
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The Implied Volatility: a Continuous 3D Structure

implied volatilty ;

log moneyness

Figure: Arbitrageable Vol (closest arb-free mirror in figure 41)
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Implied Volatility Surface & Dimensionality

@ Why do we need to reduce dimensionality? (infinite granularity
means infinite dimenssionality)

080%,30d 0100%,30d 0120%,30d
Y= T80%,60d 0120%,60d
080%,2Y 0120%,2Y

@ How do we handle so many risk factors? How to you interpolate?
extrapolate?

© How is liquidity engineered in the model itself?

© How can we insure that the volatility is arbitrage free?
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Introducing the IVP & Recall on the SVI Model

@ Parameterizing the volatility surface with a Stochastic Vol Inspired
(SVI) like model is very useful because, interpolation and
extrapolation methodologies are no longer required?, it allows for
arbitrage detection and we can engineer liquidity costs directly in the
model.

@ Intuition behind parameterizing the volatility surface: the function
fi(k) = a, would represent a volatility with a flat smile,
f2(k) = a+ b|k|, would represent a vol of vol adjustment to fi,
f3(k) = a+ blk| + bpk, would represent a skew adjustment to £, etc ...

© We can build abstraction in this manner by adding parameters to
fine tune the dynamics of the volatility surface. We can add as many
parameters as one wishes bearing in mind that the aim is still for the
model to remain parsimonious.

Lon the strike axis (moneyness/logmoneyness, delta axis), but still required on the
tenor axis
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SVI & IVP: the Parameters

The IVP model has for skeleton the celebrated raw SVI:

a, adjusts the vertical displacement of the smile

b, adjusts the angle between left and right asymptotes

pr adjusts the orientation of the graph

m,; is the horizontal displacement of the smile

o, adjusts the smoothness of the vertex

B the downside transform for making the wings sub-linear

ag,r & a.(.) are the infinitesimal & function ATM bid-ask position
size adjustment

Yo+ & 1-(.) are the infinitesimal & function wing curvature
bid-ask position size adjustment

Nev,r & 1y are the ATM & wing curvature bid-ask market impact
elasticity (or liquidity horizon) respectively.

pr is the position size

©e6 0 0 00000O0CO0

A7 & Ao ; the in-between tenors " interpolators”
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Change of the a Parameter in the Raw SVI

2T(k):a7'+b7' P-r(k—mT)+\/ (k—m7)2+03
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Change of the b Parameter in the Raw SVI
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Change of the p Parameter in the Raw SVI

2T(k):a7'+b7' pT(k_mT)‘l‘\/ (k—m7)2+03
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Change of the m Parameter in the Raw SVI

2T(k):a7'+b7' Pr(k—m7)+\/ (k—m7)2+(7$
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Change of the o Parameter in the Raw SVI

02 (K) = ar + by | pr (k= my) +\[ (k= my)? + UTZJ
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IVP: the Parameters

The IVP model has for skeleton the celebrated raw SVI:

a, adjusts the vertical displacement of the smile

b, adjusts the angle between left and right asymptotes

pr adjusts the orientation of the graph

m,; is the horizontal displacement of the smile

o, adjusts the smoothness of the vertex

B the downside transform for making the wings sub-linear

ag,r & a.(.) are the infinitesimal & function ATM bid-ask position
size adjustment

Yo+ & 1-(.) are the infinitesimal & function wing curvature
bid-ask position size adjustment

Nev,r & 1y are the ATM & wing curvature bid-ask market impact
elasticity (or liquidity horizon) respectively.

pr is the position size

©e6 0 0 00000O0CO0

A7 & Ao ; the in-between tenors " interpolators”
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IVP: the Full Formula

© The main formula is presented below:

% - (k,p)
Zy T
o2 . (k,p)
zZ .

a-(p)
V- (p)

=ar+br|pr(Zop —mr) + \/(Zo,‘r -
_ k

- A’30,71+4|k7_m‘

=ar+ b’T‘ Pr (Z+,T - mT) + \/(z‘hT -
= Zo,r[l +—’L;97—(p)]

=ar+ b’?’ Pr (Z—,T - mT) + \/(z—ﬂ' -

mT)2 +0,2

mT)2 +0.2|+a-(p)

= Zo,q-[]- —-ﬁfT(P)]

oo, rt+ (aT - ()40’7_)(1 _ e_'/"rP)
Q/)0,7' + (1 - 1/)077)(1 _ e—nq;,?_p)

mT)2 + 0,2

- (YT(p)

@ Additional parameters (A1, A2) around interpolation in tenor space is
presented in the paper?.

*http://onlinelibrary.wiley.com/doi/10.1002/wilm.10422/abstract
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Change of the 8 Parameter in the IVP
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Change of the o Parameter in the VP

0377 (k,p)=ar+b:|p; (zy 7 —m;) + \/(z+77 -m)?+ 0'72_J +a-(p)
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Change of the v Parameter in the IVP

0.7

2 = Zor[1+ 47 (p)]

Slice of the IVP on 1 arbitrary Tenor with

a=0.1, b=0.2, p=00=0, m=0, B =1, y=0.1,a, =0

and with Aa=0, Ab=0, Ap=0, AM=0, AG=0, AB =0, AY=0.1, Aa=0

0.651

0.6

Implied Vol and Bid Ask Spread

ref vol best Ask
ref vol best Bid
ref vol mid
stressed vol best Ask
stressed vol best Bid
stressed vol mid

Babak Mahdavi

L
-0.8 -0.6

Damghani (CQF)

| |
-0.4 -0.2

IVP: Options Stat Arb & Risk Management

0
Moneyness

0.2

0.4

0.6

0.8

March 11, 2016

19 /41



@ Introduction

© Implied Volatility Parametrization (IVP)

e Calibration
© Stat Arb & Risk Management

@ Arbitrage handling

e De-arbing methodology

Babak Mahdavi Damghani (CQF) IVP: Options Stat Arb & Risk Management

March 11, 2016

20 / 41



IVP: Calibration & Objective Function

© We make sure that for every pillar tenor and every pillar strikes the
relevant points are on average® as close as possible to the points
induced by the parameterised version of the vol as defined by the IVP

model.
solve:
6-t(7—7d) = argmin ZT Zd[o-i,t(Tvd) _5-1“(7—’ d)]2 (4)
N———
a't(’T,d)

@ The calibration becomes an optimization by constraint problem
(explained in section 2).

© Calibration can be done both numerically and in closed form as we
will see next.

3Euclidean distance
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IVP: Closed Form Calibration
For example if =0, S =1 and p ~ 0% we get:
02 (k) = ar+be(pe[k(1+17) = m] + [k(1+¢7) = m| ) + s
2.(K) =ar+b(pe(k—m)+|k—m])
02 (k) = ar+ br(pr[k(1 =) = m] + k(1 ~2pr) = m] ) -

My =argmin 0(2,’7 (k)
———
k

2 -2
ar O T (m)
B _ 0, T(m+k)+ag’_r(m—k)—2éf

T B 2lk|

~ _ 0'62)77_(!17+k) Uo ‘r(m_k)
Pr - 2b,k .
A =02 _(m)- b b
Qr =05 . (m)—-3a; +mb;p; +|m|b;
D _ 0% -(m)+o? (m)-24,

T - 2|m|b.

“these constraints are only there to make the results simple for the sake of the
presentation only for illustration purpose (note that knowing 7 & 74 become obsolete)
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Stat Arb & Risk Management: the Signal Formula

© Whether it is in trading or in risk, being able to formalize the
quantitative problem in terms of distribution allows us to have a
better certainty index (in Statistical Arbitrage) or a better measure
of risk (in Risk Management).

@ The conditional bumping formula is defined by equation (5) where we
define the parameters in red as primary and in blue as secondary.

0, ‘
dXe = £ (i = Xp)dt + ko XS (1= X2) dW, (5)
Ko

© The conditional bumping equation (5) models all risk factors in the
context of this presentation: Spot, Forward, Interest Rate, Implied
Vol (eg: skew traders), etc ...
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Stat Arb & Risk Management: the Parameters

Primary parameters
@ 0;, the rolling speed of mean reversion
@ [, the long term rolling mean
@ «, the positivity flag enforcer
Q@ [, the [-1,+1] boundary flag enforcer
Q@ {UdW;}i_, _, the set of historical deviations given the assumed
model.
Secondary parameters
@ 7, the rolling window length of calibration.
@ kg, the speed of mean reversion dampener,

© kw, the variance enhancer.
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Stat Arb & Risk Management: the Diffusions

© Proportional bump (log-normal diffusion). Simply enforce 6 =0,
a=1, =0,

@ Absolute bumps (normal diffusion). Simply enforce # =0, « =0, 5 =0,

© Mean reverting bumps where we enforce positivity (like in the case of
the CIR diffusion),

© Mean reverting bumps where we do not enforce positivity (like in the
case of the OU diffusion). This one is particularly handy in defining
the dynamics of the horizontal displacement m.

@ Mean reverting bumps bounded in [-1,1]. For example the dynamics
of the p parameter in the SVI/gSVI/IVP. This one is particularly
handy in defining the dynamics of the skew parameter p.
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Stat Arb & Risk Management: Diffusions Benefits

o

2]
o
o

It is versatile: it models all the known risk models on top of new
ones,

It is deployable and robust: once the calibration has been performed
the same code works for every risk factor,

It is leading: it allows for anticipation in the regime change as
opposed to waiting passively for responding to a regime change,

It is more realistic: when Vols (or interest rates) are high applying
relative shifts overestimates the moves on the upside but
underestimate the moves on the downside (same for some
parameters),

It decreases arbitrages scenarios: since the diffusion of equation (5)
is more realistic with respect to market observable phenomenon, the
number of arbitrage opportunities in the stressed scenario generations
decreases drastically when the conditional methodology is used as
opposed to relative shifts especially when it comes to skew like
strategies (eg: butterfly, call spreads etc ...).
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Stat Arb & Risk Management: Parameters Diffusions (eg)

@ We want to consider the co-movement between the risk factors
and spot as well as with themselves.
© We may want to consider a conditional probability bumping on the

parameters themselves and use more quant weaponry to address the
asymmetric property of options:

dat 293(,ua—at)dt+aaathf

dbe = Op(1tp — be)dt + opbedH?

dpe = 0,(pp = pe)dt + o, (1 - p7)dH!
dmt =9m(um—mt)dt+0'mmth["

© Do we need to get to the closest arbitrage free vol for the cleansed
scenarios?
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Visual Example

Stat Arb & Risk Management

6M,ATM(M 3 U?M,ATM)dt N U?M,ATMdHSM,ATM
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Options Arbitrages: Calendar & Butterfly Rules

© There are 2 real conditions that are important in the business context:
there should not be any arbitrage opportunities in the strike and tenor
domains.

@ A call with a higher strike should never be more expensive than a call
of lower strike at the same maturity level. Equation (6), which
represents the Butterfly® condition formalizes this idea.

VA, C(K - D) -2C(K) + C(K +A) > 0] (6)

© A call with a shorter expiry should never be more expensive than a
call of the same strike but of longer expiry. Equation (7), which
represents the Calendar condition formalizes this idea.

C(K,T+A)-C(Ke ™, T)>0 (7)

Swe can alternatively use the call spread inequality
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Arb check on the Strike Axis: a Common Error

@ Note that interpolation simple does not insure the volatility surface to
be arbitrage free even with the most advanced methodologies®.

@ The Roger Lee condition is necessary but not sufficient and hence
the results given by b(1+ |p|) < % from the SVI was elegant but
ultimately incomplete.

015

010

0.05

Figure: Example in which a linear interpolation yields an arbitrage

®Roger Lee condition |0ko (k)| < 4/T is necessary but unfortunately not sufficient
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Arb Check on the Tenor Axis: Falling Variance

© The Falling variance formula, of equation (8), will insure that
extrapolation is done consistently with respect to the calendar spread
arbitrage condition described by equation (7).

t
VT>t,Vk,O’gr7kZO'§k? (8)

@ Generally speaking extrapolation along the tenor axis in variance
space is considered for the falling variance condition widely accepted.

© We can see below a plot of 100 simulations of brownian motions
generated and their o's (the red lines widen as the expiry increases).

(t]
3-2-10 12
I T N R
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Additional Arbitrages in FX: triangle representation

EUR

PY

Figure: FX triangle representation for Spot/Forward and Implied Vol
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Arbitrages in the FX Market: Triangle Rules

© If we associate the subscripts of E—LSJ—S LJJFS,—\I? and I‘%lPJ_YR to the ones of

figure 5 we have:

@ Triangle rule on spot/forward defined by equation (9) will be
disregarded in the context of this presentation because non-USD
crosses will be inferred from USD currency pairs.

51=52><53

F]_ = F2 X F3 (9)

© The triangle rule with respect to implied volatility defined by equation
(11) will be disregarded because of benefits to complexity ratio
reasons.
01+ 02+ 03>2max(o1 + 02 +03) (10)
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Arbitrages in the FX market: Implied Correlation Rule

@ The triangle rule with respect to implied volatility defined by equation
(11) will be disregarded because of benefits to complexity ratio
reasons.

01+02+03>2max(01+02+03) (11)

@ Implied correlation is defined by equation (12) with the subscripts of

figure 5.

2 2 2

P12 = =cos¢12 (12)

20109
© One other condition is for the implied correlation matrix of equation
(13) to be positive semi-definite’.

1 pi2 = pia
1
c=( " . (13)
Pn1 = Pnn-1 1

"usually disregarded
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Arbitrages in the FX Market: Implied Correlation

. .

./
o'/

,»"”—/|
-0,

EUR

JPY

Figure: Representation exposing relationship between implied correlation and vol
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e De-arbing methodology
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Dearbing: About the Importance of De-Arbing

© Each vol surface, whether quoted or simulated, conveys information
about the price and risk of a portfolio and it must therefore be
realistic.

© We wish to avoid the possibility that arbitrageable scenarios are
driving our IM calculation

© Dearbing is cumbersome so we can improve the scenario generation
process to reduce the probability of arbitrages (we refer here to the
presentation Mean Reverting Bumping: Application to Implied
Volatility Historical Scenario Generation).

@ De-arbing is a convoluted mathematical optimization which perferct
solution falls outside the scope of what we usually define to be a
pragmatic benefits to complexity ratio so we propose, in this
presentation, a partial de-arbing process.
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Dearbing: Optimization by Constraints

solve:

&e(1,d) =argmin Y. S y[0i (7, d) - 5¢(7,d)]?
—
&t(T,d)

subject to:

vd € {10,25,50,75,90}, (14)

0< C(K—A,UO(K—A,T)) - C(K,Uo(K,T)),

V7 e {ON,1W,2W,1M,2M,3M,6M,1Y,18M,2Y},

0< C(K,m+0,00(K,7+8)) - C(Ke ™, 00(Ke ™™, 7))

© We make sure that for every pillar tenor and every pillar strikes the
relevant points are mutually arbitrage free.

@ We try to find the shortest distances between the input vol and its
closest arbitrage free mirror subject to the Call spread (equivalent to
butterfly) and Calendar spread Conditions.
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De-Arbing: Objective Function

© In order to use the usual optimization tools, we need to adjust the
objective function to take in the constraints of the problem.
@ If we call B the call spread® arbitrage flag and CS; its impact in price.

CS1 = |C(K - B, 00(K = A,7)) - C(K,00(K, 7)) 15 (15)
© Let C be the Calendar spread arbitrage flag and CS; its price impact.

CS, = ‘C(K,T N A)) - C(Ke*’A,ao(Ke*’A,T))\ 1c

(16)
Q Let's call K the constraint scalar®, the objective function is adjusted
as described in equation (17).

6¢(7,d) = argmin . g[ai,t(@ d) - G:(,d)]* + K(CS; + CS,) (17)

5’t(7',d)

8equivalent to the Butterfly condition

%a big enough number to make sure the constraints are respected but not too big to
create numerical instabilities
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De-Arbing: an Imperfect Simplified Implementation

Increasing Strikes Increasing Strikes
Ifgoooooo Then Qioooooo
@ 00000O0 + §OOOOOO
© 00 0000O0 0 0000O0O0
© 0 06 0000O0 0 0000O0OO0
00 000O00O0 0 0000O0OO0
Increasing 0000000 0000000 Increasing
T T
" o000000 06000000
© 00 0000O0 0 0000O0O0
© 06 060000 0 0000O0OO0
© 0000 POOOO
If < Then + N
Call Prices Implied Volatility

Figure: Visualization for the core simple de-arbing idea
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De-arbing: be Careful with FX Data

@ The data in FX is listed in delta space but the algorithm from slide 51
assumes that the data is conveniently aligned in log-moneyness space.

By = g (650 (18)

@ The market delta space pillars are the 10, 25, 50, 75, 900 delta.

© Generally speaking interpolation will be done linearly in variance
space as opposed to volatility space and extrapolation will be flat in
volatility space. There is also the possibility to perform a cubic spline.

@ The pillars for our tenor axis have been qualitatively chosen to be:
ON, 1W, 2W, 1M, 2M, 3M, 6M, 1Y, 18M, 2Y. The delta to
log-moneyness conversion creates increasing mis-alignments as the
tenor increases.

Odiscussion around have information on the 1 and 99 delta arescurrently happening
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De-arbing: be Careful with FX Data

Increasing Strikes Increasing Strikes
if Qomoo Then Qioooooo
0000 0 O + 10 00000
o 0 0000 O 00 000O0OO0
0000000 0 0 000O0OO0
00 0000O0 0 0 000O0OO0
Increasing. 000 000 0000000 Increasing
T T
" o000 000 06000000 ¢
© 0600 0 0 00 00 000O0OO0
© 6 6 06 60 o0 00 000O0OO0
0 o o 00 ©0000O0OO
If < Then +
Call Prices Implied Volatility

Figure: Visualization for the core simple de-arbing idea approximation
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Example of De-Arbed Closest Vol

implied volatilty ;

log moneyness

Figure: Closest arbitrage free vol of figure 6.
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