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De-arbitraging With a Weak Smile: 
Application to Skew Risk

Abstract
The aim of this article is to address the methodology behind de-arbitraging a realistic 
volatility surface and stressing it without adding arbitrages. We derive from basic 
principles the constraints which the changes on the strike and the tenor axis must 
satisfy in order to make a volatility surface arbitrage-free. The two most influential 
parameterized versions of the volatility surface will then be discussed, along with 
their origin and their limitations. Furthermore, this review will address the issues of 
finding the closest arbitrage-free volatility surface through the gSVI method, a more 
realistic parameterized version of the volatility surface applicable to the FX, com-
modities, and equities markets. Finally, using examples, the methodology behind 
coherently stressing this arbitrage-free volatility surface will be looked at, in order to 
capture and isolate the risk associated with higher-order Greeks like the Vanna or the 
Vomma. 
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1 Introduction
1.1 Scope 
Within the framework of options risk modeling, it is essential to define a volatil-
ity surface that works with a variety of pricing models. As it happens, most pricing 
systems used in practice are designed in such a way that they cannot accommodate 
volatility surfaces that would allow for arbitrage opportunities. In order to address 
this issue we need to create a methodology that would, first, test whether a volatility 
surface is arbitrage-free and second, adjust the volatility surfaces that would allow for 
arbitrages. 

1.2 Struc ture of the article
In Section 2 we will explore the condition for an arbitrage-free volatility surface. 
More specifically, we will show where these conditions come from and we will 
address an alternative practical form for these conditions. In Section 3 we will make a 
literature review of the two most influential volatility surface parameterization mod-
els, and address their origins and their limitations. We will also introduce the gSVI 
model in order to address these limitations. We will finally suggest a de-arbitraging 
methodology in Section 4, and an example application for the skew risk.

2 Der ivation of the conditions for arbitrage-free 
volatility surfaces 
2.1 Model  setup
The model setup is the usual. Let us set up the probability space (Ω, ( f )(t≥0)Q), with 
( f )(t≥0) generated by the (T C 1)-dimensional Brownian motion and Q the risk-
neutral probability measure under which the discounted price of the underlier, rS, 
is a martingale. We also assume that the underlier can be represented as a stochastic 
volatility lognormal Brownian motion as represented by 1. In order to prevent arbi-
trages on the volatility surface, we will start from basic principles and derive the con-
straints relevant to the strike and tenor:

 dSt = rStdt + σtStdWt (1)

2.2 Condition on  the strike 
2.2.1 Theoretical for m
Using Dupire’s work [4, 5], we can write the price of a call in the following way:

 

C(S0,K,T) = e−rTE Q [ST − K]+

= e−rT
∫ +∞
k

(ST − K)φ(ST ,T)dST  (2)

with φ(ST , T) being the final probability density of the call. Differentiating twice, we 
find
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remains useful when one has a more practical objective, which will be illustrated with 
an example in Section 3.4. This condition is given by

 ∀K,∀T, |T∂Kσ 2(K,T)| ≤ 4  (7)

Proof
The intuition behind the proof is taken from Rogers and Tehranchi [17], but is some-
what simplified for practitioners. Assuming r D 0, let us define the Black–Scholes 
call function f : R £ [0, ∞) → [0, 1) in terms of the tail of the standard Gaussian dis-

tribution �(x) = 1√
2�

∫ +∞
x

exp(
−y2
2

)dy  and given by

f (k, ν) =
{

�( k√
ν
−

√
ν

2 )− ek�( k√
ν
+

√
ν

2 ) if ν > 0
(1+ ek)+ if ν = 0

Let us call Vt(k, τ) the implied variance at time t ̧  0 for log-moneyness k and 
time to maturity τ ̧  0. Let us now label our Kappa and Vega, with the convention 

that φ(x) = 1√
2�

exp(
−x2
2

):

fk(k, ν) = −ek�(
k√
ν
+
√
ν

2
)

fν(k, ν) = φ(
k√
ν
+
√
ν

2
)/2
√
ν

Now define the function I : {(k, c) ∈ R £ [0, ∞):(1 C ek)C · c < 1} → [0, 1) implicitly 
by the formula

f (k, I(k, c)) = c

Calculus gives Ic D   1 __ fv
   and Ik ¡   

fk __ fv
  , from here using the chain rule, designating ∂kCV as 

the right derivative. We have

∂k+V = Ik + Ic∂kE [(Sτ − ek)+]

∂k+V = − fk
fν
− P (Sτ > ek)

fν

< − fk
fν
= 2
√
ν
�( k√

ν
+

√
ν

2 )

φ( k√
ν
+

√
ν

2 )

Now, using the bounds of the Mills ratio 0 · 1 ¡   xΦ(x) _____ φ(x)   ≡ ε(x) ·   1 ______ 1 C x2  , we have

∂k+V ≤ 4
k/V + 1

< 4

Similarly, we can show [17] that ∂k¡V > ¡4, therefore we have |∂kV| < 4. �

One can think of the boundaries of the volatility surface, as extrapolated by equa-
tion (7), as more relaxed boundaries (but still “close”) in the strike space compared 
with the exact solution from equation (5) set to 0, which are both necessary and 
sufficient conditions for the volatility surface to be arbitrage-free for the butterfly 
condition. Formally, if  g 1  

a  and  g 2  
a  happen to be the exact roots of |T∂Κσ2(K, T)| ¡4 D 

0, with  g 2  
a  ̧   g 1  

a , then we have  g 1  
a  ·  g 1  

e · w(k)  g 2  
e  ·  g 2  

a . The reason why equation (7) is 
practical is because in de-arbitraging methodologies (as we will see in more detail in 
Section 3.4), there exist for the pricers a component of tolerance anyways (the pric-
ers are stable if the volatility surface is slightly away from its arbitrage frontier). This 
suggests that finding a close enough solution but building on top of that an iterative 

 

∂2C
∂K2 = φ(ST ,T) > 0  (3)

Proof

C(S0,K,T) = e−rTE Q [ST − K]+

= e−rT
∫ +∞
k

(ST − K)φ(ST ,T)dST

∂C
∂K

= −e−rT
∫ +∞
k

φ(ST ,T)dST

= −e−rTE (ST > K)

Also, we know that 0 ≤ −e−rT   ∂C ____ 
 ∂K

   ≤ 1. Differentiating a second time and setting r = 0, 
we find φ(ST , T) =   ∂2C ____  ∂K2  . �

Using numerical approximation we get equation (4), which is known in the 
industry as the arbitrage constraint of the positivity of the butterfly spread [19]:

 ∀�,C(K −�)− 2C(K)+ C(K +�) > 0  (4)

Proof 
Given that the probability density must be positive, we have   ∂2C ____  ∂K2   ≥ 0. Using numeri-
cal approximation, we get

∂2C
∂K2 = lim

�→0

[C(K −�)− C(K)]− [C(K)− C(K +�)]
�2

= lim
�→0

C(K −�)− 2C(K)+ C(K +�)
�2

therefore C(K ¡ Δ) ¡ 2C (K) C C(K C Δ) ̧  0. �

Gatheral and Jacquier [10] proved that the positivity of the butterfly condition 
comes back to making sure that the function g() from equation (5) is strictly positive:

 
g(k) :=

(
1− Kw′(k)

2w(k)

)2
− w′(k)2

4

(
1

w(k)
+ 1

4
+ w′′(k)

2

)
 

(5)

Proof
We have shown in equation (3) that   ∂2C ____  ∂K2   D φ(). Applying this formula to the Black–
Scholes equation gives, for a given tenor, 

 
φ(k) = g(k)√

2πw(k)
exp
(
−d2(k)2

2

)
 (6)

where w(k, t) D  σ BS  
2
   (k, t)t is the implied volatility at strike K and where d2(k) :=

−k√
w(k)

−
√
w(k) . �

Function (5) yields a polynomial of the second degree with a negative highest 
order, which suggests that the function is inverse bell curve-like and potentially only 
positive given two constraints which may appear as contradicting some of the initial 
slides Gatheral presented back in 2004. If  g 1  

e  and  g 2  
e  happen to be the exact roots of 

g(k) D 0 with  g 2  
e  ̧   g 1  

e , then the volatility surface is arbitrage-free with respect to the 
butterfly constraint if w(k) ·  g 2  

e  and w(k) ̧   g 1  
e .

2.2.2 Practical form
There exists another versio n of this butterfly [equation (3)] condition that is a nec-
essary but not sufficient condition to make a volatility surface arbitrage-free but 
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 methodology to get closer and closer to the practical arbitrage frontier is almost 
equally fast, but with less computing trouble, than having the exact theoretical solu-
tion (and building an error tolerance finder on top of it anyways). This is because 
there is less probability of making a typographical error in keying the exact solution 
of equation (5) (or its numerical approximation), especially if your parameterized 
version of the volatility surface is complex which is the case for most banks ({ g 1  

a ,  g 2  
a } 

are easier to find than { g 1  
e ,  g 2  

e }).

2.3 Condition on the tenor
2.3.1 Theoretical form
The condition on the te nor axis which insures the volatil ity surface to be arbitrage-
free is that the calendar spread should be positive:

 C(K,T +�)− C(Ke−r�,T) ≥ 0  (8)

Proof
One application of Dupire’s formula [4, 5] is that the pseudo-probability density 
must satisfy the Fokker–Planck [7, 16] equation. This proof is taken from El Karoui 
[13]. Let us apply Itô to the semi-martingale. This is formally done by introducing 
the local time  � T  K : 

e−r(T+ε) (ST+ε − K)+ − e−r(T) (ST − K)+

=
∫ T+ε

T
re−ru (Su − K)+ du+

∫ T+ε

T
e−ru1{Su≥K}dSu

+ 1
2

∫ T+ε

T
e−rud
K

u

Local times are introduced in mathematics when the integrand is not smooth 
enough. Here the call price is not smooth enough around the strike level at expiry. 
Now we have E

(
e−ru1{Su≥K}Su

) = C (u,K)+ Ke−ruP (Su ≥ K) = C (u,K)− K
∂C
∂K

(u,K). The term of the form E
(∫ T+ε

T
e−rud
K

u

)
 is found due to the formula for 

local times, that is

E
(∫ T+ε

T
e−rud
K

u

)
=
∫ T+ε

T
e−ruduE

(

K

u
)

=
∫ T+ε

T
e−ruduσ 2 (u,K)K2φ (u,K)

=
∫ T+ε

T
σ 2 (u,K)K2 ∂

2C
∂K2 (u,K) du

Plugging these results back into the first equation, we get

C (T + ε,K) = C (T,K)−
∫ T+ε

T
rC (u,K) du

+ (r − q
) ∫ T+ε

T

(
C (u,K)− K

∂C
∂K

(u,K)

)
du

+ 1
2

∫ T+ε

T
σ 2 (u,K)K2 ∂

2C
∂K2 (u,K) du

If we want to give a PDE point of view of this problem, we can notice that 

φ (T,K) = e−rT
∂2C
∂K2 (T,K) verifies the dual forward equation

φ
′
T (T,K) = 1

2
∂2
(
σ 2 (T,K)K2φ (T,K)

)
∂K2

− ∂2
((
r − q
)
Kφ (T,K)

)
∂K

Integrating twice by parts, we find

∂e−rTC (T,K)

∂T
= 1

2
σ 2 (T,K)K2erT

∂2C (T,K)

∂K2

−
∫ +∞
K

(
r − q
)
KerT

∂2C (u,K)

∂K2 ∂K (T,K) du

Now, integrating by parts again and setting dividends to 0, we find the generally 
admitted relationship

∂C
∂t
= σ 2

2
K2 ∂

2C
∂K2 − rK

∂C
∂K

and therefore we have

σ =
√√√√2

∂C
∂t + rK ∂C

∂K

K2 ∂2C
∂K2

From this formula and from the positivity constraint on equation (3), we find 
that 

∂C
∂t
+ rK

∂C
∂K

≥ 0

Note that for very small �: 

C(Ke−r�,T) ≈ C(K − Kr�,T)

Using the Taylor expansion:

C(K − Kr�,T) = C(K,T)− Kr�
∂C
∂K

+ . . .

Therefore, 

rK
∂C
∂K

≈ C(K,T)− C(Ke−r�,T)
�

Using forward difference approximation we also have

∂C
∂K

= C(K,T +�)− C(K,T)
�

and from Fokker–Planck we have   ∂C ____  ∂t    C rK   ∂C ____  ∂K   ̧  0. Substituting, we obtain

C(K,T +�)− C(K,T)
�

+ C(K,T)− C(Ke−r�,T)
�

≥ 0

Simplifying, we find C(K, T C �) ¡ C(Ke ¡r�, T) ̧  0. �

2.3.2 Practical form
Similarly to Section 2.2, there exists a more practical equivalent to the calendar 
sp read criterion. This equivalent criterion is known as the falling variance criterion, 
which states that:
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if S is a martingale under the risk neutral probability measure Q ,

∀t > s, e−rtE Q (St − K)+ ≥ e−stE Q (Ss − K)+  (9)

Proof
e¡rt EQ(St ¡ K)C ̧  e¡rs EQ(Ss ¡ K)C ⇒ e¡rt EQ(St ¡ K)C ¡ e¡rs EQ(Ss ¡ K)C ̧  0 ⇒ cal-
endar spread ̧  0 ⇒ C(K, T C �) ¡ C(Ke ¡r�, T) ̧  0. �

3 Parameterizing the volatility surface 
3.1 Literature review
If one turns a volatility surface o nto a grid, one can check if each point of the g rid has 
an arbitrage using equations (4) and (8). Once the arbitrage points have been detected, 
we need to move these specific incoherent implied volatility points such that the clos-
est arbitrage-free point is reached. One of the consequences of moving these implied 
volatilities is that they can create arbitrages in other places of the volatility surface; 
we therefore need to rerun that “on the fly fixer algorithm” from scratch every time 
an adjustment has occurred. It seems Lagnado and Osher [14], Crepey [2], and other 
authors have proposed a minimization algorithm. However, it seems that the financial 
mathematics literature has not yet reached a consensus on de-arbitraging the volatility 
surface point by point. With this in mind, the finance industry has developed param-
eterized versions of the volatility surface because there exist methodologies which 
allow one to check whether a volatility surface is arbitrage-free via its parameters, a 
critical point when it comes to utilizing constraints optimization search algorithms. 
We will explore Schonbucher’s model and the SVI models, which are the last two most 
influential models of volatility surface parameterization. We will address their limita-
tions and propose an improvement via the gSVI method developed later in this article.

3.2 Schonbucher’s model
In 1999, Schonbucher [18] introduced his parameterized version of the volatility 
 surface. The main advantage of Schonbucher’s model is that it can be derived from 
the Heston [12] model, which is an underlying model used by many financial insti-
tutions and is therefore well respected. He asserts that the implied volatility surface 
should be modeled through equation (10). Here, x denotes the log-moneyness:

 
I2(x) = a+ bx+

√
1
4
σ 4 + x2ν2  (10)

Proof
Let us define the following Heston [12] model given by the implied volatility I and 
the stock price S: ⎧⎨

⎩
dSt = rStdt + σtStdWt
dσk,t = utdt + γtdWt + νtdW⊥

t
γ 2
t + ν2t = 1

The two Brownian motions are independent of each other.1 The implied stock 
volatility function σk,t is yet to be specified; to simplify the notation, let us redefine 
this variable as It and call γt the correlation between the instantaneous volatility and 
the spot price, with vt chosen such that  γ t  2  C  v t  

2  D 1. Now, apply Itô’s lemma to the call 
price to obtain the drift restriction

rCBS = ∂CBS

∂t
+ rS

∂CBS

∂S
+ u

∂CBS

∂I

+ γ σS
∂2CBS

∂I∂S
+ 1

2
(σ 2S2

∂2CBS

∂S2
+ ∂2CBS

∂I2
)

Using the Black–Scholes formula for the call and its derivatives, this reduces to a 
joint restriction on the implied and instantaneous volatility:

 
Iu = 1

2(T − t)
(I2 − σ 2)− 1

2
d1d2ν2 + d2√

T − t
σγ  (11)

where we have used the standard definitions for d1 and d2:

d1 = x
I
√
T−t + 1

2 I
√
T − t

d2 = d1 − I
√
T − t

Equation (11) blows up as T ¡ t goes to zero. This imposes the condition that

(I2 − σ 2)− d1d2ν2(T − t)+ d2σγ
√
T − t = O(T − t)

and thus in the limit, noting that lim
t→T

d1
√
T − t = lim

t→T
d2
√
T − t = 1

I
ln(

S
K
)  and by 

setting a zero correlation between spot and implied vol,2 the solution becomes

I2(x) = 1
2
σ 2 +
√

σ 4

4
+ x2ν2

Note that there is no ATM skew, but this is easily remedied by adding an extra 
linear term:

 
I2(x) = a+ bx+

√
σ 4

4
+ x2ν2

 �

3.3 The stochastic volatility inspired (SVI) model
Like Schonbucher’s model, the advantage of the SVI is that it can be derive d from 
Heston [9, 12], a model used by many financial institutions and which can therefore 
be taken as legitimate. However, it did not come with non-arbitrage constraints and 
its parameters are not as intuitive as they could be for traders. These are the two 
main contributions of the SVI, developed by Gatheral [8] in 2005 and for which the 
non-arbitrage-free constraints were clarified in 2012 [10]. For each time to expiry, he 
writes

 
σBS(k) = a+ b[ρ(k−m)+

√
(k−m)2 + σ 2

 (12)

where:
k is the log-moneyness [log(  K __ F  ), with S being the value of the forward]
a adjusts the vertical displacement of the smile 
b adjusts the angle between the left and right asymptotes 
σ adjusts the smoothness of the vertex 
ρ adjusts the orientation of the graph 
m is the horizontal displacement of the smile 

The advantage of Gatheral’s model was that it was a parametric model that was 
easy to use, yet had enough complexity to properly model the volatility surface and 
its dynamic3 (or at least to the same extent Schonbucher’s model did). Note that 
Schonbucher’s market model has one parameter less than the SVI: the m parameter, 
whose aim is to center the volatility surface around its minimum strike per tenor. 
Other than this, the two models are equivalent.4 But at the same time, it was simple 
enough that a solution could be found using simple optimization by constraint algo-
rithms. Figure 1 illustrates the change in the ρ parameter (the skew risk), Figure 2 
illustrates the change in the b parameter (the vol of vol risk), Figure 3 illustrates the 
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3.3.1 The SVI’s constraints 
The SVI has three necessary and sufficient conditions which make it arbitrage-free. 
On top of these three constraints, the SVI has three other constr aints that do not 
reduce the state-space but decrease the probability of falling into a local minimum 
during the optimization process. We have seen in equation (7) the general condition 
that makes a volatility surface “often” arbitrage-free along the strike axis. This condi-
tion translates to equation (13) for the SVI model:

 
b(1+ |ρ|) ≤ 4

T  (13)

Proof

We know that ∀x, ∀T, ∣∣T∂xσ 2
BS (k)
∣∣ ≤ 4 , and we know σBS(k) = a+ b[ρ(k−

m)+
√
(k−m)2 + σ 2 ].

 

|T[bρ + b× (k)]| ≤ 4

|T[b((k)+ ρ)]| ≤ 4

|T[b(1+ ρ)]| ≤ 4

b(1+ |ρ|) ≤ 4
T  �

Figure1: Impact of a change in ρ from 0 to −0.8 in the SVI/gSVI model (b = 
0.35, a = 0.01, σ = 0.01, and m = 0 stay constant)
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Figure 2: Impact of a change in b from 0.35 to 0.5 in the SVI/gSVI model (ρ = 
0, a = 0.1, σ = 0.01, and m= 0 stay constant)
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Figure 3: Impact of a change in a from 0.1 to 0.15 in the SVI/gSVI model (ρ = 
0, b = 0.35, σ = 0.01, and m= 0 stay constant)
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change in the a parameter (the general volatility level risk), Figure 4 illustrates the 
change in the σ parameter (the ATM volatility risk), and finally Figure 5 illustrates 
the change in the m parameter (the horizontal displacement risk).

Figure 4: Impact of a change in σ from 0.01 to 0.03 in the SVI/gSVI model (ρ 
= 0, b = 0.35, a = 0.1, and m = 0 stay constant)
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Figure 5: Impact of a change in m from 0 to 0.15 in the SVI/gSVI model (ρ = 0, 
b = 0.35, a = 0.1, and m = 0 stay constant)
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Note that we have mentioned the volatility surface is often arbitrage-free and not 
always. This is because equation (7) is a necessary but not sufficient condition for 
your volatility surface to be arbitrage-free with respect to the butterfly condition. 
A counter-example was given by Axel Vogt on wilmott.com. He asserts that with 
the following SVI parameters: (a, b, m, ρ, σ) D (¡0.0410, 0.1331, 0.3586, 0.3060, 
0.4153), one satisfies equation (13) yet we get a butterfly condition.

3.4 The generalized stochastic volatility inspired (gSVI) 
model 
Jim Gatheral developed the SVI model at Merrill Lynch in 1999, but it was imple-
mented in 2005. The SVI was subsequ ently decommissioned in 2010 because of its 
limitations in accurately pricing out-of-the-money variance swaps (e.g., short-maturity 
Var swaps on the Eurostoxx are overpriced when using the SVI). This is because the 
wings of the SVI are linear and have a tendency to overestimate the OTM variance 
swaps. Benaim et al. [1] gave a mathematical justification for this market observa-
tion. The paper suggests that the implied volatility cannot grow asymptotically faster 
than √k  but may grow slower than √k  when the distribution of the underlier does 
not have finite moments (e.g., has heavy tails). This suggests that the linear wings of 
the SVI model may overvalue really deeply OTM options, which is observable in the 
markets. In order to address the limitations of the SVI model in the wings, we propose 
a penalization of the wings function. The additional relevant parameter will be called β 
and aims to address this specific issue. The penalization will be symmetrical in the FX 
market, more significant on the left wing of the equities market and more significant 
on the right wing of the commodities (in general, e.g., excluding oil) market due to 
the smile, skew, and inverse skew features observable on these different markets. The 
function needs to be increasing as it gets further away from m and majored by a linear 
function increasing in [m; C ∞[ and decreasing in ]–∞; m] and increasing in concav-
ity the further away it gets from the center. The real modeling contribution of the gSVI 
with respect to the SVI is this penalization change of variable and its corresponding 
constraints adjustments. Equation (14) summarizes the gSVI model. The penaliza-

tion will be given by z D   k ¡ m ______ β|k ¡ m|  , which is a function that is strictly increasing between 

log-moneyness 0 and 3 when 1 ≤ β ≤ 1.4, similarly decreasing between –3 and 0. There 
are two main reasons why we have chosen the gSVI model. First, the more parameters 
a model has, the more flexibility it allows for reproducing subtleties on the volatility 
surface. However, the more parameters a model has, the harder it is to calibrate it as 
the risk of falling into local minima increases. This means that the question of model 
selection is an optimization problem on its own. We believe that the gSVI has enough 
parameters to accurately model the volatility surface without the risk of falling into the 
traps of basic search algorithms. Also, the geometrical properties of the gSVI makes it 
especially attractive when it comes to finding seed parameters for the optimization by 
constraints algorithm. Figure 1 illustrates the change in the ρ parameter, Figure 2 illus-
trates the change in the b parameter, Figure 3 illustrates the change in the a parameter, 
Figure 4 illustrates the change in the σ parameter, Figure 5 illustrates the change in the m 
parameter, and finally, Figure 6 illustrates the change in the β parameter. The geometric 
properties of the gSVI, more specifically its ability to model smile, skew, and inverse 
skew, while at the same time correcting the linear wings of the SVI, makes it applicable to 
the FX, commodities, and equities markets. The rates markets need another parameteri-
zation and an additional dimension, which is beyond the scope of this article.

 

σ 2
gSVI (k) = a+ b

[
ρ (z −m)+

√
(z −m)2 + σ 2

]

z = k−m
β |k−m|

, 1 ≤ β ≤ 1.4
 (14)

There exist two constraints that make gSVI “often” (as explained in Section 3.3.1) 
arbitrage-free. The first condition on the falling variance [equation (9)] does not 
change. However, we need to adjust for equation (13), which is replaced in the gSVI 
by equation (15):

 

∣∣∣∣∣∣∣T
1+ |k−m| lnβ

β |k−m|

⎛
⎜⎝bρ + ( k−m

β|k−m| −m)√
( k−m
β|k−m| −m)2 + σ 2

⎞
⎟⎠
∣∣∣∣∣∣∣ ≤ 4  (15)

Proof
We know that ∂kσ 2

gSVI (k) =
∂z
∂k
× ∂σ

∂z
. Calculus gives

∂z
∂k
= 1+ (k−m) ln β(1k>m − 1k<m)

β |k−m|
= 1+ |k−m| lnβ

β |k−m|

∂σ

∂z
= bρ + 2(z −m)

2
√
(z −m)2 + σ 2

= bρ +
( k−m
β|k−m| −m)√

( k−m
β|k−m| −m)2 + σ 2

Now, plugging in equation (7) the constraint becomes

 

∣∣∣∣∣∣∣T
1+ |k−m| lnβ

β |k−m|

⎛
⎜⎝bρ + ( k−m

β|k−m| −m)√
( k−m
β|k−m| −m)2 + σ 2

⎞
⎟⎠
∣∣∣∣∣∣∣ ≤ 4

 �

4 Bumping and “de-arbitraging” the  volatility 
 surface 

4.1 Bumping the volatility surface
Ther e are many methodologies for bumping the volatility surface. One can either do 
scenario analysis, for example, if one wants to know what happens if the volatility of 
a particular point moves by x amount. One might like to know whether the induced 
volatility surface is arbitrage-free or not and, if not, to what extent one can stress that 
particular point until an arbitrage has been reached. Similarly, one could be work-
ing within a risk department in an investment bank and be asked to investigate what 
the associated risk is for a certain product. More specifically, one might like to know 

Figure 6: Impact of a change in β from 1 to 1.1 in the gSVI model (ρ = 0, b = 
0.35, a = 0.1, σ = 0.01, and m = 0 stays constant)
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the associated risk with respect to the change in volatility only. One could record the 
proportional historical move of the volatility surface on sticky5 log-moneyness and 
apply these moves to today’s volatility surface. One would want to make sure that the 
induced volatility surface is arbitrage-free. Let us call these various bumped volatility 
surfaces a target volatility surface σtarget.

4.2 De-arbitraging the volatility surfac e
We would like to insure that σtarget is arbitrage-free. The closest arbitrage-free volatil-
ity surface will be given by equation (16) subject to constraints (9), (7). For the sake 
of clarity, let us set Ω D �t1 · t · T (ρt, σt, at, bt, mt, βt):

 

�̂ = argmin︸ ︷︷ ︸
�

T∑
t=t1

N∑
i=1

[σgSVI,t(Ki)− σtarget,t(Ki)]2
 (16)

In order to ease the optimization we have set three additional constraints given 
by equation (17). Martini [15] suggested the first three constraints, the last one being 
the trivial constraint:

 

σ ≥ 0
b > 0
ρ ∈ [−1, 1]
σgSVI(K) > 0 (17)

The complete optimization problem for the “often” de-arbitrager per tenor, t, is 
given by

 

solve:

�̂ = argmin︸ ︷︷ ︸
�

T∑
t=t1

N∑
i=1

[σgSVI,t(Ki)− σtarget,t(Ki)]2

subject to:∣∣∣∣∣∣∣T
1+ |k−m| lnβ

β |k−m|

⎛
⎜⎝bρ + ( k−m

β|k−m| −m)√
( k−m
β|k−m| −m)2 + σ 2

⎞
⎟⎠
∣∣∣∣∣∣∣ ≤ 4

e−rtE Q (St − K)+ ≥ e−rsE Q (Ss − K)+

σt ≥ 0

bt > 0

ρt ∈ [−1, 1]
σt,gSVI(Ki) > 0

 (18)

4.3 Calibration algorithm and moving away from  the 
 arbitrage frontier
Practitioners will be happy to hear that this optimization algorithm can easily be set 
up with the Excel solver. In order to avoid falling into a local minimum and because 
the search is multidimensional, it is necessary to help the search algorithm with well-
chosen seed parameters. Setting m and a to the observed minimum, σ and β to 0, and 
ρ and b to the solutions of a system of a couple of linear regressions yields good initial 
seed parameters. A better seed parameter is found for β by perturbing the initially 
chosen seed for the b parameter and applying a joint gradient descent on b and β. 
On a more practical aspect, note that within the framework of a financial institution, 

each product of each market may have its own pricer. Depending on the complex-
ity of the product, the relevant pricer might be more or less sensitive to numerical 
instabilities and therefore to the volatility surface being close to the arbitrage frontier. 
Owing to this complication because of these potential error tolerances, the pricer 
must use a volatility surface slightly away from its arbitrage frontier. It is therefore 
possible that the algorithm described by equation (18) fails because the calibrated 
volatility surface is too close to the theoretical arbitrage frontier. In order to address 
this particular practical issue, we propose the following methodology, which aims to 
iteratively move away from this theoretical arbitrage frontier. The two critical con-
straints for the volatility surface are given by equations (15) and (9), corresponding 
to the constraints of the butterfly and the calendar spread. If one needs to move away 
from the arbitrage frontier, one needs to adjust these constraints. The methodology 
will consist of iteratively making these two constraints more and more conservative 
until the pricer accepts the volatility surface created. With this in mind, if e1 and e2 
correspond to the degree of conservativeness with respect to the arbitrage frontier 
for the butterfly and calendar spread constraints, respectively, e1 and e2 will initially 
be set to 0 and then the constraints of equations (15) and (9) are adjusted to equations 
(19) and (20). Algorithm 1 describes the details of this protocol in pseudo-code:

 

∣∣∣∣∣∣∣
T
4
1+ |k−m| lnβ

β |k−m|

⎛
⎜⎝bρ + ( k−m

β|k−m| −m)√
( k−m
β|k−m| −m)2 + σ 2

⎞
⎟⎠
∣∣∣∣∣∣∣ ≤ e1  (19)

 
e−rtE Q (St − K)+

e−rsE Q (Ss − K)+
≥ e2  (20)

Algorithm 1
De-arbitrages a practical volatility surface
Require: A volatility surface :σ(k) and an error tolerance tuple e1, e2
Ensure: :σ(k) is arbitrage-free in a practical sense
 :σ(k) ← dearbVol(:σ(k)) 
 isError Price(:σ(k)) 
 e1 = 1, e2 = 1, ε1 > 0, ε2 > 0
 while isError gives an error do
 if butterfly arbitrage then
 e1 ← e1 − ε1
 adjust butterfly constraint to 

∣∣∣∣∣∣∣
T
4
1+ |k−m| lnβ

β |k−m|

 

⎛
⎜⎝bρ + ( k−m

β|k−m| −m)√
( k−m
β|k−m| −m)2 + σ 2

⎞
⎟⎠
∣∣∣∣∣∣∣ ≤ e1

 else
 e2 ← e2 − ε2

 adjust calendar constraint to 
e−rtE Q (St − K)+

e−rsE Q (Ss − K)+
≥ e2

 end if
 dearbVol(:σ(k), e1, e2) as described by equation (18) with the adjustments 
 isError Price(:σ(k))
 end while

4.4 De-arbitrage example: Skew risk
Let us look at the following case. One has b een assigned the task of creating a 
model that studies skew risk, or more formally, Vanna,   ∂2V _____ ∂σ∂S  .6 You notice that the 
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Figure 9: Plot of a stressed version of Figure 8
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Figure 7: Evolution of the ρ parameter in the gSVI for the FTSE from 
10/02/2011 back 890 days on the tenor with 14 years expiry
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Figure 8: Plot of a fictitious volatility surface without arbitrage

Simulated implied vol without arbitrages

−3
−2

−1

0

1 V1
V2

V3
V4

V5
V6

V7
V8

V9
V10

V11
V12

V13
V14

V15

0.5

1.0

1.5

2.0

log moneyness

tenor

im
pl

ie
d 

vo
la

til
ity

ρ  parameter gives the dynamics of the skew and decide to plot the evolution of this 
parameter through time (Figure 7).

4.4.1 Traditional methodology
One assumes that the ρ parameter is independent with resp ect to the other parame-
ters of the gSVI.7 One decides to apply historical bumps to one’s ρ parameter and also 
to apply these to the most recent volatility surface, in order to get a sequence of skew 
risk P&L strips. Note that when the bumps are applied, a numerical transform func-
tion must be applied in order to insure that one’s ρ parameter stays within its domain 
of definition. A Fisher-like transform [6] insures that ρ stays within its domain of 
definition. However, how realistic this transform is in terms of approximating the 
realized numerical transform function is yet to be proven. Figure 8 represents a theo-
retical volatility surface without an arbitrage. Figure 9 represents its stressed version 
(changing the ρ parameter in the gSVI model) with an arbitrage and Figure 10 repre-
sents its closest arbitrage-free volatility surface given by equation (23).8

4.4.2 A better, more realistic methodology
The numerical transform function assumes an under lying distribution for the 
bumps which is inconvenient, because the method may not be transferable to other 
products and other asset classes if the correct transform function has already been 
calibrated for a specific product. A simple observation of the historical dynamics of 
the ρ parameter in Figure 7 suggests that ρ is stationary9 and could be represented 
by a modified Ornstein–Uhlenbeck (OU) [11] process as described by equation 
(24) (μ is the long-term mean, θ the recall force, and σ0 is the volatility of the sto-
chastic part of the OU process). In equation (24), dDt represents the dynamic of a 
random process (e.g., dWt) that we will estimate empirically. The modification of 

the OU process (the 
√
1− ρ2

t  term in front of the stochastic part of the differential 

equation) is added in order to insure that the ρ parameter stays within its boundary 
definition [¡1; 1].10 The μ parameter can be estimated by taking the average value of 
ρ, that is, μ D E[ρt].11 By rearranging equation (24) and taking the expectation, we 

find θ̂ = E [
dρt

(μ̂− ρt)dt
]  and σ̂o =

√
V ar[

dρt − θ̂(μ̂− ρt)dt√
1− ρ2

t dDt
]. The issue with this 

methodology is that ̂θ converges very slowly and therefore ̂σο does as well. Adding 
to this issue, the data might literally not be there at all. It is therefore primordial to 
come up with a variance reduction technique. The inspiration behind the variance 

reduction technique comes from noticing that in equation (24), θ’s estimation is per-
turbed by the stochastic part of the differential equation, especially intense when ρt 
is close to 0. Similarly, σo’s estimation is perturbed when  ρ t  

2  is close to 1. The variance 
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 reduction technique will consist of sampling θ either when  ρ t  
2  D 1 or if this never 

occurs, only when  ρ t  
2  > BC where ¡ 1 < BC < 1 is defined by equation (25) and is sup-

posed to represent an upper barrier. The variance reduction technique yields equa-
tion (26) for θ. Similarly, the variance reduction technique will consist of sampling σo 
either when ρt D μ or if this never occurs, only when |ρt| < B¡ where ¡ 1 < B¡ < 1 is 
defined by equation (27) and is supposed to represent a lower barrier. The variance 
reduction technique yields equation (28) for σo.

 

⋃
t1≤t≤T

ρ̂t = argmin︸ ︷︷ ︸
ρt

[
T∑

t=t1

N∑
i=1

σgSVI,t(Ki)− σtarget,t(Ki)]2  (23)

 dρt = θ(μ− ρt)dt +
√
1− ρ2

t σodDt  (24)

 
B+ = max(| sup(ρ)+ μ

2
|, | inf(ρ)+ μ

2
|) (25)

 
θ̂ = E [

dρt
(μ̂− ρt)dt

1|ρt |>B+ ]  (26)

 
B− = min(| sup(ρ)+ μ

2
|, | inf(ρ)+ μ

2
|)  (27)

 
σ̂o =
√
V ar[

dρt − θ̂(μ̂− ρt)dt√
1− ρ2

t dDt
1|ρt |<B− ]  (28)

 

dρt = θ(μ− ρt)dt +
√
1− ρ2

t σodDt

μ̂ = E [ρt]

θ̂ = E [ dρt
(μ̂−ρt)dt 1|ρt |>B+ ]

B+ = max(| sup(ρ)+μ

2 |, | inf(ρ)+μ

2 |)

σ̂o =
√
V ar[ dρt−θ̂(μ̂−ρt)dt√

1−ρ2t dDt
1|ρt |<B− ]

B− = min(| sup(ρ)+μ

2 |, | inf(ρ)+μ

2 |)

ρ̂t = max(min(ρt−1 + θ̂(μ̂− ρt−1)dt

+
√
1− ρ2

t−1σ̂odD̂t , 1),−1)
⋃

t1≤t≤T
ρ̂t = dearb And Return Closest Rho

(
⋃

t1≤t≤T

⋃
1≤i≤N

σtarget,t(Ki),
⋃

t1≤t≤T
ρ̂t)

 (29)

5 Conclusion
We showed that the positivity constraint on the butterfly and the calendar spread 
are the two necessary and suf ficient conditions that make a volatility surface 
arbitrage-free. More specifically, we saw that the butterfly condition can be 
derived from differentiating twice the call price with respect to the strike. We 
saw that the calendar spread constraint can be derived from rearranging the 
Fokker–Planck equation into Dupire’s local volatility equation and extracting 
the calendar spread payoff from the numerator. We then expressed these two 
constraints into a more user-friendly form for practitioners interested in finding 
a parameterized version of the volatility surface. This led us to make a literature 
review of the two most influential parameterized versions of the volatility surface, 
which are Schonbucher’s model and Gatheral’s SVI. More specifically, we saw how 
Schonbucher’s model was derived from the Heston model and how SVI improved 
Schonbucher’s model by adding non-arbitrage constraints. We also demonstrated 
the limitations of this model by introducing the change of variable with the aim of 
adjusting the wings of the SVI model, an observable and mathematically justifiable 
limitation of the SVI model. We also described a de-arbitraging methodology for 
stressed volatility surfaces and, finally, gave an example of the application of a skew 
risk methodology which uses the de-arbitraging methodology along with a modi-
fied OU process.

Babak Mahdavi Damghani has been working in the financial industry within the quan-
titative space (Exotics Trading, High Frequency Quantitative Analytics and Structuring) 
since 2007, currently working as a Quantitative Analyst at Credit Suisse. He has done 
his postgraduate studies in the applied mathematical and computing sciences at the 
University of Cambridge, at the Ecole Polytechnique in Paris and at the University of 
Oxford.

Andrew Kos holds a Masters degree in Mathematics from Durham University. He also 
holds a distinction in the CQF and has qualified as an accountant under the Chartered 
Institute of Management Accountants.

Figure 10: Closest arbitrage-free version of volatility surface from Figure 9, 
keeping all the parameters constant but ρ
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ENDNOTES
1.  W t  

⊥  is independent of Wt.
2. A simplification made by Schonbucher but not necessarily very realistic, specifically 
on the commodities market where for physical reasons the stochastic processes driv-
ing the commodities are more driven by mean reversion than classic correlation [3].
3. We will see its main limitation when we explore the gSVI.
4. Indeed, in equation (10) replace k by k ¡ m, replace b by bρ, and replace   σ2

 __ 4   by   σ2
 __ b2   to 

get equation (12).
5. The log-moneyness in the reference volatility surface does not change, so the strikes 
are adjusted with respect to the change in spot.
6. If Δ is your delta and if V represents your vega, alternative representations are:   ∂Δ ___ ∂σ   
or   ∂v ___  ∂S  .
7. Not necessarily the most realistic assumption, especially with the b parameter.
8. Note that some banks define skew as the slope of the equation tangent to the 
ATM forward. In this case, the bump will not be applied to the ρ parameter but to 

, where x is the 

log-moneyness. Setting x to the ATM forward (k H m), we get equation (21). ζ will 
denote the skew with this alternative definition.
9. The fact that ρ is bounded insures its stationarity.
10. Assuming the other parameters are independent, we get equation (22) for the 
dynamics of the skew if the bank definition is chosen. 

  (21)

  (22)

11. This result can be justified with Doob’s forward convergence theorem (ρ ∈ [¡ 1, 1] 
therefore bounded).
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