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Abstract— The cointelation model recently introduced [11],
[14] is studied in the context of portfolio optimization. The
proposed models are twofold. The first model studied takes
the Stochastic Differential Equation approach in which the
methodology is split in a dual switching exercise using some
of the classic results of Markowitz Modern portfolio theory
[15] with an Ornstein-Uhlenbeck [20] optimized overlay. The
methodology is then compared to what is presented as the
Machine Learning mirror methodology in the form of the new
Band-wise Gaussian Mixture [10] model which we expose as
giving similar results while keeping the methodology simpler
and more adaptable to regime change.
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I. INTRODUCTION

A. Context

Mahdavi-Damghani introduced the Cointelation model as
well as the Inferred Correlation [11] measure recently. Few
applications were presented but none addressed the one
associated to portfolio optimization in the context of trading.
At the same time the rise of Machine Learning (ML) in
Finance has recently resulted in methodologies promoting
disassociation to heavily parameterized mathematical models
[10]. An example of these types of methodologies is the
recently introduced Band-wise Gaussian Mixture [10] which
seats in the family of Bayesian non parametric methodologies
and proposes an interesting data focus bridge with the
world of Stochastic Differential Equations (SDE) as used
to quantitative finance.

B. Problem formulation

How can we optimize a Cointelateda pair using classic
SDEs? Is there a simpler ML methodology that would allow
us to achieve the same objective? Can we recycle and adjust
methodologies already introduced?
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aWe will recall all the relevant models in the literature review including

the the Cointelation model, which specific details have been summarized in
section V.

C. Structure of the paper

Bearing in mind the context of pairs trading, we will first
go through a concise relevant literature review for the:
• Markowitz Modern Portfolio Theory in section II,
• Ornstein-Uhlenbeck model in section III,
• Stochastic Portfolio Theory in section IV,
• Cointelation model in section V,
• Band-wise Gaussian Mixture in section VI.

Following the literature review, we provide:
• an intuitive understanding as well as some peripheral

topics around the problems we are trying to solve in
section VII,

• the signal definition for our trading strategy using the
SDE approach in section VIII and the ML approach in
section IX,

• results in section X.
We finally conclude in section XI by providing a summary
as well as thoughts regarding future research.

II. MARKOWITZ PORTFOLIO THEORY REVIEW

A. Foundations

The foundation of modern protfolio theory (MPT) was
established by Harry Markowitz in 1952 with his seminal
paper [15] in which he proposed expected return and variance
to be criteria for portfolio selection. More specifically, the
problem of an agent who wishes to build a portfolio with the
maximum possible level of expected return, given a limit of
variance is, considered with a focal point being the portfolio
efficientness. Concepts like the ones of “efficient frontier”,
or “set of efficient mean-variance combinations”, were in-
troduced subsequently. Besides introducing the concept, the
paper also describes the methodology in detail. Markowitz
paved the way for studying theoretically the optimal portfolio
choice of risk-averse agents. Based on the ideas developed
by Markowitz, Tobin published his famous research work
on agents’ liquidity preferences and the separation theorem
[18]. Later, the Capital Asset Pricing Model (CAPM) was
introduced independently by Sharpe [17] and Linter [9].

B. Optimization Methodology for a pair of assets

Let (Ω, (f)(t≥0),P), be our probability space with (f)(t≥0)

generated by (T + 1)-dimensional Brownian motion and
P, our probability measure, and raSa, rbSb our discounted
prices. Given a set of parameters (ra, rb, σa, σb, ρ), we can



define the set of Stochastic Differential Equations’ (SDE)
(1).
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We can then define an optimal strategy using Markowitz
methodology. More specifically we consider the classic
mean-variance optimization problem where we initially de-
fine the two important measures for our portfolio return and
variance given respectively by equations 2a and 2b.

rp = wra + (1− w)rb,

σ2
p = [wσa + (1− w)σb]

2

= w2σ2
a + 2w(1− w)σaσbρ+ (1− w)2σ2

b .

(2a)

(2b)

Remark: In this paper measured correlation will refer to
Pearson’s correlation coefficient, represented by equation (3),

ρxy =
σ2
xy

σxσy
(3)

To clarify we define the minimization problem in which we
maximize the Sharpe Ratio (SR).

Definition: The Sharpe Ratio is given by E[rp]−E[rf ]
σp

and
can be divided in two components:
• expected returns E[rp] =

∑
i wiE(Ri) where rp is

the return on the portfolio, ri is the return on asset i
and wi is the weighting the proportion of i-asset in the
portfolio.

• σ2
p =

∑
i w

2
i σ

2
i+
∑
i

∑
j 6=i wiwjσiσjρij , is our portfo-

lio return variance

By finding the optimal weight w∗∗, more formally given by
equation (4b) using the methodology of equation (4a).

w∗∗ = arg max
w

E[rp − rf ]

σp
, w ∈ (0, 1)

w∗∗ =
σ2
b − σaσbρ

σ2
a − 2ρσaσb + σ2

b

(4a)

(4b)

III. ORNSTEIN-UHLENBECK THEORY REVIEW

A. Foundations

A stochastic control approach to the problem of pairs
trading was proposed by Mudchanatongsuk, Primbs and
Wong [16]. More specifically, by modelling the spread of
a stock prices as an Ornstein-Uhlenbeck (OU) process [20]
a portfolio optimization based stochastic control problem is
formulated. The optimal position to this control problem
in closed form is computed by solving the corresponding
Hamilton-Jacobi-Bellman equation [1]. Assuming the dy-
namic of risk-free asset M(t) with continuously compounded
risk free rate r satisfies equation (5) below.

dM(t) = rM(t)dt. (5)

Denote by A(t) and B(t) the prices of two assets at time t
with B(t) following geometric Brownian motion,

dB(t) = µB(t)dt+ σB(t)dZ(t) (6)

with drift µ, diffusion σ. Here Z(t) is a standard Brownian
motion. The spread between the two relevant assets at time
t is denoted by X(t) in equation (7),

X(t) = log[A(t)]− log[B(t)], (7)

and assumed to follow the mean-reverting process of equa-
tion (8).

dX(t) = κ[θ −X(t)]dt+ ηdW (t), (8)

where θ is the long-term equilibrium to which the spread
reverts, κ the rate of mean reversionb and η is the volatility
of the spread. Let ρ denotes the instantaneous correlation
coefficient between Z and W , therefore 〈dW (t), dZ(t)〉 =
ρdt.

B. Optimization Methodology for a pair of assets

Under the above assumptions and by means of Ito’s
lemma, the dynamics of A(t) is,

dA(t)

A(t)
=

(
µ+ κ[θ −X(t)] +

1

2
η2 + ρση

)
dt (9)

+σdZ(t) + ηdW (t).

The wealth dynamic of the self-financing portfolio V (t) is
then described by equation (10).

dV (t) = V (t)

[
h(t)

dA(t)

A(t)
+ h̃(t)

dB(t)

B(t)
+
dM(t)

M(t)

]
, (10)

which can be rewritten as
dV (t)

V (t)
=

[
h(t)(κ[θ −X(t)] +

1

2
η2 + ρση) + r

]
dt

+
1

V (t)
ηdW (t),

where h(t) is the portfolio weight of stock A and h̃(t) =
−h(t) is the portfolio weight of asset B at time t. Assuming
that an investors’ preference can be represented by the utility
function U(x) = 1

γx
γ , with x ≥ 0 and γ < 1, the stochastic

control problem is of the form of equation (11).

h∗(t, x) = sup
h(t)

E
[

1

γ
(V (T ))γ

]
, (11)

subject to
• V (0) = v0,
• X(0) = x0,
• dX(t) = κ[θ −X(t)]dt+ ηdW (t) and
• dV (t) = V (t)

[
h(t)(κ[θ −X(t)] + 1

2η
2 + ρση) + r

]
dt+

ηdW (t).
The optimal weight h∗(t, x) is given by:

h∗(t, x) =
1

1− γ

[
β(t) + 2xα(t)− κ(x− θ)

η2
+
ρσ

η
+

1

2

]
bwith κ > 0.
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with

α(t) =
κ(1−

√
1− γ)

2η2
×1 +

2
√

1− γ

1−
√

1− γ − (1 +
√

1− γ) exp
(

2κ(T−t)√
1−γ

)


and

β(t) =
1

2η2[(1−
√

1− γ)− (1 +
√

1− γ) exp
(

2κ(T−t)√
1−γ

)
]

(γ
√

1− γ(η2 + 2ρση)

[
1− exp

(
2κ(T − t)√

1− γ

)]2

−γ(η2 + 2ρση + 2κθ)

[
1− exp

(
2κ(T − t)√

1− γ

)]
)

For its derivation, we will refer to Mudchanatongsuk, Primbs
& Wong [16].

IV. STOCHASTIC PORTFOLIO THEORY REVIEW

A. Introduction

Kom Samo and Vervuurt [8] consider the inverse problem
of Stochastic Portfolio Theory (SPT): learning from data
an optimal investment strategy, based on any given set of
of trading characteristics. Initially introduced and developed
by Robert Fernholz [6], SPT is a mathematical theory for
analyzing the stock market structure and portfolio behavior.
Kom Samo and Vervuurt [8] labeled the methodology as
“descriptive” as opposed to “normative”, as well as consistent
with the observed behavior of actual markets. Normative
methodologies, the basis for earlier theories like modern
MPT [15] and the CAPM [4], are absent from SPT. For
instance SPT provides the rule-based mathematical weaponry
to explain under what conditions it becomes possible to
outperform a cap-weighted benchmark index.

B. Problems

SPT has, however, several problems and limitations:
• finding relative arbitrages since they are inverse prob-

lems;
• the exclusion of possibilities of bankruptcy;
• SPT set-up being developed only for investment strate-

gies that are driven by market capitalizations.
These limitation were more or less addressed [8] by adopting
a Bayesian non-parametric approach. In this latter paper the
broad range of investment strategies is considered driven by a
function defined on an arbitrary space of trading characteris-
tics, on which a Gaussian process prior is placed. One of the
aims of Stochastic Portfolio Theory is to construct portfolios
which outperform an index, or benchmark portfolio, over a
given time-horizon with probability one, whenever this might
be possible. One such investment strategy is the so-called
diversity-weighted portfolio. This re-calibrates the weights
of the market portfolio, by raising them all to some given
power p ∈ (0, 1) and then re-normalisingc.

cMore information on the methodology can be found on the relevant paper
[5].

1) Framework: We will recall in this subsection some
of the mathematical formalization for SPT. The latter [6]
assumes the dynamics of n stock capitalization processes
Xi(·) given by (12).

dXi(t) = Xi(t)

(
bi(t)dt+

d∑
ν=1

σiν(t)dWν(t)

)
(12)

where i ∈ [1, n], t ≥ 0, W1(·), . . . ,Wd(·) are independent
standard Brownian motions with d ≥ n, and Xi(0) > 0 are
the initial capitalizations. All processes are assumed to be
defined on a probability space (Ω.F , P ), and adapted to a
filtration F = {F(t)}(0≤t<∞) that satisfies the usual condi-
tions and contains the filtration generated by the “driving”
Brownian motions. The processes of rates of return bi(·) of
volatilities σ(·) = σiν(·)(1≤i≤n,1≤ν≤d), are F-progressively
measurable and assumed to satisfy the integrability condi-
tion:

n∑
i=1

∫ T

o

(
|bi(t)|+

d∑
ν=1

(σiν(t))
2

)
dt <∞, (13)

P-a.s., ∀T ∈ (0,∞), as well as the non-degeneracy (ND)
condition:

∃ε > 0 such that: ζ ′σ(t)ζ ≥ ε‖ζ‖2,
∀ζ ∈ Rn, t ≥ 0; P-a.s.

(14a)
(14b)

For the diversity-weighted portfolio with negative parameter
p the following no-failure (NF) condition is imposed:

∃ φ ∈ (0, 1/n) such that:
P (µ(n)(t) > φ ∀ t ∈ [0, T ]) = 1. (15)

Remark: It is interesting to note that, because of the non re-
alistic NF conditions enhancements are constantly developed,
notably a negative-parameter variant (p < 0) [21] of the
diversity-weighted portfolio [5]. The strategy is claimed to
outperform the market, with probability one, over sufficiently
long time-horizons, under ND assumption on the volatility
structure and under the assumption that the market weights
admit a positive lower bound. Several modifications of this
portfolio are put forward, which outperform the market under
milder versions of the latter NF condition.

A popular implemenation is the diversity-weighted portfolio
with parameter p ∈ R∗, defined as in [5]:

π
(p)
i (t) :=

[µi(t)]
p∑n

i [µj(t)]p
, i = 1, · · · , n, (16)

here

µi(t) :=
Xi(t)∑n
i Xi(t)

, i = 1, · · · , n. (17)

with however no sign on how to optimize pd. Our current
observation for the SPT is that it is a popular theory
with nevertheless absurd assumptions on the market which
constraint relaxations are only partially addressed.

dthough tables have been provided in an empirical study [5].
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V. COINTELATION MODEL REVIEW

A. Definition & review

Cointelation [11] is a portmanteau neologism in finance,
designed to signify a hybrid method between between the
cointegration and the correlation models.

Remark: A caveat needs to be noted here: the term cointe-
gration is differently formulated than the usual cointegration
models presented in the econometrics literature. The term
cointegration here represent a technical jargon introduced in
the “misleading value of measured correlation” [14], [11]
which aim is to specify the concept of mean reversion in the
sense of the Ornstein-Uhlenbeck model [20].

Definition (Cointelation Model): Let (Ω, (f)(t≥0),P), be
our probability space with (f)(t≥0) generated by the T+1 di-
mensional Brownian motion and P the historical probability
measure under which the discounted price of the underlier,
rS, is not necessarily a martingale. The Cointelation model
is defined by the set of 2 SDE’s given by:

dSt
St

= rdt+ σdWt,

dSl,t = θ(St − Sl,t)dt+ σlSl,tdW
l
t ,

d〈Wt,W
l
t 〉 = ρdt,

(18a)

(18b)

(18c)

where ρ is alternatively called the Correlation of the Coin-
telation, instantaneous Correlation or the infinitesimal Cor-
relation. The process (S)t≥0 is called the leading process,
(S)l,t≥0 the lagging process, r the drift, the σ the volatility
and θ the speed of mean reversion.

We note that setting θ = 0 in sub-equation (18b) yields
the classic correlation model. Conversely, setting ρ = 0 in
sub-equation (18c) yields our version of the cointegration
model (essentially an Ornstein-Uhlenbeck process [20] with
an Sl,t in front of the stochastic part of the SDE to enforce
positivety).

Proposition: Using Pearson’s correlation measure of equa-
tion (3), therefore independent from the classic ways of
tempering in with measuring correlation, one notable inter-
esting property of the Cointelation model is that its inferred
correlation mirror may hit the whole measured correlation
spectrum [−1, 1] depending on the choice of ρ = −1 and θ.
Figure 1 illustrates this claim.

B. Parameter estimation

1) Estimating θ by rearranging the SDE: Using the
methodology of the original paper [11], we can use sequen-
tial estimation in order to estimate the key parameters.

ρ̂1 = E [ρ1]

θ̂ = E

 dSl,t

(St − Sl,t)dt+ σSl,t

(
ρ̂1dWt +

√
1− ρ̂2

1dW
⊥
t

)


σ̂ = E

[
dSl,t − θ̂(St − Sl,t)dt
ρ̂1dWt +

√
1− ρ̂2

1dW
⊥
t

]

2) Variance reduction technique: Similarly to the vari-
ance reduction methodology described by [14], [11], we
can define B+ = |max(St−Sl,t,t∈[0,T ])

2 |, and B− =

| inf(St−Sl,t,t∈[0,T ])
2 |). We note that the estimation of θ has

a higher variance when Zσ = B+ > |St−Sl,t| > B− where
σ, on the other hand has quality samples. The reverse is true
when Zθ = |St − Sl,t| > B+

⋃
|St − Sl,t| < B−. We can

therefore sample θ in Zθ and σ in Zσ . Figure 2 gives a
representation of these sampling zones.

C. Inferred Correlation

1) Concept & definition: The proposed Cointelation test
[11] is subdivided in 4 steps including the inferred correlation
conjecture. The idea being that if one takes the discrete
version of equation (18a), the correlation that you measure
as a function of the timescale would increase faster as θ
increases.

Conjecture (Inferred Correlation): We consider a stock
price process (St)t≥0 with natural filtration (Ft)t≥0, and we
define the forward price process (Ft)t≥0 by Ft := E(St|F0)
then considering, the dynamics of equation (18), we have:

ρ∗τ ≈ ρ+ (1− ρ) [1− exp (−θ(τ − 1))] (20)

where ρ∗τ = E[ sup
0<t≤τ

ρt], τ ∈ Z∗, θ ∈ [0, 1]

Remark: The author [11] has set λ ≈ 1.75 for “regular
financial data”. The author explains that λ is actually itself a
function of the other parameters. Though this approximation
provides interesting empirical results, this latter point is an
open problem with the Cointelation test.

D. Number of Crosses

1) Concept: Like for the case of the inferred correla-
tion estimator, the second steps of the Cointelation test
introduces the concept of Number of Crosses [11] which
precise formulation is an open problem but which empirical
formula with approximate constants yields good results. Its
intuitive rational is that, compared to the number of time
purely correlated SDEs (eg: without the mean reversion
componente.) then the number of times the descrete version
of the cointelated SDEs cross is more than if they were
random and the bigger the θ the more often the discretized
SDEs cross path per unit of timef.

Conjecture (Number of Crosses): If we discretize equa-
tion (18), then we can approximate the number of time the
2 stochastic process, x = Si∈[1,2,...L] and y = Sl,i∈[1,2,...L],
cross paths, by equation (21)

E[Γx,y(θ, L)] ≈ L
[
γ(1− θ) +

1

2

√
θ

]
(21)

with L, the length of the data.

Remark: This Conjecture (Number of Crosses), though
presents good empirical results, its proof however is an open

eθ = 0
fthe mirror concept in continuous time can be thought of a version of

local time
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Fig. 1. Example of Cointelation model with a ρ = −1, θ = 0.1, σ = 0.01 and its resulting mirror measured correlation at random increasing timescale.
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Figure 5: Comparative study of cointelated and correlated pairs through simulation of a very strong.
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Spread B+ B− Zσ Zθ

between oil and BP every 12 days, we get around 0.37 whereas if we do it every 70 
days, we get a correlation of 0.56. How do we explain this discrepancy? The differ-
ence is due to the fact that in the long run, oil and BP have the same drift but in the 
short run, we get a weaker perceived relationship due to the numerous noises that 
can only impact one of these assets and not the other (for example, the very tem-
porary impact of the Gulf of Mexico accident on the spread between oil and BP in 
Figure 7). For the physical reasons just described, the relationship between oil and 
BP is a good candidate for the cointelation model. In fact, with the current financial 
mathematics literature this duality between differences in the short-term relation-
ship and the long-term relationship can only be explained by the cointelation model. 
Using the variance reduction technique [2, 5], one can estimate q  (in the last 5 years, 

Fig. 2. Visual representation for the sampling zones for θ [14].

problem. The author mentions [11] that with “reasonable
financial data” [11] γ ≈ 0.01. Like we have seen when we
discussed the inferred correlation concept with λ, γ is itself
function of the other parameters but its precise formulation,
an open problem currently.

2) Estimating θ via the number of crosses formula:
Another estimation of θ can be give by equation 22

θ ≈ λ

(
Γ̂x,y(θ, l)

l
− γ

)2

(22)

E. Cointelation Test

We briefly define the Cointelation test.

Definition (Cointelation Test): Two stochastic processes
representing financial data, will be Cointelated if:

• Conjecture (Inferred Correlation) is verified
• Conjecture (Number of Crosses) is verified

• The underlying assets have reasonable physical connec-
tion that would suggest that their spread should mean
revert

• In the instances where the first two bullet points are not
verified exactly, the correlation model cannot possibly
be a substitute as correlation is a special case of
cointelation (where θ = 0)

Remark: Note that the third point, above is a vague state-
ment, not a mathematical definition.

VI. BAND-WISE GAUSSIAN MIXTURE REVIEW

The cointelation model is a special case of the gener-
alized bumping equation recently introduced in [10], and
can therefore use the corresponding Band-wise Gaussian
Mixture model. The generalized bumping methodology [10]
introduced refered to secondary parametersg which objective
is empirical manual fitting which are relevant to this paper.
Disregarding those, we have equation (23).

dXt = θt,τ (µt,τ −Xt)dt+ σXα
t (1−X2

t )βdWt (23)

Where θt is the speed of mean reversion, µt, the long
term mean, α the positivity flag enforcer, β, the [−1,+1]
boundary flag enforcer and {

⋃
dWi}ti=t−τ , the set of his-

torical deviations of the assumed model’s distribution (e.g.:
all the historical absolute returns in the context of a normal
diffusion). This stochastic process can model:

• Proportional returns (log-normal diffusion). Simply en-
force θ = 0, α = 1, β = 0.

gPlease see the original paper for more information [10]
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• Absolute returns (normal diffusion). Simply enforce θ =
0, α = 0, β = 0,

• Mean reverting returns where we enforce positivity
(such as in the case of the CIR [2] diffusion),

• Mean reverting returns where we do not enforce posi-
tivity (such as in the case of the OU [20] diffusion),

• Mean reverting returns bounded in [−1, 1]. For example
the dynamics of the ρ parameter in the SVI/gSVI/IVP
[7], [13], [12] implied volatility parametrization.

Lemma 1a: Let R = {x1, . . . , xn} be a set of empirical
random variables taken from equation (23) with cumulative
distribution function F (x) and density f(x). Denote O =
{x(1), . . . , x(n)} the ordered set of R such that x(1) < x(2) <
. . . < x(n) and Oip = {x(dn((i−1)+1)/pe), . . . , x(bn(i)/pc)}.
Then the empirical distribution function for an SDE of the
form of equation (23) can be approximated by a union of
band-wise Bernoulli process given by:

F̂n(xi|Ft) =
1

n

p∑
j=1

ζ∑
i=η

1xi∈Oj
p

(24)

with η = dn((i− 1) + 1)/pe and ζ = bn(i)/pc.

Remark: In the case p = 3, using a Gaussian Mixture
such that F̂n(xi|Ft) = N (−3, 1)1xt∈O1

3
+N (0, 1)1xt∈O2

3
+

N (3, 1)1xt∈O3
3
, we obtain the approximate stratification of

figure 2. The stratification in our case being made so that
the cardinality in each Ojp region remains approximately
the same, as opposed to being the result of a geometrical
separation function of x(1) and x(n). Figure 3 illustrates this
remark.

Lemma 1b: The distribution given by equation (24) con-
verges towards a p-Gaussian Mixture.

Proof: 1xi∈Oj
p

is a Bernoulli random variable with
parameter p, and since the sum of Bernoulli random vari-
able is also Bernoulli, F̂n(xi|Ft) = 1

n

∑p
j=1

∑ζ
i=η 1xi∈Oj

p

is Bernoulli distributed. We can also see that in equa-
tion (18) limn→∞,p→∞(µt,τ − Xt) = λt,τ and therefore
dXt − λt,τ = σXα

t (1 − X2
t )βdWt becomes a locale

martingale. Using the Glivenko-Cantelli theorem [19], [3],
‖Fn − F‖∞ = sup

x∈R
|Fn(x)− F (x)| a.s.−→ 0. The distribution

generated by equation (18) can be mimicked by equation
(24) therefore approximates ∪pi=1N (λi, σi).

Remark: Empirically, we can see from figure 3 and figure 4
that increasing p can lead to transition probabilities that are
more smooth (though less data will be available per band and
therefore the significance of the empirical probability driving
that particular band will be less significant).

Theorem (SDE to Band-wise Gaussian Mixture): Let
(Ω, (F)(t≥0),Q) be our probability space, with (F)(t≥0)

generated by the T + 1 dimensional Brownian motion and
Q is the probability measure. The probability distribution
f(x|Ft) induced by the Stochastic Differential Equation
dXt = θt,τ (µt,τ − Xt)dt + σXα

t (1 − X2
t )βdWt converges

-6 -4 -2 0 2 4 6

#104

0

2

4

Distribution in Z
3
+

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6 -4 -2 0 2 4 6

#104

0

2

4

Distribution in Z
<

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6 -4 -2 0 2 4 6

#104

0

2

4

Distribution in Z
3
-

-6 -4 -2 0 2 4 6

#104

0

5

Distribution in [Z
3
- ,Z

3
+ ]

Fig. 3. Gaussian distribution confined to 3 different bands mimicking the
ones from figure 2.

almost surely towards a p-Gaussian mixture as n and p
converge towards ∞.

Proof: The proof can be split in 2 steps using Lemma
1a and Lemma 1b.
The calibration for the Band-Wise Gaussian Mixture can be
found in algorithm 1.

VII. TRADING BIG PICTURE

A. Problem formulation

1) Portfolio Definition: We propose an optimization of
our portfolio of cointelated pair described in equations (18a)
and (18b) with an analogh switching signal between a
modified Markowitz methodology of section II-B and the
OU optimization process methodology described in section
III-B.

Definition (Trading Signal): Let sft ∈ {1, 0,−1} and f ∈
{θ, ρ} be the Trading Signal at time t of the θ and the ρ
centered sub-strategies.

Definition (ρ-centered sub-strategy): We will informally
call the ρ-centered sub-strategies, the strategy described by
section II-B and with P&L V ρ given by equation (25).

V ρt =

T∑
0

sρt−1[w∆St − wl∆Sl,t] (25)

hTo understand to mean in opposition to a discrete (non continuous)
signal.
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Algorithm 1 BAND-WISE GAUSSIAN MIXTURE(X, p)
Require: array X1:n and number of bands p
Ensure: Ω(1:p), [B+

(1:p), B
−
(1:p)] are returned.

Sorting state:
1: X(1:n) ← QuickSort(X1:n)
2: [B+

(1:p), B
−
(1:p)] ← FindPercentileBands(X(1:n), p)

3: Ω(1:dn/pe) ← []

Allocation state:
4: for j = 1 to p do
5: for i = 1 to n do
6: if B−(1:p) ≤ X(i) < B+

(1:p) then
7: Amend(Ω(j), X(i))
8: end if
9: end for

10: end for

Checking Approximation state:
11: µ̂1:p ← mean(Ω(1:p))
12: σ̂1:p ← stdev(Ω(1:p))
13: Print(∪pi=1N (µ̂i, σ̂i))

Return state:
14: Ω(1:p), [B+

(1:p), B
−
(1:p)]

Definition (θ-centered sub-strategy): We will informally
call the θ-centered sub-strategies, the strategy described by

section III and with P&L V θ given by equation (26).

V θt =

T∑
0

sθt−1(∆St −∆Sl,t) (26)

Definition (Multi-strategy portfolio): Let Vt be the P&L
of the combined θ and ρ multi-strategy at time t given by
equation (27).

VT = +
∑T

0 (sθt−1 + wsρt−1)∆St
−
∑T

0 [sρt−1 + (1− w)sρt−1]∆Sl,t
(27)

Proof: Equation (27), can be split in half, we have
V θt =

∑T
0 s

θ
t−1(∆St − ∆Sl,t), V ρt =

∑T
0 s

ρ
t−1[w∆St −

wl∆Sl,t] and we have Vt = V ρt +V θt , by simply rearranging
and noticing that wl = (1− w) we obtain equation (27).

Remark: Note that ∀t ∈ {1, T} sθt is not necessarily equal
to 1− sρt .

B. Performance Measures

SR (from equation (4a)) may perhaps be an acceptable
performance measure for most financial strategies but its
appropriateness for the spread model of section III does not
work as expected. Indeed, the absence of SR in the latter
methodology in the authors original paper [16] is due to
its contrarian performance when used with a mean reverting
strategy. To clarify, when spread is really big the foretasted
infinitesimal return over risk is also very big but the like-
lihood of such event is also rare so the many opportunities
with positive returns is neglected for no good reason. We
therefore, instead, use the utility function of equation (11)
for the spread dynamic given by θ-centered sub-strategy and
the SR performance measure for the ρ-centered sub-strategy.
We write our P&L function by equation (28c), where sub-
equation (28a) represents the P&L driven by the θ-centered
sub-strategy, (28b) represents the P&L driven by the ρ-
centered sub-strategy and equation (28c) represent the P&L
of the multi-strategy in which the switching is done based
on a simple threshold function for the spread.

V θ = wθ(t, x)(∆St −∆Sl,t)

V ρ = wρ(t, x)∆St + [1− wρ(t, x)]∆Sl,t

V = λ(t, x)V θ + [1− λ(t, x)]V ρ

λ(t, x) = 1x>µ

(28a)
(28b)

(28c)
(28d)

Remark: Please note that the re-balancing of the portfolio
is done through a simple on and off switch given by equation
(28d)

C. Finding the right phase

One other important aspect to note is that when dealing
with cointelated pairs, after estimating θ, ρ, σ, an understand-
ing of phase is still required. The latter point is discussed
in this subsection. We have seen in equation (21) that
the expectation of the number of crosses E[Γx,y] can be
approximated by L

[
γ(1− θ) + 1

2

√
θ
]
.

Definition (Beginning of Time): We call the Beginning of
Time τ0, the inception time of the discrete version of two
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Cointelated pairs in which, ∆St = St−St−1 with arbitrary,
t > τ0, ∆xτ0 := 0, τ0 := 0.

Definition (Equilibrium & Disequilibrium): A
Cointelated pair (St, Sl,t)t>0, is said to be in Disequilibrium
at time τ if

|Sτ − Sl,τ | > 0

Likewise, the same pair is said to be in Equilibrium if

Sτ − Sl,τ = 0

In the case in which our cointelated pair’s τ0 is unknown or
two cointelated pairs, (St, Sl,t)t>0 started in disequilibrium
(eg: |Sτ0 − Sl,τ0 | > 0), then it is primordial to start the
strategy in a case where they are in equilibrium.

Definition (Cointelated Pairs’ Phase Corrector): The
Phase Corrector of two cointelated pairs, (x, y) where
x = (St)t>0 and y = (Sl,t)t>0 is a constant c ∈ R which
maximize historical instance in which the cointelated pair is
in equilibrium and is given by:

c = arg max
c

Γx+c,y(θ, L) (29)

where Γx+c,y(θ, L) is the number of cross function of
equation (21) phase corrected. We may need to use the
Phase Corrector methodology described above to address the
reservations described in this section.

VIII. SIGNAL DEFINITION:
THE STOCHASTIC DIFFERENTIAL EQUATION APPROACH

A. The θ-centered sub-strategy

Applying the methodology from section III to the naming
of the parameters in section I, we have:

wθ(t, x) =
1

1− γ

[
β(t) + 2xα(t)− θx

σ2
l

+
ρσ

σl
+

1

2

]
with x = log(St)− log(Sl,t),

α(t) =
θ(1−

√
1− γ)

2σ2
l

×1 +
2
√

1− γ

1−
√

1− γ − (1 +
√

1− γ) exp
(

2θ(T−t)√
1−γ

)


and

β(t) =
1

2σ2
l [(1−

√
1− γ)− (1 +

√
1− γ) exp

(
2θ(T−t)√

1−γ

)
]

(γ
√

1− γ(σ2
l + 2ρση)

[
1− exp

(
2θ(T − t)√

1− γ

)]2

−γ(η2 + 2ρσσl + 2θ)

[
1− exp

(
2θ(T − t)√

1− γ

)]
)

B. The ρ-centered sub-strategy

Applying the methodology from section II-B to the naming
of the parameters in section I, we have:

wρ(t, x) =
σ2
l − σσlρ

σ2 − 2ρσσl + σ2
l

(30)

IX. SIGNAL DEFINITION:
THE MACHINE LEARNING APPROACH

A. The Bayesian set-up

We set, from equation (18) ∆t = St − Sl,t,
assume for now that r > 0 and Bt =
{B+

n,t, B
+
n−1,t, . . . , B

+
1,t, B

1
1,t, . . . , B

−
n−1,t, B

−
n,t}, such

that B+
n,t > B+

n−1,t > . . . > B+
1,t > 0 > B−1,t > . . . >

B−n−1,t > B−n,t. We have seen that depending on the spread,
the resulting approximated distribution of the samples differ
[10]. The calibration algorithm will then consist of creating
as many zones as possible whilst converging to the results
from Theorem (SDE to Band-wise Gaussian Mixture) of
page 6 introduced originally in [10]. We first define the four
strategies as well as their cumulative P&Ls.
• Strategy S++ in which we are long both S and Sl at

time t in between bands [a, b] and with P&L V ++
[a,b],t.

• Strategy S+− in which we are long S and short Sl at
time t in between bands [a, b] and with P&L V +−

[a,b],t.
• Strategy S−+ in which we are short S and long Sl at

time t in between bands [a, b] and with P&L V −+
[a,b],t.

• Strategy S−− in which we are short both S and Sl at
time t in between bands [a, b] and with P&L V −−[a,b],t.

V ++
[a,b],T =

T∑
t=0

[w++
[a,b],t∆St + (1− w++

[a,b],t)∆Sl,t]1a<∆t≤b

V +−
[a,b],T =

T∑
t=0

[w+−
[a,b],t∆St − (1− w+−

[a,b],t)∆Sl,t]1a<∆t≤b

V −+
[a,b],T =

T∑
t=0

[−w−+
[a,b],t∆St + (1− w−+

[a,b],t)∆Sl,t]1a<∆t≤b

V −−[a,b],T =

T∑
t=0

[−w−−[a,b],t∆St − (1− w−−[a,b],t)∆Sl,t]1a<∆t≤b

We define the maximum P&L achieved by each of these
strategies by V ∓∓,∗[a,b],T , as given by equation (32) and define
S∗∗[a,b],T of P&L V ∗∗[a,b],T (equation (33)), the optimal strategy
using Gaussian Learning in band [a, b].

V ∓∓,∗[a,b],T = arg max
w∓∓

[a,b],t∈[0,T ]

V ∓[a,b],T , w
∓∓
[a,b],t ∈ [0, 1] (32)

V ∗∗[a,b],T = max(V ++,∗
[a,b],T , V

+−,∗
[a,b],T , V

−+,∗
[a,b],T , V

−−,∗
[a,b],T ) (33)

Table I is an intuitive representation of what the SDE and the
Bayesian set-up should capture. We further provide algorithm
2 as the pseudo-code for the calibration process.

Remark: Note that in both algorithm 1 and 2, we have
used a QuickSort which can be substituted by other sorting
algorithm. We invite the motivated readers to investigate
on their own this idiosyncratic issue. Also note that this
algorithm has neither been optimized nor checked for data
quality (eg: the combination of n and p should be such
that each band has enough data (eg: minimum 30) for the
statistical estimators to be significant. Also note the use of
self explanatory functions such as:
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∆t ≥ B+
n,t . . . B+

2,t ≥ ∆t > B+
1,t B+

1,t ≥ ∆t > B−
1,t B−

1,t ≥ ∆t > B−
2,t . . . B−

n,t ≥ ∆t

E[wθ(t, x)] � 0 . . . E[wθ(t, x)] > 0 E[wθ(t, x)] = 0 E[wθ(t, x)] < 0 . . . E[wθ(t, x)] � 0

E[wρ(t, x)] = r . . . E[wρ(t, x)] = r E[wρ(t, x)] = r E[wρ(t, x)] = r . . . E[wρ(t, x)] = r

1 > E[λ(t, x)] � .5 . . . 1 > E[λ(t, x)] > .5 E[λ(t, x)] = 0 1
2
> E[λ(t, x)] > 0 . . . 1

2
� E[λ(t, x)] > 0

V ∗∗
Bi,T

= V +−,∗
Bi,T

. . . V ∗∗
Bi,T

= V +−,∗
Bi,T

V ∗∗
Bi,T

= V ++,∗
Bi,T

V ∗∗
Bi,T

= V −+,∗
Bi,T

. . . V ∗∗
Bi,T

= V −+,∗
Bi,T

TABLE I
INTUITIVE REPRESENTATION OF WHAT THE SDE AND BAYESIAN SET-UP SHOULD CAPTURE.

Algorithm 2 BAND-WISE ML FOR COINTELATION(X, p)
Require: array X1:n and number of bands p
Ensure: Ω(1:p), [B+

(1:p), B
−
(1:p)] are returned.

Sorting state:
1: X(1:n) ← QuickSort(X1:n)
2: [B+

(1: p2 )
, B−

(1: p2 )
] ← FindPercentileBands(X(1:n), p)

3: B(1:p) ← [B+
(1: p2 )

, B−
(1: p2 )

]

4: Ω(1:dn/pe) ← []

Allocation state:
5: for j = 1 to p do
6: for i = 1 to n do
7: if X(i) ∈ Bi then
8: Amend(Ω(j), X(i))
9: end if

10: end for
11: end for

Optimize the 4 types of P&L for each band:
12: for i = 1 to p do
13: V ++,∗

Bi,T
← arg maxw++

Bi,t∈[0,T ]
V ++
Bi,T

14: V +−,∗
Bi,T

← arg maxw+−
Bi,t∈[0,T ]

V +−
Bi,T

15: V −+,∗
Bi,T

← arg maxw−+
Bi,t∈[0,T ]

V −+
Bi,T

16: V −−,∗Bi,T
← arg maxw−−

Bi,t∈[0,T ]
V −−Bi,T

17: end for

Rank and return best strategy for each band:
18: for i = 1 to p do
19: V ∗∗Bi,T

← max(V ++,∗
Bi,T

, V +−,∗
Bi,T

, V −+,∗
Bi,T

, V −−,∗Bi,T
)

20: S∗T ← (S++,∗
Bi,T

, S+−,∗
Bi,T

, S−+,∗
Bi,T

, S−−,∗Bi,T
)

21: S∗∗Bi,T
← returnCorrespondingStrat(V ∗∗Bi,T

, S∗T ),
22: end for

Forecasting :
23: signalS , signalSl ← forecast(S∗∗Bi,T

, St, Sl,t)

Return buy/sell signals:
24: signalS , signalSl

• returnCorrespondingStrat(x,y) which given the set of

strategies and the P&L that maximized that strategy
returns as its name indicates the corresponding strategy.

• forecast(x,y,z) which given the set of trained strategies
and the current level of St and Sl,t returns a prediction
of where the signals for the latter two should be.

Finally the use of the arg max function in lines 13-16 can
be replaced by a simple for loop but in the interest of not
making the pseudocode too crowded we have kept it this
way.

B. A model that can dynamically accommodate regime
changes

One important point to note about the additional benefits
of a data-driven Learning approach over the SDE approachi

is to take a look at the example associated to the bizarre
world of interest rates. Indeed up to 2014, it was assumed
that interest rates could never become negativej.

Remark: We have seen [10] that a reasonable risk manager
or trader can assume that the generalized SDE, in which
the cointelation model is a special case, would have chosen
a β = 0 and an α = 1, the latter enforcing positivity
for the simulated scenarios of our risk factor. This very
reasonable assumption would have crashed the whole risk
engine. The approach we advocate would have, however,
been able to continue its dynamical learning scenario without
any problem.

X. RESULTS

A. Observation

Following the strategy optimization methodology de-
scribed in the previous sections we get the results of figures
5, 6, 7, 8, and 9 in which in can be seen that the the addition
of each strategy θ and ρ into a global/total portfolio enhances
our performance.

B. Analysis

The SDE and ML methodologies provide similar results.
However, couple important points are worthwhile to note
about the additional benefits of the ML approach over the
SDE approach

iBeyond the obvious benefits associated to achieving the same results
though through a simpler channel and also bypassing convoluted SDE
calibration issues in the process.

jWhy would you pay to put your money in the bank? That would
essentially be the physical question one may ask oneself.
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1) Simplicity: The first obvious benefits from the ap-
proach presented here over the SDE approach is that we were
able to achieve the same results though through a simpler
channelk.

2) flexibility: The second advantage that the approach
presented here provides flexibility to regime change. The
easiest way to understand this is to take a look at the bizarre
world of interest rates. Indeed up to 2014, it was assumed
that interest rates could never become negative and a similar
SDE approach would have enforced a CIR like model [2]
and would not have therefore been able to accommodate the
regime change towards negative interest rates. These types of
transitions are easy to handle for the ML methodology and
the adaptation is almost immediate through, for example, a
simple filtering process.

XI. CONCLUSION

A. Summary

We have studied the Cointelation model in the context of
a dual portfolio optimization exercise taking 2 approaches.
The first one consisted of a classic optimal control problem
in the form of a switching Markowitz/Ornstein-Uhlenbeck
switching methodology in which one strategy would act as
an overlay to the other. The second approach we took was
both simpler and more adaptable thanks to a more powerful
methodology in the form of a band-wise Gaussian Mixture
model [10].

B. Next step

There are few extensions or improvement that can be
performed on this work.

1) The n-Cointelated case: We can first ask ourselves the
question of the n-Cointelated case for which the trio has been
specified by equation (34).

dSa
t

Sa
t

= σdW a
t

dSbt = θ(Sat − Sbt )dt+ σSat dW
b
t

dSct = θ(Sat − Sct )dt+ σSct dW
c
t

(34)

One natural question would first be about how to define this
trio? For instance would equation (34) be more in-line with
the pair from equation (18) or would equation (35) be better?
Can they be turned into equivalent forms?

dSa
t

Sa
t

= σdWt

dSbt = θ(Sat − Sbt )dt+ σSat dW
b
t

dSct = θ(Sbt − Sct )dt+ σSct dW
c
t

(35)

2) Performance measure: We have seen that there are few
performance functions that can be used (SPT, Sharpe Ratio,
Utility Function). Can we come up with a more robust all
encompassing methodology?

3) Band-wise Gaussian mixture: We have used the Band-
wise Gaussian mixture. Is this methodology optimal or can
we find better? We will consider these few questions and
more in a subsequent paper.

kWe bypassed convoluted SDE calibration issues in the process.
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Fig. 5. Example of Pairs Trading performance charts in the context of the dual Cointelation model strategy
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Fig. 6. Example of Pairs Trading performance charts in the context of the dual Cointelation model strategy
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Fig. 7. Example of Pairs Trading performance charts in the context of the dual Cointelation model strategy
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Fig. 8. Example of Pairs Trading performance charts in the context of the dual Cointelation model strategy
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Fig. 9. Example of Pairs Trading performance charts in the context of the dual Cointelation model strategy
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